ON THE OSCILLATION OF CERTAIN THIRD-ORDER DIFFERENCE EQUATIONS

RAVI P. AGARWAL, SAID R. GRACE, AND DONAL O'REGAN

Received 28 August 2004

We establish some new criteria for the oscillation of third-order difference equations of the form $\Delta\left(\left(1 / a_{2}(n)\right)\left(\Delta\left(1 / a_{1}(n)\right)(\Delta x(n))^{\alpha_{1}}\right)^{\alpha_{2}}\right)+\delta q(n) f(x[g(n)])=0$, where Δ is the forward difference operator defined by $\Delta x(n)=x(n+1)-x(n)$.

1. Introduction

In this paper, we are concerned with the oscillatory behavior of the third-order difference equation

$$
L_{3} x(n)+\delta q(n) f(x[g(n)])=0,
$$

where $\delta= \pm 1, n \in \mathbb{N}=\{0,1,2, \ldots\}$,

$$
\begin{align*}
& L_{0} x(n)=x(n), \quad L_{1} x(n)=\frac{1}{a_{1}(n)}\left(\Delta L_{0} x(n)\right)^{\alpha_{1}}, \\
& L_{2} x(n)=\frac{1}{a_{2}(n)}\left(\Delta L_{1} x(n)\right)^{\alpha_{2}}, \quad L_{3} x(n)=\Delta L_{2} x(n) . \tag{1.2}
\end{align*}
$$

In what follows, we will assume that
(i) $\left\{a_{i}(n)\right\}, i=1,2$, and $\{q(n)\}$ are positive sequences and

$$
\begin{equation*}
\sum^{\infty}\left(a_{i}(n)\right)^{1 / \alpha_{i}}=\infty, \quad i=1,2 ; \tag{1.3}
\end{equation*}
$$

(ii) $\{g(n)\}$ is a nondecreasing sequence, and $\lim _{n \rightarrow \infty} g(n)=\infty$;
(iii) $f \in \mathscr{C}(\mathbb{R}, \mathbb{R}), x f(x)>0$, and $f^{\prime}(x) \geq 0$ for $x \neq 0$;
(iv) $\alpha_{i}, i=1,2$, are quotients of positive odd integers.

The domain $\mathscr{D}\left(L_{3}\right)$ of L_{3} is defined to be the set of all sequences $\{x(n)\}, n \geq n_{0} \geq 0$ such that $\left\{L_{j} x(n)\right\}, 0 \leq j \leq 3$ exist for $n \geq n_{0}$.

A nontrivial solution $\{x(n)\}$ of $(1.1 ; \delta)$ is called nonoscillatory if it is either eventually positive or eventually negative and it is oscillatory otherwise. An equation ($1.1 ; \delta$) is called oscillatory if all its nontrivial solutions are oscillatory.

The oscillatory behavior of second-order half-linear difference equations of the form

$$
\Delta\left(\frac{1}{a_{1}(n)}(\Delta x(n))^{\alpha_{1}}\right)+\delta q(n) f(x[g(n)])=0
$$

where δ, a_{1}, q, g, f, and α_{1} are as in $(1.1 ; \delta)$ and/or related equations has been the subject of intensive study in the last decade. For typical results regarding $(1.4 ; \delta)$, we refer the reader to the monographs $[1,2,4,8,12]$, the papers $[3,6,11,15]$, and the references cited therein. However, compared to second-order difference equations of type $(1.4 ; \delta)$, the study of higher-order equations, and in particular third-order equations of type ($1.1 ; \delta$) has received considerably less attention (see $[9,10,14]$). In fact, not much has been established for equations with deviating arguments. The purpose of this paper is to present a systematic study for the behavioral properties of solutions of $(1.1 ; \delta)$, and therefore, establish criteria for the oscillation of $(1.1 ; \delta)$.

2. Properties of solutions of equation $(1.1 ; 1)$

We will say that $\{x(n)\}$ is of type B_{0} if

$$
\begin{equation*}
x(n)>0, \quad L_{1} x(n)<0, \quad L_{2} x(n)>0, \quad L_{3} x(n) \leq 0 \quad \text { eventually }, \tag{2.1}
\end{equation*}
$$

it is of type B_{2} if

$$
\begin{equation*}
x(n)>0, \quad L_{1} x(n)>0, \quad L_{2} x(n)>0, \quad L_{3} x(n) \leq 0 \quad \text { eventually. } \tag{2.2}
\end{equation*}
$$

Clearly, any positive solution of $(1.1 ; 1)$ is either of type B_{0} or B_{2}. In what follows, we will present some criteria for the nonexistence of solutions of type B_{0} for (1.1;1).

Theorem 2.1. Let conditions (i)-(iv) hold, $g(n)<n$ for $n \geq n_{0} \geq 0$, and

$$
\begin{equation*}
-f(-x y) \geq f(x y) \geq f(x) f(y) \quad \text { for } x y>0 \tag{2.3}
\end{equation*}
$$

Moreover, assume that there exists a nondecreasing sequence $\{\xi(n)\}$ such that $g(n)<\xi(n)$ $<n$ for $n \geq n_{0}$. If all bounded solutions of the second-order half-linear difference equation

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta y(n))^{\alpha_{2}}\right)-q(n) f\left(\sum_{k=g(n)}^{\xi(n)} a_{1}^{1 / \alpha_{1}}(k)\right) f\left(y^{1 / \alpha_{1}}[\xi(n)]\right)=0 \tag{2.4}
\end{equation*}
$$

are oscillatory, then (1.1;1) has no solution of type B_{0}.
Proof. Let $\{x(n)\}$ be a solution of $(1.1 ; 1)$ of type B_{0}. There exists $n_{0} \in \mathbb{N}$ so large that (2.1) holds for all $n \geq n_{0}$. For $t \geq s \geq n_{0}$, we have

$$
\begin{equation*}
x(s)=x(t+1)-\sum_{j=s}^{t} a_{1}^{1 / \alpha_{1}}(j) \frac{1}{a_{1}^{1 / \alpha_{1}}(j)} \Delta x(j) \geq\left(\sum_{j=s}^{t} a_{1}^{1 / \alpha_{1}}(j)\right)\left(-L_{1}^{1 / \alpha_{1}} x(t)\right) . \tag{2.5}
\end{equation*}
$$

Replacing s and t by $g(n)$ and $\xi(n)$ respectively in (2.5), we have

$$
\begin{equation*}
x[g(n)] \geq\left(\sum_{j=g(n)}^{\xi(n)} a_{1}^{1 / \alpha_{1}}(j)\right)\left(-L_{1}^{1 / \alpha_{1}} x[\xi(n)]\right) \tag{2.6}
\end{equation*}
$$

for $n \geq n_{1} \in \mathbb{N}$ for some $n_{1} \geq n_{0}$. Now using (2.3) and (2.6) in (1.1;1) and letting $y(n)=$ $-L_{1} x(n)>0$ for $n \geq n_{1}$, we easily find

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta y(n))^{\alpha_{2}}\right)-q(n) f\left(\sum_{j=g(n)}^{\xi(n)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}[\xi(n)]\right) \geq 0 \quad \text { for } n \geq n_{1} \tag{2.7}
\end{equation*}
$$

A special case of [16, Lemma 2.4] guarantees that (2.4) has a positive solution, a contradiction. This completes the proof.

Theorem 2.2. Let conditions (i)-(iv) and (2.3) hold, and assume that there exists a nondecreasing sequence $\{\xi(n)\}$ such that $g(n)<\xi(n)<n$ for $n \geq n_{0}$. Then, (1.1;1) has no solution of type B_{0} if either one of the following conditions holds:
$\left(S_{1}\right)$

$$
\begin{gather*}
\frac{f\left(u^{1 /\left(\alpha_{1} \alpha_{2}\right)}\right)}{u} \geq 1 \quad \text { for } u \neq 0, \tag{2.8}\\
\limsup _{n \rightarrow \infty} \sum_{k=\xi(n)}^{n-1}\left\{q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=\xi(k)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)\right\}>1, \tag{2.9}
\end{gather*}
$$

$\left(S_{2}\right)$

$$
\begin{gather*}
\frac{u}{f\left(u^{1 /\left(\alpha_{1} \alpha_{2}\right)}\right)} \longrightarrow 0 \quad \text { as } u \longrightarrow 0, \tag{2.10}\\
\limsup _{n \rightarrow \infty} \sum_{k=\xi(n)}^{n-1}\left\{q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=\xi(k)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)\right\}>0 . \tag{2.11}
\end{gather*}
$$

Proof. Let $\{x(n)\}$ be a solution of $(1.1 ; 1)$ of type B_{0}. Proceeding as in the proof of Theorem 2.1 to obtain the inequality (2.7), it is easy to check that $y(n)>0$ and $\Delta y(n)<0$ for $n \geq n_{1}$. Let $n_{2}>n_{1}$ be such that $\inf _{n \geq n_{2}} \xi(n)>n_{1}$. Now

$$
\begin{align*}
y(\sigma) & =y(\tau+1)-\sum_{j=\sigma}^{\tau} a_{2}^{1 / \alpha_{2}}(j)\left(\frac{1}{a_{2}(j)}(\Delta y(j))^{\alpha_{2}}\right)^{1 / \alpha_{2}} \\
& \geq\left(\sum_{j=\sigma}^{\tau} a_{2}^{1 / \alpha_{2}}(j)\right)\left(\frac{1}{a_{2}(\tau)}(-\Delta y(\tau))^{\alpha_{2}}\right)^{1 / \alpha_{2}} \quad \text { for } \tau \geq \sigma \geq n_{2} . \tag{2.12}
\end{align*}
$$

Replacing σ and τ by $\xi(k)$ and $\xi(n)$ respectively in (2.12), we have

$$
\begin{equation*}
y[\xi(k)] \geq\left(\sum_{j=\xi(k)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(j)\right)\left(\frac{1}{a_{2}[\xi(n)]}(-\Delta y[\xi(n)])^{\alpha_{2}}\right)^{1 / \alpha_{2}} \quad \text { for } n \geq k \geq n_{2} . \tag{2.13}
\end{equation*}
$$

Summing (2.7) from $\xi(n)$ to $(n-1)$ and letting $Y(n)=(-\Delta y(n))^{\alpha_{2}} / a_{2}(n)$ for $n \geq n_{2}$, we get

$$
\begin{align*}
Y[\xi(n)] \geq & Y(n)+\sum_{k=\xi(n)}^{n-1} q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) \\
& \times f\left(\left[\left(\sum_{i=\xi(k)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(i)\right) Y^{1 / \alpha_{2}}[\xi(n)]\right]^{1 / \alpha_{1}}\right) \quad \text { for } n \geq n_{2} . \tag{2.14}
\end{align*}
$$

Using condition (2.3) in (2.14), we have

$$
\begin{align*}
Y[\xi(n)] \geq & f\left(Y^{1 /\left(\alpha_{1} \alpha_{2}\right)}[\xi(n)]\right) \\
& \times\left[\sum_{k=\xi(n)}^{n-1} q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=\xi(k)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)\right], \quad n \geq n_{2} . \tag{2.15}
\end{align*}
$$

Using (2.8) in (2.15) we have

$$
\begin{equation*}
1 \geq \sum_{k=\xi(n)}^{n-1} q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=\xi(k)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right) . \tag{2.16}
\end{equation*}
$$

Taking limsup of both sides of the above inequality as $n \rightarrow \infty$, we obtain a contradiction to condition (2.9).

Next, using (2.10) in (2.15) and taking limsup of the resulting inequality, we obtain a contradiction to condition (2.11). This completes the proof.

Theorem 2.3. Let the hypotheses of Theorem 2.2 hold. Then, (1.1;1) has no solutions of type B_{0} if one of the following conditions holds:
(O_{1})

$$
\begin{gather*}
\frac{f^{1 / \alpha_{2}}\left(u^{1 / \alpha_{1}}\right)}{u} \geq 1 \quad \text { for } u \neq 0, \tag{2.17}\\
\limsup _{n \rightarrow \infty} \sum_{k=\xi(n)}^{n-1} a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=k}^{n-1} q(j) f\left(\sum_{i=g(j)}^{\xi(j)} a_{1}^{1 / \alpha_{1}}(i)\right)\right)^{1 / \alpha_{2}}>1, \tag{2.1.}
\end{gather*}
$$

$\left(\mathrm{O}_{2}\right)$

$$
\begin{gather*}
\frac{u}{f^{1 / \alpha_{2}}\left(u^{1 / \alpha_{1}}\right)} \longrightarrow 0 \quad \text { as } u \longrightarrow 0, \tag{2.19}\\
\limsup _{n \rightarrow \infty} \sum_{k=\xi(n)}^{n-1} a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=k}^{n-1} q(j) f\left(\sum_{i=g(j)}^{\xi(j)} a_{1}^{1 / \alpha_{1}}(i)\right)\right)^{1 / \alpha_{2}}>0 . \tag{2.20}
\end{gather*}
$$

Proof. Let $\{x(n)\}$ be a solution of $(1.1 ; 1)$ of type B_{0}. As in the proof of Theorem 2.1, we obtain the inequality (2.7) for $n \geq n_{1}$. Also, we see that $y(n)>0$ and $\Delta y(n)<0$ for $n \geq n_{1}$. Next, we let $n_{2} \geq n_{1}$ be as in the proof of Theorem 2.2, and summing inequality (2.7) from $s \geq n_{2}$ to ($n-1$), we have

$$
\begin{equation*}
\frac{1}{a_{2}(s)}(-\Delta y(s))^{\alpha_{2}} \geq \frac{1}{a_{2}(n)}(-\Delta y(n))^{\alpha_{2}}+\sum_{k=s}^{n-1} q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}[\xi(k)]\right), \tag{2.21}
\end{equation*}
$$

which implies

$$
\begin{equation*}
-\Delta y(s) \geq a_{2}^{1 / \alpha_{2}}(s)\left(\sum_{k=s}^{n-1} q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}[\xi(k)]\right)\right)^{1 / \alpha_{2}} . \tag{2.22}
\end{equation*}
$$

Now,

$$
\begin{equation*}
y(v)=y(n)+\sum_{s=v}^{n-1}(-\Delta y(s)) \geq \sum_{s=v}^{n-1}(-\Delta y(s)) \quad \text { for } n-1 \geq s \geq n_{2} . \tag{2.23}
\end{equation*}
$$

Substituting (2.23) in (2.22) and setting $v=\xi(n)$, we have

$$
\begin{align*}
y[\xi(n)] & \geq \sum_{s=\xi(n)}^{n-1} a_{2}^{1 / \alpha_{2}}(s)\left(\sum_{k=s}^{n-1} q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}[\xi(k)]\right)\right)^{1 / \alpha_{2}} \\
& \geq f^{1 / \alpha_{2}}\left(y^{1 / \alpha_{1}}[\xi(n)]\right) \sum_{s=\xi(n)}^{n-1} a_{2}^{1 / \alpha_{2}}(s)\left(\sum_{k=s}^{n-1} q(k) f\left(\sum_{j=g(k)}^{\xi(k)} a_{1}^{1 / \alpha_{1}}(j)\right)\right)^{1 / \alpha_{2}} . \tag{2.24}
\end{align*}
$$

The rest of the proof is similar to that of Theorem 2.2 and hence is omitted.

Theorem 2.4. Let conditions (i)-(iv), (2.3) hold, $g(n)=n-\tau$, where τ is a positive integer and assume that there exist two positive integers such that $\tau>\bar{\tau}>\tilde{\tau}$. If the first-order delay equation

$$
\begin{equation*}
\Delta y(n)+q(n) f\left(\sum_{j=n-\tau}^{n-\bar{\tau}} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=n-\bar{\tau}}^{n-\tilde{\tau}} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right) f\left(y^{1 /\left(\alpha_{1} \alpha_{2}\right)}[n-\tilde{\tau}]\right)=0 \tag{2.25}
\end{equation*}
$$

is oscillatory, then $(1.1 ; 1)$ has no solution of type B_{0}.
Proof. Let $\{x(n)\}$ be a solution of $(1.1 ; 1)$ of type B_{0}. As in the proof of Theorem 2.1, we obtain (2.6) for $n \geq n_{1}$, which takes the form

$$
\begin{equation*}
x[n-\tau] \geq\left(\sum_{j=n-\tau}^{n-\bar{\tau}} a_{1}^{1 / \alpha_{1}}(j)\right)\left(-L_{1}^{1 / \alpha_{1}} x[n-\bar{\tau}]\right) \quad \text { for } n \geq n_{1} . \tag{2.26}
\end{equation*}
$$

Similarly, we find

$$
\begin{equation*}
-L_{1} x[n-\bar{\tau}] \geq\left(\sum_{i=n-\bar{\tau}}^{n-\tilde{\tau}} a_{2}^{1 / \alpha_{2}}(i)\right)\left(L_{2}^{1 / \alpha_{2}} x[n-\tilde{\tau}]\right) \quad \text { for } n \geq n_{2} \geq n_{1} . \tag{2.27}
\end{equation*}
$$

Combining (2.26) with (2.27) we have

$$
\begin{equation*}
x[n-\tau] \geq\left(\sum_{j=n-\tau}^{n-\bar{\tau}} a_{1}^{1 / \alpha_{1}}(j)\right)\left(\sum_{i=n-\bar{\tau}}^{n-\tilde{\tau}} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}} L_{2}^{1 /\left(\alpha_{1} \alpha_{2}\right)} x[n-\tilde{\tau}] \quad \text { for } n \geq n_{3} \geq n_{2} . \tag{2.28}
\end{equation*}
$$

Using (2.3) and (2.28) in (1.1;1) and setting $Z(n)=L_{2} x(n)$, we have

$$
\begin{gather*}
\Delta Z(n)+q(n) f\left(\sum_{j=n-\tau}^{n-\bar{\tau}} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=n-\bar{\tau}}^{n-\tilde{\tau}} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right) \tag{2.29}\\
\times f\left(Z^{1 /\left(\alpha_{1} \alpha_{2}\right)}[n-\tilde{\tau}]\right) \leq 0 \quad \text { for } n \geq n_{3} .
\end{gather*}
$$

By a known result in $[2,12]$, we see that (2.25) has a positive solution which is a contradiction. This completes the proof.

As an application of Theorem 2.4, we have the following result.

Corollary 2.5. Let conditions (i)-(iv), (2.3) hold, $g(n)=n-\tau, \tau$ is a positive integer and let there exist two positive integers $\bar{\tau}, \tilde{\tau}$ such that $\tau>\bar{\tau}>\tilde{\tau}$. Then, (1.1;1) has no solution of type B_{0} if either one of the following conditions holds:
(I_{1}) in addition to (2.8),

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{k=n-\bar{\tau}}^{n-1} q(k) f\left(\sum_{j=k-\tau}^{k-\bar{\tau}} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=k-\bar{\tau}}^{k-\tilde{\tau}} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)>\left(\frac{\tilde{\tau}}{1+\tilde{\tau}}\right)^{\tilde{\tau}+1} \tag{2.30}
\end{equation*}
$$

(I_{2})

$$
\begin{gather*}
\int_{ \pm 0} \frac{d u}{f\left(u^{1 /\left(\alpha_{1} \alpha_{2}\right)}\right)}<\infty \tag{2.31}\\
\sum_{k=n_{0}}^{\infty} q(k) f\left(\sum_{j=k-\tau}^{k-\bar{\tau}} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=k-\bar{\tau}}^{k-\tilde{\tau}} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)=\infty . \tag{2.32}
\end{gather*}
$$

Next, we will present some criteria for the nonexistence of solutions of type B_{2} of (1.1;1).

Theorem 2.6. Let conditions (i)-(iv) and (2.3) hold. If

$$
\begin{equation*}
\sum^{\infty} q(j) f\left(\sum_{i=n_{0}}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right)=\infty \tag{2.33}
\end{equation*}
$$

then $(1.1 ; 1)$ has no solution of type B_{2}.
Proof. Let $\{x(n)\}$ be a solution of $(1.1 ; 1)$. There exists an integer $n_{0} \in \mathbb{N}$ so large that (2.2) holds for $n \geq n_{0}$. From (2.2), there exist a constant $c>0$ and an integer $n_{1} \geq n_{0}$ such that

$$
\begin{equation*}
\frac{1}{a_{1}(n)}\left(\Delta L_{0} x(n)\right)^{\alpha_{1}}=L_{1} x(n) \geq c \tag{2.34}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta x(n) \geq\left(c a_{1}(n)\right)^{1 / \alpha_{1}} \quad \text { for } n \geq n_{1} . \tag{2.35}
\end{equation*}
$$

Summing (2.35) from n_{1} to $g(n)-1\left(\geq n_{1}\right)$ we obtain

$$
\begin{equation*}
x[g(n)] \geq c^{1 / \alpha_{1}} \sum_{j=n_{1}}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j) \tag{2.36}
\end{equation*}
$$

Using (2.3) and (2.36) in (1.1;1) we have

$$
\begin{align*}
-L_{3} x(n) & =q(n) f(x[g(n)]) \\
& \geq q(n) f\left(c^{1 / \alpha_{1}}\right) f\left(\sum_{j=n_{1}}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) \quad \text { for } n \geq n_{2} \geq n_{1} . \tag{2.37}
\end{align*}
$$

Summing (2.37) from n_{2} to $n-1\left(>n_{2}\right)$ we obtain

$$
\begin{align*}
\infty>L_{2} x\left(n_{2}\right) & \geq-L_{2} x(n)+L_{2} x\left(n_{2}\right) \\
& \geq f\left(c^{1 / \alpha_{1}}\right) \sum_{k=n_{2}}^{n-1} q(k) f\left(\sum_{j=n_{1}}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) \longrightarrow \infty \quad \text { as } n \longrightarrow \infty, \tag{2.38}
\end{align*}
$$

a contradiction. This completes the proof.
Theorem 2.7. Let conditions (i)-(iv) and (2.3) hold, and $g(n)=n-\tau, n \geq n_{0} \geq 0$, where τ is a positive integer. If the first-order delay equation

$$
\begin{equation*}
\Delta y(n)+q(n) f\left(\sum_{k=n_{0}}^{n-\tau-1}\left(a_{1}(k) \sum_{j=n_{0}}^{k-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) f\left(y^{1 /\left(\alpha_{1} \alpha_{2}\right)}[n-\tau]\right)=0 \tag{2.39}
\end{equation*}
$$

is oscillatory, then $(1.1 ; 1)$ has no solution of type B_{2}.
Proof. Let $\{x(n)\}$ be a solution of $(1.1 ; 1)$ of type B_{2}. There exists an integer $n_{0} \geq 0$ so large that (2.2) holds for $n \geq n_{0}$. Now,

$$
\begin{align*}
L_{1} x(n) & =L_{1} x\left(n_{0}\right)+\sum_{j=n_{0}}^{n-1} \Delta L_{1} x(j) \\
& =L_{1} x\left(n_{0}\right)+\sum_{j=n_{0}}^{n-1} a_{2}^{1 / \alpha_{2}}(j)\left(a_{2}^{-1 / \alpha_{2}}(j) \Delta L_{1} x(j)\right) \\
& =L_{1} x\left(n_{0}\right)+\sum_{j=n_{0}}^{n-1} a_{2}^{1 / \alpha_{2}}(j) L_{2}^{1 / \alpha_{2}} x(j) \tag{2.40}\\
& \geq L_{2}^{1 / \alpha_{2}} x(n) \sum_{j=n_{0}}^{n-1} a_{2}^{1 / \alpha_{2}}(j) \quad \text { for } n \geq n_{1}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{1}{a_{1}(n)}(\Delta x(n))^{\alpha_{1}} \geq L_{2}^{1 / \alpha_{2}} x(n) \sum_{j=n_{0}}^{n-1} a_{2}^{1 / \alpha_{2}}(j) \tag{2.41}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\Delta x(n) \geq\left(a_{1}(n) \sum_{j=n_{0}}^{n-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}} L_{2}^{1 /\left(\alpha_{1} \alpha_{2}\right)} x(n) \quad \text { for } n \geq n_{0} \tag{2.42}
\end{equation*}
$$

Summing (2.42) from n_{0} to $g(n)-1>n_{0}$, we have

$$
\begin{equation*}
x[g(n)] \geq\left(\sum_{k=n_{0}}^{g(n)-1}\left(a_{1}(k) \sum_{j=n_{0}}^{k-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) L_{2}^{1 /\left(\alpha_{1} \alpha_{2}\right)} x[g(n)] \quad \text { for } n \geq n_{1} \geq n_{0} . \tag{2.43}
\end{equation*}
$$

$\operatorname{Using}(2.3),(2.43), g(n)=n-\tau$, and letting $y(n)=L_{2} x(n), n \geq n_{1}$, we obtain

$$
\begin{equation*}
\Delta y(n)+q(n) f\left(\sum_{k=n_{0}}^{k-\tau-1}\left(a_{1}(k) \sum_{j=n_{0}}^{k-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) f\left(y^{1 /\left(\alpha_{1} \alpha_{2}\right)}[n-\tau]\right) \leq 0 \tag{2.44}
\end{equation*}
$$

The rest of the proof is similar to that of Theorem 2.4 and hence is omitted.
Theorem 2.8. Let conditions (i)-(iv) and (2.3) hold and $g(n)>n+1$ for $n \geq n_{0} \in \mathbb{N}$. If the half-linear difference equation

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta y(n))^{\alpha_{2}}\right)+q(n) f\left(\sum_{j=n}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}(n)\right)=0 \tag{2.45}
\end{equation*}
$$

is oscillatory, then $(1.1 ; 1)$ has no solution of type B_{2}.
Proof. Let $\{x(n)\}$ be a solution of $(1.1 ; 1)$ of type B_{2}. Then there exists an $n_{0} \in \mathbb{N}$ sufficiently large so that (2.2) holds for $n \geq n_{0}$. Now, for $m \geq s \geq n_{0}$ we get

$$
\begin{equation*}
x(m)-x(s)=\sum_{j=s}^{m-1} a_{1}^{1 / \alpha_{1}}(j) L_{1}^{1 / \alpha_{1}} x(j) \tag{2.46}
\end{equation*}
$$

or

$$
\begin{equation*}
x(m) \geq\left(\sum_{j=s}^{m-1} a_{1}^{1 / \alpha_{1}}(j)\right) L_{1}^{1 / \alpha_{1}} x(s) \tag{2.47}
\end{equation*}
$$

Replacing m and s in (2.47) by $g(n)$ and n, respectively, we have

$$
\begin{equation*}
x[g(n)] \geq\left(\sum_{j=n}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) L_{1}^{1 / \alpha_{1}} x(n) \quad \text { for } g(n) \geq n+1 \geq n_{1} \geq n_{0} . \tag{2.48}
\end{equation*}
$$

Using (2.3) and (2.48) in (1.1;1) and letting $Z(n)=L_{1} x(n)$ for $n \geq n_{1}$, we obtain

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta Z(n))^{\alpha_{2}}\right)+q(n) f\left(\sum_{j=n}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(Z^{1 / \alpha_{1}}(n)\right) \leq 0 \quad \text { for } n \geq n_{1} \tag{2.49}
\end{equation*}
$$

By [16, Lemma 2.3], we see that (2.45) has a positive solution, a contradiction. This completes the proof.

Remark 2.9. We note that a corollary similar to Corollary 2.5 can be deduced from Theorem 2.7. Here, we omit the details.

Remark 2.10. We note that the conclusion of Theorems 2.1-2.4 can be replaced by "all bounded solutions of $(1.1 ; 1)$ are oscillatory."

Next, we will combine our earlier results to obtain some sufficient conditions for the oscillation of $(1.1 ; 1)$.

Theorem 2.11. Let conditions (i)-(iv) and (2.3) hold, $g(n)<n$ for $n \geq n_{0} \in \mathbb{N}$. Moreover, assume that there exists a nondecreasing sequence $\{\xi(n)\}$ such that $g(n)<\xi(n)<n$ for $n \geq$ n_{0}. If either conditions $\left(S_{1}\right)$ or $\left(S_{2}\right)$ of Theorem 2.2 and condition (2.33) hold, the equation (1.1;1) is oscillatory.

Proof. Let $\{x(n)\}$ be a nonoscillatory solution of (1.1;1), say, $x(n)>0$ for $n \geq n_{0} \in \mathbb{N}$. Then, $\{x(n)\}$ is either of type B_{0} or B_{2}. By Theorem 2.2, $\{x(n)\}$ is not of type B_{0} and by Theorem 2.6, $\{x(n)\}$ is not of type B_{2}. This completes the proof.

Theorem 2.12. Let conditions (i)-(iv), (2.3) hold, $g(n)=n-\tau, n \geq n_{0} \in \mathbb{N}$, where τ is a positive integer. Moreover, assume that there exist two positive integers $\bar{\tau}$ and $\tilde{\tau}$ such that $\tau>\bar{\tau}>\tilde{\tau}$. If both first-order delay equations (2.25) and (2.39) are oscillatory, then (1.1;1) is oscillatory.

Proof. The proof follows from Theorems 2.4 and 2.7.
Next, we will apply Theorems 2.11 and 2.12 to a special case of ($1.1 ; 1$), namely, the equation

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}\left(\Delta \frac{1}{a_{1}(n)}(\Delta x(n))^{\alpha_{1}}\right)^{\alpha_{2}}\right)+q(n) x^{\alpha}[g(n)]=0 \tag{2.50}
\end{equation*}
$$

where α is the ratio of positive odd integers.
Corollary 2.13. Let conditions (i)-(iv) hold, $g(n)<n$ for $n \geq n_{0} \in \mathbb{N}$, and assume that there exists a nondecreasing sequence $\{\xi(n)\}$ such that $g(n)<\xi(n)<n$ for $n \geq n_{0}$. Equation (2.50) is oscillatory if either one of the following conditions holds:
$\left(\mathrm{A}_{1}\right) \alpha=\alpha_{1} \alpha_{2}$,

$$
\begin{gather*}
\sum_{j=n_{0} \geq 0}^{\infty} q(j)\left(\sum_{i=n_{0}}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right)^{\alpha}=\infty, \tag{2.51}\\
\limsup _{n \rightarrow \infty} \sum_{j=\xi(n)}^{n-1} q(j)\left(\sum_{i=g(j)}^{\xi(j)} a_{1}^{1 / \alpha_{1}}(i)\right)^{\alpha}\left(\sum_{i=\xi(j)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{\alpha_{2}}>1, \tag{2.52}
\end{gather*}
$$

(A_{2}) $\alpha<\alpha_{1} \alpha_{2}$ and condition (2.51) hold, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{j=\xi(n)}^{n-1} q(j)\left(\sum_{i=g(j)}^{\xi(j)} a_{1}^{1 / \alpha_{1}}(i)\right)^{\alpha}\left(\sum_{i=\xi(j)}^{\xi(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{\alpha_{2}}>0 . \tag{2.53}
\end{equation*}
$$

Corollary 2.14. Let conditions (i)-(iv) hold, $g(n)=n-\tau, n \geq n_{0} \in \mathbb{N}$, where τ is a positive integer, and assume that there exist two positive integers $\bar{\tau}$, $\tilde{\tau}$ such that $\tau>\bar{\tau}>\tilde{\tau}$. If
the first-order delay equations

$$
\begin{align*}
& \Delta y(n)+q(n)\left(\sum_{j=n-\tau}^{n-\bar{\tau}} a_{1}^{1 / \alpha_{1}}(j)\right)^{\alpha}\left(\sum_{i=n-\bar{\tau}}^{n-\tilde{\tau}} a_{2}^{1 / \alpha_{2}}(i)\right)^{\alpha_{2}} Z^{\alpha /\left(\alpha_{1} \alpha_{2}\right)}[n-\tilde{\tau}]=0, \tag{2.54}\\
& \Delta Z(n)+q(n)\left(\sum_{j=n_{0}}^{n-\tau-1}\left(a_{1}(j) \sum_{i=n_{0}}^{j-1} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)^{\alpha} Z^{\alpha /\left(\alpha_{1} \alpha_{2}\right)}[n-\tau]=0 \tag{2.55}
\end{align*}
$$

are oscillatory, then (2.50) is oscillatory.
For the mixed difference equations of the form

$$
\begin{equation*}
L_{3} x(t)+q_{1}(t) f_{1}\left(x\left[g_{1}(n)\right]\right)+q_{2}(n) f_{2}\left(x\left[g_{2}(n)\right]\right)=0 \tag{2.56}
\end{equation*}
$$

where L_{3} is defined as in (1.1;1), $\left\{a_{i}(n)\right\}, i=1,2$ are as in (i) satisfying (1.3), α_{1} and α_{2} are as in (iv), $\left\{q_{i}(n)\right\}, i=1,2$ are positive sequences, $\left\{g_{i}(n)\right\}, i=1,2$ are nondecreasing sequences with $\lim _{n \rightarrow \infty} g_{i}(n)=\infty, i=1,2, f_{i} \in \mathscr{C}(\mathbb{R}, \mathbb{R}), x f_{i}(x)>0$ and $f_{i}(x) \geq 0$ for $x \neq 0$ and $i=1,2$. Also, f_{1}, f_{2} satisfy condition (2.3) by replacing f by f_{1} and/or f_{2}.

Now, we combine Theorems 2.1 and 2.8 and obtain the following interesting result.
Theorem 2.15. Let the above hypotheses hold for (2.56), $g_{1}(n)<n$ and $g_{2}(n)>n+1$ for $n \geq n_{0} \in \mathbb{N}$ and assume that there exists a nondecreasing sequence $\{\xi(n)\}$ such that $g_{1}(n)<$ $\xi(n)<n$ for $n \geq n_{0}$. If all bounded solutions of the equation

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta y(n))^{\alpha_{2}}\right)-q_{1}(n) f_{1}\left(\sum_{k=g_{1}(n)}^{\xi(n)} a_{1}^{1 / \alpha_{1}}(k)\right) f_{1}\left(y^{1 / \alpha_{1}}[\xi(n)]\right)=0 \tag{2.57}
\end{equation*}
$$

are oscillatory and all solutions of the equation

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta Z(n))^{\alpha_{2}}\right)+q_{2}(n) f_{2}\left(\sum_{j=n}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f_{2}\left(Z^{1 / \alpha_{1}}(n)\right)=0 \tag{2.58}
\end{equation*}
$$

are oscillatory, then (2.56) is oscillatory.

3. Properties of solutions of equation (1.1;-1)

We will say that $\{x(n)\}$ is of type B_{1} if

$$
\begin{equation*}
x(n)>0, \quad L_{1} x(n)>0, \quad L_{2} x(n)<0, \quad L_{3} x(n) \geq 0 \quad \text { eventually } \tag{3.1}
\end{equation*}
$$

it is of type B_{3} if

$$
\begin{equation*}
x(n)>0, \quad L_{i} x(n)>0, \quad i=1,2, \quad L_{3} x(n) \geq 0 \quad \text { eventually. } \tag{3.2}
\end{equation*}
$$

Clearly, any positive solution of $(1.1 ;-1)$ is either of type B_{1} or B_{3}. In what follows, we will give some criteria for the nonexistence of solutions of type B_{1} for (1.1;-1).

356 On the oscillation of certain third-order difference equations
Theorem 3.1. Assume that conditions (i)-(iv) hold. If

$$
\begin{equation*}
\sum^{\infty} q(j)=\infty, \tag{3.3}
\end{equation*}
$$

then (1.1;-1) has no solution of type B_{1}.
Proof. Let $\{x(n)\}$ be a solution of $(1.1 ;-1)$ of type B_{1}. Then there exists an $n_{0} \in \mathbb{N}$ sufficiently large so that (3.1) holds for $n \geq n_{0}$. Next, there exist an integer $n_{1} \geq n_{0}$ and a constant $c>0$ such that

$$
\begin{equation*}
x[g(n)] \geq c \quad \text { for } n \geq n_{1} . \tag{3.4}
\end{equation*}
$$

Summing (1.1;-1) from n_{1} to $n-1 \geq n_{1}$ and using (3.4), we have

$$
\begin{equation*}
L_{2} x(n)-L_{2} x\left(n_{1}\right)=\sum_{j=n_{1}}^{n-1} q(j) f(x[g(j)]), \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\infty>-L_{2} x\left(n_{1}\right) \geq f(c) \sum_{j=n_{1}}^{n-1} q(j) \longrightarrow \infty \quad \text { as } n \longrightarrow \infty, \tag{3.6}
\end{equation*}
$$

a contradiction. This completes the proof.
Theorem 3.2. Let conditions (i)-(iv) and (2.3) hold and $g(n)<n$ for $n \geq n_{0} \in \mathbb{N}$. If all bounded solutions of the half-linear equation

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta y(n))^{\alpha_{2}}\right)-q(n) f\left(\sum_{j=n_{0}}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}[g(n)]\right)=0 \tag{3.7}
\end{equation*}
$$

are oscillatory, then (1.1;-1) has no solutions of type B_{1}.
Proof. Let $\{x(n)\}$ be a solution of $(1.1 ;-1)$ of type B_{1}. There exists an $n_{0} \in \mathbb{N}$ such that (3.1) holds for $n \geq n_{0}$. Now

$$
\begin{equation*}
x(n)-x\left(n_{0}\right)=\sum_{j=n_{0}}^{n-1} \Delta x(j)=\sum_{j=n_{0}}^{n-1} a_{1}^{1 / \alpha_{1}}(j) L_{1}^{1 / \alpha_{1}} x(j) \tag{3.8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
x(n) \geq\left(\sum_{j=n_{0}}^{n-1} a_{1}^{1 / \alpha_{1}}(j)\right) L_{1}^{1 / \alpha_{1}} x(n) \quad \text { for } n \geq n_{0} . \tag{3.9}
\end{equation*}
$$

There exists an $n_{1} \geq n_{0}$ such that

$$
\begin{equation*}
x[g(n)] \geq\left(\sum_{j=n_{0}}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) L_{1}^{1 / \alpha_{1}} x[g(n)] \quad \text { for } n \geq n_{1} . \tag{3.10}
\end{equation*}
$$

Using (2.3) and (3.10) in (1.1;-1) and letting $y(n)=L_{1} x(n)$ for $n \geq n_{1}$, we have

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta y(n))^{\alpha_{2}}\right) \geq q(n) f\left(\sum_{j=n_{0}}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}[g(n)]\right) \quad \text { for } n \geq n_{1} . \tag{3.11}
\end{equation*}
$$

The rest of the proof is similar to that of Theorem 2.1 and hence is omitted.
Next, we state the following criteria which are similar to Theorems 2.2, 2.3, and 2.4. Here, we omit the proofs.

Theorem 3.3. Let conditions (i)-(iv) and (2.3) hold, and $g(n)<n$ for $n \geq n_{0} \in \mathbb{N}$. Then, (1.1;-1) has no solution of type B_{1} if either one of the following conditions holds:
$\left(\mathrm{C}_{1}\right)$ condition (2.8) holds, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=g(n)}^{n-1}\left\{q(k) f\left(\sum_{j=n_{0} \geq 0}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=g(k)}^{g(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)\right\}>1 \tag{3.12}
\end{equation*}
$$

$\left(\mathrm{C}_{2}\right)$ condition (2.10) holds, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=g(n)}^{n-1}\left\{q(k) f\left(\sum_{j=n_{0} \geq 0}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{i=g(k)}^{g(n)} a_{2}^{1 / \alpha_{2}}(i)\right)^{1 / \alpha_{1}}\right)\right\}>0 . \tag{3.13}
\end{equation*}
$$

Theorem 3.4. Let the hypotheses of Theorem 3.3 be satisfied. Then, (1.1;-1) has no solutions of type B_{1} if either one of the following conditions holds:
$\left(\mathrm{D}_{1}\right)$ condition (2.17) holds, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=g(n)}^{n-1} a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=k}^{n-1} q(j) f\left(\sum_{i=n_{0} \geq 0}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right)\right)^{1 / \alpha_{2}}>1, \tag{3.14}
\end{equation*}
$$

$\left(\mathrm{D}_{2}\right)$ condition (2.19) holds, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=g(n)}^{n-1} a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=k}^{n-1} q(j) f\left(\sum_{i=n_{0} \geq 0}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right)\right)^{1 / \alpha_{2}}>0 . \tag{3.15}
\end{equation*}
$$

Theorem 3.5. Let conditions (i)-(iv) and (2.3) hold, $g(n)=n-\tau, n \geq n_{0} \in \mathbb{N}$ where τ is a positive integer, and assume that there exists an integer $\bar{\tau}>0$ such that $\tau>\bar{\tau}$. If the first-order delay equation

$$
\begin{equation*}
\Delta y(n)+q(n) f\left(\sum_{j=n_{0}}^{n-\tau-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=n-\tau}^{n-\bar{\tau}} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) f\left(y^{1 /\left(\alpha_{1} \alpha_{2}\right)}[n-\bar{\tau}]\right)=0 \tag{3.16}
\end{equation*}
$$

is oscillatory, then (1.1;-1) has no solution of type B_{1}.
Next, we will present some results for the nonexistence of solutions of type B_{3} for (1.1;-1).

Theorem 3.6. Let conditions (i)-(iv) and (2.3) hold, $g(n)>n+1$ for $n \geq n_{0} \in \mathbb{N}$, and assume that there exists a nondecreasing sequence $\{\eta(n)\}$ such that $g(n)>\eta(n)>n+1$ for $n \geq n_{0}$. Then, (1.1;-1) has no solution of type B_{3} if either one of the following conditions holds:
$\left(\mathrm{E}_{1}\right)$ condition (2.8) holds, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=n}^{\eta(n)-1} q(k) f\left(\sum_{j=\eta(k)}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=\eta(n)}^{\eta(k)-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right)>1, \tag{3.17}
\end{equation*}
$$

(E_{2})

$$
\begin{gather*}
\frac{u}{f\left(u^{1 /\left(\alpha_{1} \alpha_{2}\right)}\right)} \longrightarrow 0 \quad \text { as } u \longrightarrow \infty \tag{3.18}\\
\limsup _{n \rightarrow \infty} \sum_{k=n}^{\eta(n)-1} q(k) f\left(\sum_{j=\eta(k)}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=\eta(n)}^{\eta(k)-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right)>0 . \tag{3.19}
\end{gather*}
$$

Proof. Let $\{x(n)\}$ be a solution of $(1.1 ;-1)$ of type B_{3}. Then there exists a large integer $n_{0} \in \mathbb{N}$ such that (3.2) holds for $n \geq n_{0}$. Now

$$
\begin{align*}
x(\sigma) & =x(\tau)+\sum_{j=\tau}^{\sigma-1} \Delta x(j)=x(\tau)+\sum_{j=\tau}^{\sigma-1} a_{1}^{1 / \alpha_{1}}(j) L_{1}^{1 / \alpha_{1}} x(j) \\
& \geq\left(\sum_{j=\tau}^{\sigma-1} a_{1}^{1 / \alpha_{1}}(j)\right) L_{1}^{1 / \alpha_{1}} x(\tau) \quad \text { for } \sigma \geq \tau \geq n_{0} . \tag{3.20}
\end{align*}
$$

Letting $\sigma=g(n), \tau=\eta(n)$ in (3.20), we see that

$$
\begin{equation*}
x[g(n)] \geq\left(\sum_{j=\eta(n)}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) L_{1}^{1 / \alpha_{1}} x[\eta(n)] \quad \text { for } n \geq n_{1} \geq n_{0} . \tag{3.21}
\end{equation*}
$$

Using (3.21) in (1.1;-1) and letting $y(n)=L_{1} x(n), n \geq n_{1}$ we have

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}(\Delta y(n))^{\alpha_{2}}\right) \geq q(n) f\left(\sum_{j=\eta(n)}^{g(n)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(y^{1 / \alpha_{1}}[\eta(n)]\right) \quad \text { for } n \geq n_{1} . \tag{3.22}
\end{equation*}
$$

Clearly, $y(n)>0$ and $\Delta y(n)>0$ for $n \geq n_{1}$. As in the above proof, we can easily find

$$
\begin{equation*}
y[\eta(k)] \geq\left(\sum_{j=\eta(n)}^{\eta(k)-1} a_{2}^{1 / \alpha_{2}}(j)\right)\left(L^{1 / \alpha_{2}} y[\eta(n)]\right) \quad \text { for } k \geq n-1 \geq n_{1}, \tag{3.23}
\end{equation*}
$$

where $L y(n)=(\Delta y(n))^{\alpha_{2}} / a_{2}(n)$. Using (2.3) and (3.23) in (3.22), we have

$$
\begin{equation*}
\Delta(L y(k)) \geq q(k) f\left(\sum_{j=\eta(k)}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=\eta(k)}^{\eta(k)-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) f\left(L^{1 /\left(\alpha_{1} \alpha_{2}\right)} y[\eta(n)]\right) \tag{3.24}
\end{equation*}
$$

for $k \geq n-1 \geq n_{1}$. Summing (3.24) from n to $\eta(n)-1 \geq n$, we have

$$
\begin{align*}
L y[\eta(n)] & \geq L y[\eta(n)]-L y(n) \\
& \geq \sum_{k=n}^{\eta(k)-1} q(k) f\left(\sum_{j=\eta(k)}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=\eta(n)}^{g(k)-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) f\left(L^{1 /\left(\alpha_{1} \alpha_{2}\right)} y[\eta(k)]\right), \tag{3.25}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{L y[\eta(k)]}{f\left(L^{1 /\left(\alpha_{1} \alpha_{2}\right)} y[\eta(n)]\right)} \geq \sum_{k=n}^{\eta(k)-1} q(k) f\left(\sum_{j=\eta(n)}^{g(k)-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=\eta(n)}^{g(k)-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) \tag{3.26}
\end{equation*}
$$

Taking limsup of both sides of (3.26) as $n \rightarrow \infty$ and applying the hypotheses, we arrive at the desired contradiction.

Theorem 3.7. Let the hypotheses of Theorem 3.6 be satisfied. Then, (1.1;-1) has no solution of type B_{3} if either one of the following conditions holds:
$\left(\mathrm{F}_{1}\right)$ condition (2.17) holds, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{k=n}^{\eta(n)-1} a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=n}^{k-1} q(j) f\left(\sum_{i=\eta(j)}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right)\right)^{1 / \alpha_{2}}>1, \tag{3.27}
\end{equation*}
$$

(F_{2})

$$
\begin{gather*}
\frac{u}{f^{1 / \alpha_{2}}\left(u^{1 / \alpha_{1}}\right)} \longrightarrow 0 \text { as } u \longrightarrow \infty, \tag{3.28}\\
\limsup _{n \rightarrow \infty} \sum_{k=n}^{\eta(n)-1} a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=n}^{k-1} q(j) f\left(\sum_{i=\eta(j)}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right)\right)^{1 / \alpha_{2}}>0 . \tag{3.29}
\end{gather*}
$$

Proof. Let $\{x(n)\}$ be a solution of $(1.1 ;-1)$ of type B_{3}. As in the proof of Theorem 3.6, we obtain the inequality (3.22) and we see that $y(n)>0$ and $\Delta y(n)>0$ for $n \geq n_{1}$. Summing inequality (3.22) from n to $k-1 \geq n \geq n_{2} \geq n_{1}$, we have

$$
\begin{equation*}
\frac{1}{a_{2}(k)}(\Delta y(k))^{\alpha_{2}} \geq \sum_{j=n}^{k-1} q(j) f\left(\sum_{i=\eta(j)}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right) f\left(y^{1 / \alpha_{1}}[\eta(j)]\right) \tag{3.30}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\Delta y(k) \geq a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=n}^{k-1} q(j) f\left(\sum_{i=\eta(j)}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right) f\left(y^{1 / \alpha_{1}}[\eta(j)]\right)\right)^{1 / \alpha_{2}} \quad \text { for } n \geq n_{2} . \tag{3.31}
\end{equation*}
$$

Combining (3.31) with the relation

$$
\begin{equation*}
y(s)=y(n)+\sum_{k=n}^{s-1} \Delta y(k) \quad \text { for } s-1 \geq n \geq n_{2} \tag{3.32}
\end{equation*}
$$

and setting $s=\eta(n)$, we have

$$
\begin{equation*}
\frac{y[\eta(n)]}{f^{1 / \alpha_{2}}\left(u^{1 / \alpha_{1}}[\eta(n)]\right)} \geq \sum_{k=n}^{\eta(n)-1} a_{2}^{1 / \alpha_{2}}(k)\left(\sum_{j=n}^{k-1} q(j) f\left(\sum_{i=\eta(j)}^{g(j)-1} a_{1}^{1 / \alpha_{1}}(i)\right)\right)^{1 / \alpha_{2}} \quad \text { for } n \geq n_{2} . \tag{3.33}
\end{equation*}
$$

Taking limsup of both sides of (3.33) as $n \rightarrow \infty$, we arrive at the desired contradiction.

Theorem 3.8. Let conditions (i)-(iv) and (3.2) hold, $g(n)=n+\sigma$ for $n \geq n_{0} \in \mathbb{N}$, where σ is a positive integer, and assume that there exist two positive integers $\bar{\sigma}$ and $\tilde{\sigma}>1$ such that $\sigma-2>\bar{\sigma}-1>\tilde{\sigma}$. If the first-order advanced equation

$$
\begin{equation*}
\Delta y(n)-q(n) f\left(\sum_{j=n+\bar{\sigma}}^{n+\sigma-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=n+\tilde{\sigma}}^{n+\bar{\sigma}-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) f\left(y^{1 /\left(\alpha_{1} \alpha_{2}\right)}[n+\tilde{\sigma}]\right)=0 \tag{3.34}
\end{equation*}
$$

is oscillatory, then (1.1;-1) has no solution of type B_{3}.

Proof. Let $\{x(n)\}$ be a solution of $(1.1 ;-1)$ of type B_{3}. As in the proof of Theorem 3.6, we obtain the inequality (3.21) for $n \geq n_{1}$, that is,

$$
\begin{equation*}
x[n+\sigma] \geq\left(\sum_{j=n+\bar{\sigma}}^{n+\sigma-1} a_{1}^{1 / \alpha_{1}}(j)\right) L_{1}^{1 / \alpha_{1}} x[n+\bar{\sigma}] \quad \text { for } n \geq n_{1} . \tag{3.35}
\end{equation*}
$$

Similarly, we see that

$$
\begin{equation*}
L_{1} x[n+\bar{\sigma}] \geq\left(\sum_{j=n+\tilde{\sigma}}^{n+\bar{\sigma}-1} a_{2}^{1 / \alpha_{2}}(j)\right)\left(L_{2}^{1 / \alpha_{2}} x[n+\tilde{\sigma}]\right) \quad \text { for } n \geq n_{2} \geq n_{1} \tag{3.36}
\end{equation*}
$$

Combining (3.35) and (3.36), we have

$$
\begin{equation*}
x[n+\sigma] \geq\left(\sum_{j=n+\bar{\sigma}}^{n+\sigma-1} a_{1}^{1 / \alpha_{1}}(j)\right)\left(\sum_{j=n+\tilde{\sigma}}^{n+\bar{\sigma}-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}} L_{1}^{1 /\left(\alpha_{1} \alpha_{2}\right)} x[n+\tilde{\sigma}] \quad \text { for } n \geq n_{2} . \tag{3.37}
\end{equation*}
$$

Using (2.3) and (3.37) in (1.1;-1) and letting $Z(n)=L_{1} x(n), n \geq n_{2}$, we have

$$
\begin{equation*}
\Delta Z(n) \geq q(n) f\left(\sum_{j=n+\bar{\sigma}}^{n+\sigma-1} a_{1}^{1 / \alpha_{1}}(j)\right) f\left(\left(\sum_{j=n+\tilde{\sigma}}^{n+\bar{\sigma}-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{1 / \alpha_{1}}\right) f\left(Z^{1 /\left(\alpha_{1} \alpha_{2}\right)}[n+\tilde{\sigma}]\right) \tag{3.38}
\end{equation*}
$$

By a known result in $[2,12$], we see that (3.34) has an eventually positive solution, a contradiction. This completes the proof.

Next, we will combine our earlier results to obtain some sufficient conditions for the oscillation of (1.1;-1), as an example, we state the following result.

Theorem 3.9. Let conditions (i)-(iv) and (2.3) hold, $g(n)=n+\sigma$ for $n \geq n_{0} \in \mathbb{N}$, and assume that there exist two positive integers $\bar{\sigma}, \tilde{\sigma}$ such that $\sigma-2>\bar{\sigma}-1>\tilde{\sigma}$. If condition (3.3) holds and equation (3.34) is oscillatory, then (1.1;-1) is oscillatory.

Proof. The proof follows from Theorems 3.1 and 3.8.
Now, we apply Theorem 3.9 to a special case of $(1.1 ;-1)$, namely, the equation

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{2}(n)}\left(\Delta \frac{1}{a_{1}(n)}(\Delta x(n))^{\alpha_{1}}\right)^{\alpha_{2}}\right)-q(n) x^{\alpha}[n+\sigma]=0 \tag{3.39}
\end{equation*}
$$

where α is the ratio of positive odd integers and σ is a positive integer, and obtain the following immediate result.

Corollary 3.10. Let conditions (i)-(iv) hold and assume that there exist two positive integers $\bar{\sigma}$ and $\tilde{\sigma}>1$ such that $\sigma-2>\bar{\sigma}-1>\tilde{\sigma}$. Then, (3.39) is oscillatory if either one of the following conditions is satisfied:
$\left(\mathrm{J}_{1}\right)$ condition (3.3) holds, and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{k=n+1}^{n+\tilde{\sigma}-1} q(k)\left(\sum_{j=k+\bar{\sigma}}^{k+\sigma-1} a_{1}^{1 / \alpha_{1}}(j)\right)^{\alpha}\left(\sum_{j=k+\tilde{\sigma}}^{k+\bar{\sigma}-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{\alpha_{2}}>\left(\frac{\tilde{\sigma}-1}{\tilde{\sigma}}\right)^{\tilde{\sigma}} \quad \text { if } \alpha=\alpha_{1} \alpha_{2}, \tag{3.40}
\end{equation*}
$$

(J_{2}) condition (3.3) holds, and

$$
\begin{equation*}
\limsup \sum_{n \rightarrow \infty}^{n+\tilde{\sigma}-1} q(k)\left(\sum_{j=k+\bar{\sigma}}^{k+\sigma-1} a_{1}^{1 / \alpha_{1}}(j)\right)^{\alpha}\left(\sum_{j=k+\tilde{\sigma}}^{k+\bar{\sigma}-1} a_{2}^{1 / \alpha_{2}}(j)\right)^{\alpha / \alpha_{1}}>0 \quad \text { if } \alpha>\alpha_{1} \alpha_{2} . \tag{3.41}
\end{equation*}
$$

Now we will combine Theorems 3.5 and 3.8 to obtain some interesting oscillation criteria for the mixed type of equations

$$
\begin{equation*}
L_{3} x(n)-q_{1}(n) f_{1}\left(x\left[g_{1}(n)\right]\right)-q_{2}(n) f_{2}\left(x\left[g_{2}(n)\right]\right)=0 \tag{3.42}
\end{equation*}
$$

where L_{3}, q_{i}, g_{i}, and $f_{i}, i=1,2$ are as in (2.56).
Theorem 3.11. Let the sequences $\left\{q_{i}(n)\right\},\left\{g_{i}(n)\right\}$, and $f_{i}(x), i=1,2$ be as in (2.56), let L_{3} be defined as in (1.1; δ), and $\left\{a_{i}(n)\right\}, \alpha_{i}, i=1,2$ are as in (i) and (iv), $g_{1}(n)=n-\tau$ and $g_{2}(n)=n+\sigma, n \geq n_{0} \in \mathbb{N}$, where τ and σ are positive integers. Moreover, assume that there exist positive integers $\bar{\tau}, \bar{\sigma}$, and $\tilde{\sigma}$ such that $\tau>\bar{\tau}$ and $\sigma-2>\bar{\sigma}-1>\tilde{\sigma}$. If (3.16) with q and f replaced by q_{1} and f_{1}, respectively, and (3.34) with q and f replaced by q_{2} and f_{2}, respectively, are oscillatory, then (3.42) is oscillatory.

Remark 3.12. The results of this paper are presented in a form which is essentially new even if $\alpha_{1}=\alpha_{2}=1$.

4. Applications

We can apply our results to neutral equations of the form

$$
L_{3}(x(n)+p(n) x[\tau(n)])+\delta f(x[g(n)])=0
$$

where $\{p(n)\}$ and $\{\tau(n)\}$ are real sequences, $\tau(n)$ is increasing, $\tau^{-1}(n)$ exists, and $\lim _{n \rightarrow \infty} \tau(n)=\infty$. Here, we set

$$
\begin{equation*}
y(n)=x(n)+p(n) x[\tau(n)] . \tag{4.2}
\end{equation*}
$$

If $x(n)>0$ and $p(n) \geq 0$ for $n \geq n_{0} \geq 0$, then $y(n)>0$ for $n \geq n_{1} \geq n_{0}$. We let $0 \leq p(n) \leq 1$, $p(n) \not \equiv 1$ for $n \geq n_{0}$, and consider either $\left(\mathrm{P}_{1}\right) \tau(n)<n$ when $\Delta y(n)>0$ for $n \geq n_{1}$, or $\left(\mathrm{P}_{2}\right)$ $\tau(n)>n$ when $\Delta y(n)<0$ for $n \geq n_{1}$. In both cases we see that

$$
\begin{align*}
x(n) & =y(n)-p(n) x[\tau(n)]=y(n)-p(n)[y[\tau(n)]-p[\tau(n)] x[\tau \circ \tau(n)]] \\
& \geq y(n)-p(n) y[\tau(n)] \geq y(n)[1-p(n)] \quad \text { for } n \geq n_{1} . \tag{4.3}
\end{align*}
$$

Next, we let $p(n) \geq 1, p(n) \not \equiv 1$ for $n \geq n_{0}$ and consider either $\left(\mathrm{P}_{3}\right) \tau(n)>n$ if $\Delta y(n)>0$ for $n \geq n_{1}$, or $\left(\mathrm{P}_{4}\right) \tau(n)<n$ if $\Delta y(n)<0$ for $n \geq n_{1}$. In both cases we see that

$$
\begin{align*}
x(n) & =\frac{1}{p\left[\tau^{-1}(n)\right]}\left(y\left[\tau^{-1}(n)\right]-x\left[\tau^{-1}(n)\right]\right) \\
& =\frac{y\left[\tau^{-1}(n)\right]}{p\left[\tau^{-1}(n)\right]}-\frac{1}{p\left[\tau^{-1}(n)\right]}\left(\frac{y\left[\tau^{-1} \circ \tau^{-1}(n)\right]}{p\left[\tau^{-1} \circ \tau^{-1}(n)\right]}-\frac{x\left[\tau^{-1} \circ \tau^{-1}(n)\right]}{p\left[\tau^{-1} \circ \tau^{-1}(n)\right]}\right) \tag{4.4}\\
& \geq \frac{1}{p\left[\tau^{-1}(n)\right]}\left(1-\frac{1}{p\left[\tau^{-1} \circ \tau^{-1}(n)\right]}\right) y\left[\tau^{-1}(n)\right] \quad \text { for } n \geq n_{1} .
\end{align*}
$$

Using (4.3) or (4.4) in $(4.1 ; \delta)$, we see that the resulting inequalities are of type $(1.1 ; \delta)$. Therefore, we can apply our earlier results to obtain oscillation criteria for $(4.1 ; \delta)$. The formulation of such results are left to the reader.

In the case when $p(n)<0$ for $n \geq n_{0}$, we let $p_{1}(n)=-p(n)$ and so

$$
\begin{equation*}
y(n)=x(n)-p_{1}(n) x[\tau(n)] . \tag{4.5}
\end{equation*}
$$

Here, we may have $y(n)>0$, or $y(n)<0$ for $n \geq n_{1} \geq n_{0}$. If $y(n)>0$ for $n \geq n_{0}$, we see that

$$
\begin{equation*}
x(n) \geq y(n) \quad \text { for } n \geq n_{1} \tag{4.6}
\end{equation*}
$$

On the other hand, if $y(n)<0$ for $n \geq n_{1}$, we have

$$
\begin{equation*}
x[\tau(n)]=\frac{1}{p_{1}(n)}[y(n)+x(n)] \geq \frac{y(n)}{p_{1}(n)}, \tag{4.7}
\end{equation*}
$$

or

$$
\begin{equation*}
x(n) \geq \frac{y\left[\tau^{-1}(n)\right]}{p_{1}\left[\tau^{-1}(n)\right]} \quad \text { for } n \geq n_{2} \geq n_{1} . \tag{4.8}
\end{equation*}
$$

Next, using (4.6) or (4.8) in (4.1; δ), we see that the resulting inequalities are of the type $(1.1 ; \delta)$. Therefore, by applying our earlier results, we obtain oscillation results for (4.1; δ). The formulation of such results are left to the reader.

Next, we will present some oscillation results for all bounded solutions of $(4.1 ; 1)$ when $p(n)<0$ and $\tau(n)=n-\sigma, n \geq n_{0}$ and σ is a positive integer.

Theorem 4.1. Let $\tau(n)=n-\sigma, \sigma$ is a positive integer, $p_{1}(n)=-p(n)$ and $0<p_{1}(n) \leq p<$ $1, n \geq n_{0}, p$ is a constant, and $g(n)<n$ for $n \geq n_{0}$. If

$$
\begin{gather*}
\frac{u}{f^{1 /\left(\alpha_{1} \alpha_{2}\right)}(u)} \leq 1 \quad \text { for } u \neq 0, \tag{4.9}\\
\limsup _{n \rightarrow \infty} \sum_{k=g(n)}^{n-1}\left[a_{1}(k) \sum_{j=k}^{n-1}\left(a_{2}(j) \sum_{i=j}^{\infty} q(i)\right)^{1 / \alpha_{2}}\right]^{1 / \alpha_{1}}>1, \tag{4.10}
\end{gather*}
$$

then all bounded solutions of $(4.1 ; 1)$ are oscillatory.

Proof. Let $\{x(n)\}$ be a bounded nonoscillatory solution of (4.1;1), say, $x(n)>0$ for $n \geq$ $n_{0} \geq 0$. Set

$$
\begin{equation*}
y(n)=x(n)-p_{1}(n) x[n-\sigma] \quad \text { for } n \geq n_{1} \geq n_{0} . \tag{4.11}
\end{equation*}
$$

Then,

$$
\begin{equation*}
L_{3} y(n)=-q(n) f(x[g(n)]) \leq 0 \quad \text { for } n \geq n_{1} . \tag{4.12}
\end{equation*}
$$

It is easy to see that $y(n), L_{1} y(n)$, and $L_{2} y(n)$ are of one sign for $n \geq n_{2} \geq n_{1}$. Now, we have two cases to consider: $\left(\mathrm{M}_{1}\right) y(n)<0$ for $n \geq n_{2}$, and $\left(\mathrm{M}_{2}\right) y(n)>0$ for $n \geq n_{2}$.
$\left(\mathrm{M}_{1}\right)$ Let $y(n)<0$ for $n \geq n_{2}$. Then either $\Delta y(n)<0$, or $\Delta y(n)>0$ for $n \geq n_{2}$. If $\Delta y(n)<$ 0 for $n \geq n_{2}$, then

$$
\begin{equation*}
x(n)<p x[n-\sigma]<p^{2} x[n-2 \sigma]<\cdots<p^{m} x[n-m \sigma] \tag{4.13}
\end{equation*}
$$

for $n \geq n_{2}+m \sigma$, which implies that $\lim _{n \rightarrow \infty} x(n)=0$. Consequently, $\lim _{n \rightarrow \infty} y(n)=0$, a contradiction.

Now, we have $y(n)<0$ and $\Delta y(n)>0$ for $n \geq n_{2}$. Set $Z(n)=-y(n)$ for $n \geq n_{2}$. Then,

$$
\begin{equation*}
L_{3} Z(n)=q(n) f(x[g(n)]) \geq 0 \quad \text { for } n \geq n_{2} \tag{4.14}
\end{equation*}
$$

and $\Delta Z(n)<0$ for $n \geq n_{2}$. It is easy to derive at a contradiction if either $L_{2} Z(n)>0$ or $L_{2} Z(n)<0$ for $n \geq n_{2}$. The details are left to the reader.
$\left(\mathrm{M}_{2}\right)$ Let $y(n)>0$ for $n \geq n_{2}$. Then, $x(n) \geq y(n)$ for $n \geq n_{2}$ and from (4.12), we have

$$
\begin{equation*}
L_{3} y(n) \leq-q(n) f(y[g(n)]) \quad \text { for } n \geq n_{2} \tag{4.15}
\end{equation*}
$$

We claim that $\Delta y(n)<0$ for $n \geq n_{2}$. Otherwise, $\Delta y(n)>0$ for $n \geq n_{2}$ and hence we see that $y(n) \rightarrow \infty$ as $n \rightarrow \infty$, a contradiction. Thus, we have $y(n)>0$ and $\Delta y(n)<0$ for $n \geq n_{2}$. Summing (4.15) from $n \geq n_{2}$ to u and letting $u \rightarrow \infty$, we have

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{1}(n)}(\Delta y(n))^{\alpha_{1}}\right) \geq f^{1 / \alpha_{2}}(y[g(n)])\left(a_{2}(n) \sum_{i=n}^{\infty} q(i)\right)^{1 / \alpha_{2}} . \tag{4.16}
\end{equation*}
$$

Again summing (4.16) twice from $j=k$ to $n-1$, and from $k=g(n)$ to $n-1$, we obtain

$$
\begin{equation*}
1 \geq \frac{y[g(n)]}{f^{1 /\left(\alpha_{1} \alpha_{2}\right)}(y[g(n)])} \geq \sum_{k=g(n)}^{n-1}\left[a_{1}(k) \sum_{j=k}^{n-1}\left(a_{2}(j) \sum_{i=j}^{\infty} q(i)\right)^{1 / \alpha_{2}}\right]^{1 / \alpha_{1}} \tag{4.17}
\end{equation*}
$$

Taking limsup of both sides of the above inequality as $n \rightarrow \infty$, we arrive at the desired contradiction. This completes the proof.

In the case when $p(n) \equiv-1$, we have the following result.
Theorem 4.2. Let $\tau(n)=n-\sigma, \sigma$ is a positive integer, $p(n)=-1$, and $g(n)<n$ for $n \geq n_{2}$. If

$$
\begin{equation*}
\sum^{\infty}\left(a_{1}(k) \sum_{j=k}^{\infty}\left(a_{2}(j) \sum_{i=j}^{\infty} q(i)\right)^{1 / \alpha_{2}}\right)^{1 / \alpha_{1}}=\infty \tag{4.18}
\end{equation*}
$$

then all bounded solutions of $(4.1 ; 1)$ are oscillatory.
Proof. Let $\{x(n)\}$ be a nonoscillatory solution of (4.1;1), say, $x(n)>0$ for $n \geq n_{0} \geq 0$. Set

$$
\begin{equation*}
y(n)=x(n)-x[n-\sigma] \text { for } n \geq n_{1} \geq n_{0} . \tag{4.19}
\end{equation*}
$$

Then,

$$
\begin{equation*}
L_{3} y(n)=-q(n) f(x[g(n)]) \leq 0 \quad \text { for } n \geq n_{1} . \tag{4.20}
\end{equation*}
$$

It is easy to check that there are two possibilities to consider: $\left(\mathrm{Z}_{1}\right) L_{2} y(n) \geq 0, \Delta y(n) \leq 0$, and $y(n)<0$ for $n \geq n_{2} \geq n_{1}$, or $\left(Z_{2}\right) L_{2} y(n) \geq 0, \Delta y(n) \leq 0$, and $y(n)>0$ for $n \geq n_{2}$.

In case $\left(Z_{1}\right)$, there exists a finite constant $b>0$ such that $\lim _{n \rightarrow \infty} y(n)=-b$. Thus, there exists an $n_{3} \geq n_{2}$ such that

$$
\begin{equation*}
-b<y(n)<-\frac{b}{2} \quad \text { for } n \geq n_{3} . \tag{4.21}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
x[n-\sigma]>\frac{b}{2} \quad \text { for } n \geq n_{3}, \tag{4.22}
\end{equation*}
$$

then there exists an $n_{4} \geq n_{3}$ such that

$$
\begin{equation*}
x[g(n)]>\frac{b}{2} \quad \text { for } n \geq n_{4} . \tag{4.23}
\end{equation*}
$$

From (4.20), we have

$$
\begin{equation*}
L_{3} y(n) \leq-f\left(\frac{b}{2}\right) q(n) \quad \text { for } n \geq n_{4} . \tag{4.24}
\end{equation*}
$$

In case $\left(Z_{2}\right)$, we have

$$
\begin{equation*}
x(n) \geq x[n-\tau] \quad \text { for } n \geq n_{2} . \tag{4.25}
\end{equation*}
$$

Then there exist a constant $b_{1}>0$ and an integer $n_{3} \geq n_{2}$ such that

$$
\begin{equation*}
x[g(n)] \geq b_{1} \quad \text { for } n \geq n_{3} . \tag{4.26}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
L_{3} y(n) \leq-f\left(b_{1}\right) q(n) \quad \text { for } n \geq n_{4} \geq n_{3} . \tag{4.27}
\end{equation*}
$$

In both cases we are lead to the same inequality (4.27). Summing (4.27) from $n \geq n_{4}$ to $u \geq n$ and letting $u \rightarrow \infty$, we get

$$
\begin{equation*}
\Delta\left(\frac{1}{a_{1}(n)}(\Delta y(n))^{\alpha_{1}}\right) \geq f^{1 / \alpha_{2}}\left(b_{1}\right)\left(a_{2}(n) \sum_{i=n}^{\infty} q(i)\right)^{1 / \alpha_{2}} \tag{4.28}
\end{equation*}
$$

Once again, summing the above inequality from $n \geq n_{4}$ to $T \geq n$ and letting $T \rightarrow \infty$, we have

$$
\begin{equation*}
-\Delta y(n) \geq f^{1 /\left(\alpha_{1} \alpha_{2}\right)}(b)\left(a_{1}(n) \sum_{n=k}^{\infty}\left(a_{2}(k) \sum_{i=k}^{\infty} q(i)\right)^{1 / \alpha_{2}}\right)^{1 / \alpha_{1}} . \tag{4.29}
\end{equation*}
$$

Summing the above inequality from n_{4} to $n-1 \geq n_{4}$, we get

$$
\begin{align*}
\infty>y\left(n_{4}\right)>-y(n)+y\left(n_{4}\right) & \geq f^{1 /\left(\alpha_{1} \alpha_{2}\right)}\left(b_{1}\right) \sum_{k=n_{4}}^{n-1}\left(a_{1}(k) \sum_{j=k}^{\infty}\left(a_{2}(j) \sum_{j=i}^{\infty} q(i)\right)^{1 / \alpha_{2}}\right)^{1 / \alpha_{1}} \\
& \longrightarrow \infty \quad \text { as } n \longrightarrow \infty \tag{4.30}
\end{align*}
$$

which is a contradiction. This completes the proof.

Acknowledgment

The authors are grateful to Professors M. Migda and Z. Dosla for their comments on the first draft of this paper.

References

[1] R. P. Agarwal, Difference Equations and Inequalities, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, Marcel Dekker, New York, 2000.
[2] R. P. Agarwal, M. Bohner, S. R. Grace, and D. O'Regan, Discrete Oscillation Theory, Hindawi Publishing, New York, in press.
[3] R. P. Agarwal and S. R. Grace, Oscillation criteria for certain higher order difference equations, Math. Sci. Res. J. 6 (2002), no. 1, 60-64.
[4] R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, Dordrecht, 2000.
[5] , Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrecht, 2002.
[6] , On the oscillation of certain second order difference equations, J. Differ. Equations Appl. 9 (2003), no. 1, 109-119.
[7] , Oscillation Theory for Second Order Dynamic Equations, Series in Mathematical Analysis and Applications, vol. 5, Taylor \& Francis, London, 2003.
[8] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Mathematics and Its Applications, vol. 404, Kluwer Academic, Dordrecht, 1997.
[9] Z. Došlá and A. Kobza, Global asymptotic properties of third-order difference equations, Comput. Math. Appl. 48 (2004), no. 1-2, 191-200.
[10] Oscillatory properties of third order linear adjoint difference equations, to appear.
[11] S. R. Grace and B. S. Lalli, Oscillation theorems for second order delay and neutral difference equations, Utilitas Math. 45 (1994), 197-211.
[12] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York, 1991.
[13] Ch. G. Philos, On Oscillations of Some Difference Equations, Funkcial. Ekvac. 34 (1991), no. 1, 157-172.
[14] B. Smith, Oscillation and nonoscillation theorems for third order quasi-adjoint difference equations, Portugal. Math. 45 (1988), no. 3, 229-243.
[15] P. J. Y. Wong and R. P. Agarwal, Oscillation theorems for certain second order nonlinear difference equations, J. Math. Anal. Appl. 204 (1996), no. 3, 813-829.
[16] X. Zhou and J. Yan, Oscillatory and asymptotic properties of higher order nonlinear difference equations, Nonlinear Anal. 31 (1998), no. 3-4, 493-502.

Ravi P. Agarwal: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901-6975, USA

E-mail address: agarwal@fit.edu
Said R. Grace: Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt

E-mail address: srgrace@eng.cu.edu.eg
Donal O'Regan: Department of Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland

E-mail address: donal.oregan@nuigalway.ie

