PERIODIC SOLUTIONS FOR A COUPLED PAIR OF DELAY DIFFERENCE EQUATIONS

GUANG ZHANG, SHUGUI KANG, AND SUI SUN CHENG

Received 31 January 2005 and in revised form 24 March 2005

Based on the fixed-point index theory for a Banach space, positive periodic solutions are found for a system of delay difference equations. By using such results, the existence of nontrivial periodic solutions for delay difference equations with positive and negative terms is also considered.

1. Introduction

The existence of positive periodic solutions for delay difference equations of the form

$$
\begin{equation*}
x_{n+1}=a_{n} x_{n}+h_{n} f\left(n, x_{n-\tau(n)}\right), \quad n \in \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}, \tag{1.1}
\end{equation*}
$$

has been studied by many authors, see, for example, $[1,3,5,7,8,9]$ and the references contained therein. The above equation may be regarded as a mathematical model for a number of dynamical processes. In particular, x_{n} may represent the size of a population in the time period n. Since it is possible that the population may be influenced by another factor of the form $-\widehat{h}_{n} f_{2}\left(n, x_{n-\tau(n)}\right)$, we are therefore interested in a more general equation of the form

$$
\begin{equation*}
x_{n+1}=a_{n} x_{n}+h_{n} f_{1}\left(n, x_{n-\tau(n)}\right)-\hat{h}_{n} f_{2}\left(n, x_{n-\tau(n)}\right), \tag{1.2}
\end{equation*}
$$

which includes the so-called difference equations with positive and negative terms (see, e.g., [6]).

In this paper, we will approach this equation (see Section 4) by treating it as a special case of a system of difference equations of the form

$$
\begin{align*}
& u_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right), \\
& v_{n}=\sum_{s=n}^{n+\omega-1} \widehat{G}(n, s) \hat{h}_{s} f_{2}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right), \tag{1.3}
\end{align*}
$$

where $n \in \mathbb{Z}$. We will assume that ω is a positive integer, G and \hat{G} are double sequences satisfying $G(n, s)=G(n+\omega, s+\omega)$ and $\widehat{G}(n, s)=\widehat{G}(n+\omega, s+\omega)$ for $n, s \in \mathbb{Z}, h=\left\{h_{n}\right\}_{n \in \mathbb{Z}}$ and $\hat{h}=\left\{\hat{h}_{n}\right\}_{n \in \mathbb{Z}}$ are positive ω-periodic sequences, $\{\tau(n)\}_{n \in \mathbb{Z}}$ is an integer-valued ω periodic sequence, $f_{1}, f_{2}: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions, and $f_{1}(n+\omega, u)=f_{1}(n, u)$ as well as $f_{2}(n+\omega, u)=f_{2}(n, u)$ for any $u \in \mathbb{R}$ and $n \in \mathbb{Z}$.

By a solution of (1.3), we mean a pair (u, v) of sequences $u=\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ and $v=\left\{v_{n}\right\}_{n \in \mathbb{Z}}$ which renders (1.3) into an identity for each $n \in \mathbb{Z}$ after substitution. A solution (u, v) is said to be ω-periodic if $u_{n+\omega}=u_{n}$ and $v_{n+\omega}=v_{n}$ for $n \in \mathbb{Z}$.

Let X be the set of all real ω-periodic sequences of the form $u=\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ and endowed with the usual linear structure and ordering (i.e., $u \leq v$ if $u_{n} \leq v_{n}$ for $n \in \mathbb{Z}$). When equipped with the norm

$$
\begin{equation*}
\|u\|=\max _{0 \leq n \leq \omega-1}\left|u_{n}\right|, \quad u \in X \tag{1.4}
\end{equation*}
$$

X is an ordered Banach space with cone $\Omega_{0}=\left\{u=\left\{u_{n}\right\}_{n \in \mathbb{Z}} \in X \mid u_{n} \geq 0, n \in \mathbb{Z}\right\} . X \times X$ will denote the product (Banach) space equipped with the norm

$$
\begin{equation*}
\|(u, v)\|=\max \{\|u\|,\|v\|\}, \quad u, v \in X \tag{1.5}
\end{equation*}
$$

and ordering defined by $(u, v) \leq(x, y)$ if $u \leq x$ and $v \leq y$ for any $u, v, x, y \in X$.
We remark that a recent paper [4] is concerned with the differential system

$$
\begin{align*}
& y^{\prime}=-a(t) y(t)+f(t, y(t-\tau(t))), \\
& x^{\prime}=-a(t) x(t)+f(t, x(t-\tau(t))) . \tag{1.6}
\end{align*}
$$

There are some ideas in the proof of Theorem 2.1 which are similar to those in [4]. But the techniques in the other results are new.

2. Main result

In this section, we assume that

$$
\begin{align*}
& 0<m \leq G(n, s) \leq M<+\infty, \quad n \leq s \leq n+\omega-1 \\
& 0<m^{\prime} \leq \widehat{G}(n, s) \leq M^{\prime}<+\infty, \quad n \leq s \leq n+\omega-1 \tag{2.1}
\end{align*}
$$

Then,

$$
\begin{equation*}
\Omega=\left\{\left\{u_{n}\right\}_{n \in \mathbb{Z}} \in X: u_{n} \geqslant \sigma\|u\|, n \in \mathbb{Z}\right\}, \quad \text { where } \sigma=\min \left\{\frac{m}{M}, \frac{m^{\prime}}{M^{\prime}}\right\} \tag{2.2}
\end{equation*}
$$

is a cone in X and $\Omega \times \Omega$ is a cone in $X \times X$.

Theorem 2.1. In addition to the assumptions imposed on the functions $G, \hat{G}, h, \hat{h}, f_{1}$, and f_{2} in Section 1, suppose that G and \hat{G} satisfy (2.1). Suppose further that f_{1}, f_{2} are nonnegative and satisfy $f_{1}(n, 0)=0=f_{2}(n, 0)$ for $n \in \mathbb{Z}$ as well as

$$
\begin{align*}
& \lim _{|x| \rightarrow 0} \frac{f_{1}(n, x)}{|x|}=+\infty, \tag{2.3}\\
& \lim _{|x| \rightarrow 0} \frac{f_{2}(n, x)}{|x|}<+\infty \tag{2.4}\\
& \lim _{x \rightarrow+\infty} \frac{f_{1}(n, x)}{x}=0 \tag{2.5}\\
& \lim _{|x| \rightarrow+\infty} \frac{f_{2}(n, x)}{|x|}=0, \tag{2.6}
\end{align*}
$$

uniformly with respect to all $n \in \mathbb{Z}$. Then (1.3) has an ω-periodic solution (u,v) in $\Omega \times$ Ω such that $\|(u, v)\|>0$. In the sequel, $(\Omega \times \Omega)_{\alpha}$ will denote the set $\{(u, v) \in \Omega \times \Omega \mid$ $\|(u, v)\|=\alpha\}$.

Proof. Let $A_{1}, A_{2}: \Omega \times \Omega \rightarrow X$ and $A: \Omega \times \Omega \rightarrow X \times X$ be defined, respectively, by

$$
\begin{gather*}
\left(A_{1}(u, v)\right)_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right), \quad n \in \mathbb{Z}, \\
\left(A_{2}(u, v)\right)_{n}=\sum_{s=n}^{n+\omega-1} \widehat{G}(n, s) \hat{h}_{s} f_{2}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right), \quad n \in \mathbb{Z}, \tag{2.7}\\
(A(u, v))_{n}=\left(A_{1}(u, v)_{n}, A_{2}(u, v)_{n}\right), \quad n \in \mathbb{Z},
\end{gather*}
$$

for $u, v \in \Omega$. For any $n, \check{n} \in \mathbb{Z}$, we have

$$
\begin{align*}
\left(A_{1}(u, v)\right)_{n} & =\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq M \sum_{s=0}^{\omega-1} h_{s} f_{1}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right), \\
\left(A_{1}(u, v)\right)_{\check{n}} & =\sum_{s=\check{n}}^{\check{n}+\omega-1} G(\check{n}, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right) \tag{2.8}\\
& \geqslant m \sum_{s=0}^{\omega-1} h_{s} f_{1}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \geqslant \sigma\left(A_{1}(u, v)\right)_{n} .
\end{align*}
$$

Similarly, we can prove that $\left(A_{2}(u, v)\right)_{\check{n}} \geqslant \sigma\left(A_{2}(u, v)\right)_{n}$ for any $n, \check{n} \in \mathbb{Z}$. Thus, $A: \Omega \times \Omega \rightarrow$ $\Omega \times \Omega$. Furthermore, in view of the boundedness of G and \widehat{G}, and the continuity of f_{1} and f_{2}, it is not difficult to show that A is completely continuous. Indeed, $A(B)$ is a bounded set for any bounded subset B of $X \times X$. Since $X \times X$ is made up of ω-periodic sequences, thus $A(B)$ is precompact. Consequently, A is completely continuous.

We will show that there exist r^{*}, r_{*} which satisfy $0<r_{*}<r^{*}$ such that the fixed point index

$$
\begin{equation*}
i\left(A,(\Omega \times \Omega)_{r^{*}} \backslash(\Omega \times \Omega)_{r_{*}}, \Omega \times \Omega\right)=1 . \tag{2.9}
\end{equation*}
$$

To see this, we first infer from (2.4) that there exist $\beta>0$ and $r_{1}>0$ such that

$$
\begin{equation*}
\hat{h}_{s} f_{2}(s, x) \leq \beta|x| \quad \text { for }|x| \leq r_{1}, s \in \mathbb{Z} . \tag{2.10}
\end{equation*}
$$

Let

$$
\begin{gather*}
0<\varepsilon<\min \left\{1, \frac{\sigma}{2\left(1+M^{\prime} \beta \omega\right)}\right\}, \tag{2.11}\\
F_{\eta}(s ; u, v)=\left\{s \leq n \leq s+\omega-1:\left|u_{n}-v_{n}\right| \geq \eta\right\}, \quad u, v \in \Omega .
\end{gather*}
$$

Then the number of elements in $F_{\varepsilon r}(s ; u, v)$, denoted by \#, satisfies

$$
\begin{equation*}
\# F_{\varepsilon r}(s ; u, v) \geq \min \left\{\omega, \frac{\sigma}{2 M^{\prime} \beta}\right\}, \tag{2.12}
\end{equation*}
$$

when $\|(u, v)\|=r \leq r_{1}$ and $A_{2}(u, v)=v$. Indeed, if $\left|u_{n}-v_{n}\right| \geq \varepsilon r$ for any $n \in \mathbb{Z}$, then (2.12) is obvious. If there exists $n_{1} \in \mathbb{Z}$ such that $\left|u_{n_{1}}-v_{n_{1}}\right|<\varepsilon r$, then $\|v\| \geq v_{n_{1}}>u_{n_{1}}-$ $\varepsilon r \geq \sigma\|u\|-\varepsilon r$. Thus $\|v\|>(\sigma-\varepsilon) r$. Assume that $v_{n_{2}}=\|v\|$. Then from $A_{2}(u, v)=v$ and (2.10), we have

$$
\begin{align*}
(\sigma-\varepsilon) r & \leq v_{n_{2}}=\sum_{s=n_{2}}^{n_{2}+\omega-1} \hat{G}\left(n_{2}, s\right) \hat{h}_{s} f_{2}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq M^{\prime} \beta\left(\sum_{s \in F_{\varepsilon r}\left(n_{2} ; u, v\right)}+\sum_{s \in F\left(n_{2}\right) \backslash F_{\varepsilon r}\left(n_{2} ; u, v\right)}\right)\left|u_{s-\tau(s)}-v_{s-\tau(s)}\right| \tag{2.13}\\
& \leq M^{\prime} \beta r\left[\# F_{\varepsilon r}\left(n_{2} ; u, v\right)+\varepsilon \#\left(F\left(n_{2}\right) \backslash F_{\varepsilon r}\left(n_{2} ; u, v\right)\right)\right],
\end{align*}
$$

where $F\left(n_{2}\right)=\left\{n \in \mathbb{Z}: n_{2} \leq n \leq n_{2}+\omega-1\right\}$. It is now not difficult to check that $\# F_{\varepsilon r}(s ; u$, $v) \geq \sigma / 2 M^{\prime} \beta$, that is, (2.12) holds.

Next choose α such that $\alpha \geq 1 / m a \varepsilon$, where

$$
\begin{equation*}
a=\min \left\{\omega, \sigma \backslash\left(2 M^{\prime} \beta\right)\right\} . \tag{2.14}
\end{equation*}
$$

Then in view of (2.3), there exists $r_{*} \leq r_{1}$ such that

$$
\begin{equation*}
h_{s} f_{1}(s, x) \geq \alpha|x|, \quad \text { for }|x| \leq r_{*}, s \in \mathbb{Z} \tag{2.15}
\end{equation*}
$$

Set

$$
\begin{equation*}
H_{n}=\sum_{s=n}^{n+\omega-1} G(n, s), \quad n \in \mathbb{Z} \tag{2.16}
\end{equation*}
$$

Then $H=\left\{H_{n}\right\}_{n \in \mathbb{Z}} \in \Omega$, and for any $(u, v) \in \partial(\Omega \times \Omega)_{r_{*}}$ and $t \geq 0$, we assert that

$$
\begin{equation*}
(u, v)-A(u, v) \neq t(H, 0) . \tag{2.17}
\end{equation*}
$$

To see this, assume to the contrary that there exist $\left(u^{0}, \nu^{0}\right) \in \partial(\Omega \times \Omega)_{r_{*}}$ and $t_{0} \geq 0$ such that

$$
\begin{gather*}
u^{0}-A_{1}\left(u^{0}, v^{0}\right)=t_{0} H \tag{2.18}\\
v^{0}-A_{2}\left(u^{0}, v^{0}\right)=0 \tag{2.19}
\end{gather*}
$$

We may assume that $t_{0}>0$, for otherwise $\left(u^{0}, v^{0}\right)$ is a fixed point of A. From (2.19), we know that (2.12) holds for the above ε. From (2.15), we have $u^{0} \geq t_{0} H$. Set $t^{*}=\sup \{t \mid$ $\left.u^{0} \geq t H\right\}$. Then $t^{*} \geq t_{0}>0$. Furthermore, from (2.12), (2.15), and (2.18), we have

$$
\begin{align*}
u_{n}^{0} & =t_{0} H_{n}+A_{1}\left(u^{0}, v^{0}\right)_{n} \\
& =t_{0} H_{n}+\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}^{0}-v_{s-\tau(s)}^{0}\right) \\
& \geq t_{0} H_{n}+\sum_{s-\tau(s) \in F_{\varepsilon r}(n-\tau(n) ; u, v)} G(n, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}^{0}-v_{s-\tau(s)}^{0}\right) \\
& \geq t_{0} H_{n}+\alpha \sum_{s-\tau(s) \in F_{\varepsilon r}(n-\tau(n) ; u, v)} G(n, s)\left|u_{s-\tau(s)}^{0}-v_{s-\tau(s)}^{0}\right| \tag{2.20}\\
& \geq t_{0} H_{n}+m \alpha \varepsilon r \cdot \# F_{\varepsilon r}(n-\tau(n) ; u, v) \\
& \geq t_{0} H_{n}+m a \alpha \varepsilon t^{*} H_{n} \\
& \geq\left(t_{0}+t^{*}\right) H_{n},
\end{align*}
$$

which is contrary to the definition of t^{*}. Thus (2.17) holds. Consequently (see, e.g., [2]),

$$
\begin{equation*}
i\left(A,(\Omega \times \Omega)_{r_{*}}, \Omega \times \Omega\right)=0 \tag{2.21}
\end{equation*}
$$

Next, we will prove that there exists $r^{*}>0$ such that

$$
\begin{equation*}
A(u, v) \nsupseteq(u, v) \quad \text { for }(u, v) \in \partial(\Omega \times \Omega)_{r^{*}} . \tag{2.22}
\end{equation*}
$$

To see this, pick c such that $0<c<\min \left\{\sigma / M \omega, \sigma / M^{\prime} \omega\right\}$. In view of (2.5) and (2.6), there exists r_{0} such that $h_{s} f_{1}(s, u) \leq c u$ for $u \geq r_{0}$ and $\hat{h}_{s} f_{2}(s, v) \leq c|v|$ for $|v| \geq r_{0}$, where $s \in \mathbb{Z}$. Set

$$
\begin{equation*}
T_{0}=\max \left\{\sup _{0 \leq u \leq r_{0}, s \in \mathbb{Z}} h_{s} f_{1}(s, u), \sup _{0 \leq|v| \leq r_{0}, s \in \mathbb{Z}} \hat{h}_{s} f_{2}(s, v)\right\} . \tag{2.23}
\end{equation*}
$$

Then

$$
\begin{gather*}
h_{s} f_{1}(s, u) \leq c u+T_{0} \quad \text { for } u \geq 0 \tag{2.24}\\
\hat{h}_{s} f_{2}(s, v) \leq c|v|+T_{0} \quad \text { for } v \in \mathbb{R} . \tag{2.25}
\end{gather*}
$$

Take

$$
\begin{equation*}
r^{*}>\max \left\{r_{*}, r_{0}, \frac{\omega M T_{0}}{\sigma-c M \omega}, \frac{\omega M^{\prime} T_{0}}{\sigma-c M^{\prime} \omega}\right\} . \tag{2.26}
\end{equation*}
$$

We assert that (2.22) holds. In fact, let $\|(u, v)\|=r^{*}$ and $u \geq v$. Then

$$
\begin{align*}
\left(A_{1}(u, v)\right)_{n} & =\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq \sum_{s=n}^{n+\omega-1} G(n, s)\left[c\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right)+T_{0}\right] \tag{2.27}\\
& \leq M r^{*} c \omega+M T_{0} \omega \\
& <\sigma r^{*}<r^{*}=\|u\|
\end{align*}
$$

by (2.24). Thus $A_{1}(u, v) \nsupseteq u$. That is, $A(u, v) \nsupseteq(u, v)$. If there exists $n_{0} \in \mathbb{Z}$ such that $u_{n_{0}}<v_{n_{0}}$, then $\|v\| \geq \sigma r^{*}$. Hence, we have

$$
\begin{align*}
A_{2}(u, v)_{n} & =\sum_{s=n}^{n+\omega-1} \widehat{G}(n, s) \hat{h}_{s} f_{2}\left(s, u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq \sum_{s=n}^{n+\omega-1} \widehat{G}(n, s)\left[c\left|u_{s-\tau(s)}-v_{s-\tau(s)}\right|+T_{0}\right] \tag{2.28}\\
& \leq M^{\prime} r^{*} c \omega+\omega M^{\prime} T_{0} \\
& <\sigma r^{*} \leq\|v\|
\end{align*}
$$

by (2.25). Thus $A_{2}(u, v) \nsupseteq v$. That is, $A(u, v) \nsupseteq(u, v)$.
From (2.22), we have

$$
\begin{equation*}
i\left(A,(\Omega \times \Omega)_{r^{*}}, \Omega \times \Omega\right)=1 \tag{2.29}
\end{equation*}
$$

and from (2.21) and (2.29), we have $i\left(A,(\Omega \times \Omega)_{r^{*}} \backslash(\Omega \times \Omega)_{r_{*}}, \Omega \times \Omega\right)=1$ as required.
Thus, there exists $\left(u^{*}, v^{*}\right) \in(\Omega \times \Omega)_{r^{*}} \backslash(\Omega \times \Omega)_{r_{*}}$ such that $A\left(u^{*}, v^{*}\right)=\left(u^{*}, v^{*}\right)$. The proof is complete.

3. Sublinear f_{1} and f_{2}

It is possible to find periodic solutions of (1.3) without the assumptions (2.3) through (2.6). One such case arises when functions f_{1} and f_{2} satisfy the assumptions

$$
\begin{gather*}
f_{1}(n, x-y) \leq a_{n} x+b_{n}, \quad x \geqslant 0, y \geqslant 0, n \in \mathbb{Z} \tag{3.1}\\
f_{2}(n, x-y) \leq c_{n} y+d_{n}(x), \quad x \geqslant 0, y \geqslant 0, n \in \mathbb{Z} \tag{3.2}
\end{gather*}
$$

where $a=\left\{a_{n}\right\}_{n \in \mathbb{Z}}, b=\left\{b_{n}\right\}_{n \in \mathbb{Z}}$, and $c=\left\{c_{n}\right\}$ are positive ω-periodic sequences, and for each $n \in \mathbb{Z}$, the function $d_{n}(x)$ is continuous, nonnegative, and $d_{n+\omega}(x)=d_{n}(x)$ for $x \geq 0$.

Let $\Omega_{0}=\{u \in X \mid u \geq 0\}$. Define $K_{1}, K_{2}: X \rightarrow X$ by

$$
\begin{array}{ll}
\left(K_{1} u\right)_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} a_{s} u_{s-\tau(s)}, & u \in X, \\
\left(K_{2} u\right)_{n}=\sum_{s=n}^{n+\omega-1} \hat{G}(n, s) \hat{h}_{s} c_{s} u_{s-\tau(s)}, & u \in X, \tag{3.3}
\end{array}
$$

respectively. Then under conditions (2.1), it is not difficult to show that K_{1} and K_{2} are completely continuous linear operators on X, and K_{1}, K_{2} map Ω_{0} into Ω_{0}.

Theorem 3.1. In addition to the assumptions imposed on the functions $G, \hat{G}, h, \hat{h}, f_{1}$, and f_{2} in Section 1, suppose that f_{1} and f_{2} satisfy (3.1) and (3.2). Suppose further that the operators defined by (3.3) satisfy $\rho\left(K_{1}\right)<1$ and $\rho\left(K_{2}\right)<1$. Then (1.3) has at least one periodic solution.

Proof. Note that $\Omega_{0} \times \Omega_{0}$ is a normal solid cone of $X \times X$. Let A_{1}, A_{2}, and A be the same operators in the proof of Theorem 2.1. Set

$$
\begin{equation*}
g_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} b_{s}, \quad n \in \mathbb{Z} \tag{3.4}
\end{equation*}
$$

Then $g=\left\{g_{n}\right\}_{n \in \mathbb{Z}} \in \Omega_{0} . \rho\left(K_{1}\right)<1$ implies that $\left(I-K_{1}\right)^{-1}$ exists and that

$$
\begin{equation*}
\left(I-K_{1}\right)^{-1}=I+K_{1}+K_{1}^{2}+\ldots \tag{3.5}
\end{equation*}
$$

Thus, we have $\left(I-K_{1}\right)^{-1}\left(\Omega_{0}\right) \subset \Omega_{0}$ and it is increasing. Then $u-K_{1} u \leq g$ for $u \in X$ implies that $u \leq\left(I-K_{1}\right)^{-1} g$. Let

$$
\begin{equation*}
r_{0}=\max _{s \in[0, \omega]}\left(I-K_{1}\right)^{-1} g_{s}, \tag{3.6}
\end{equation*}
$$

we get that $u \leq K_{1} u+g$ for any $u \in \Omega_{0}$, which satisfies $\|u\| \leq r_{0}$.

Let $d^{*}=\max \left\{d_{n}(x) \mid n \in \mathbb{Z}, 0 \leq x \leq r_{0}\right\}$. Then from (3.2), we have

$$
\begin{equation*}
f_{2}(n, x-y) \leq c_{n} y+d^{*}, \quad y \geqslant 0,0 \leq x \leq r_{0}, n \in \mathbb{Z} . \tag{3.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
q_{n}=d^{*} \sum_{s=n}^{n+\omega-1} \widehat{G}(n, s) \hat{h}_{s}, \quad n \in \mathbb{Z} . \tag{3.8}
\end{equation*}
$$

Then $q=\left\{q_{n}\right\}_{n \in \mathbb{Z}} \in \Omega_{0}$ and $A_{2}(u, v) \leq K_{2}(v)+q$. If for any $(u, v) \in X \times X$, there exists $\lambda_{0} \in[0,1]$ such that $v=\lambda_{0} A_{2}(u, v)$, then, we have

$$
\begin{equation*}
|v|=\lambda_{0}\left|A_{2}(u, v)\right| \leq\left|A_{2}(u, v)\right| \leq K_{2}(|v|)+q . \tag{3.9}
\end{equation*}
$$

Note that if $|v| \in \Omega_{0}$ and $\rho\left(K_{2}\right)<1$, we have $|v| \leq\left(I-K_{1}\right)^{-1} q$. Choose

$$
\begin{equation*}
r^{*}>\max \left\{r_{0},\left\|\left(I-K_{1}\right)^{-1} q\right\|\right\} . \tag{3.10}
\end{equation*}
$$

Then for any open set $\Psi \subset \Omega_{0} \times \Omega_{0}$ that satisfies $\Psi \supset\left(\Omega_{0} \times \Omega_{0}\right)_{r^{*}}, A_{2}(u, v) \neq \mu \nu$ for $(u, v) \in \partial \Psi$ and $\mu \geqslant 1$.

Consequently,

$$
\begin{equation*}
A(u, v) \neq \mu(u, v) \tag{3.11}
\end{equation*}
$$

for any $(u, v) \in \Omega_{0} \times \Omega_{0},\|(u, v)\|=r^{*}$, and $\mu \geqslant 1$. Indeed, if there exist $\left(u^{0}, v^{0}\right) \in \Omega_{0} \times$ $\Omega_{0},\left\|\left(u^{0}, v^{0}\right)\right\|=r^{*}$, and $\mu_{0} \geqslant 1$ such that $A\left(u^{0}, v^{0}\right)=\mu_{0}\left(u^{0}, v^{0}\right)$, then from $A_{2}\left(u^{0}, v^{0}\right)=$ $\mu_{0} v^{0}, r^{*}>r_{0}$, and (3.2), we have $\|u\|>r_{0}$. But from (3.1), we know that $u_{n} \leq \mu_{0} u_{n}=$ $\left(A_{1}(u, v)\right)_{n} \leq K_{1} u_{n}+g_{n}$, this is contrary to the fact that $\|u\| \leq r_{0}$ as shown above.

Thus $i\left(A,\left(\Omega_{0} \times \Omega_{0}\right)_{r^{*}}, \Omega_{0} \times \Omega_{0}\right)=1$, which shows that there exists $\left(u^{*}, v^{*}\right) \in\left(\Omega_{0} \times\right.$ $\left.\Omega_{0}\right)_{r^{*}}$ such that $A\left(u^{*}, v^{*}\right)=\left(u^{*}, v^{*}\right)$. The proof is complete.
Theorem 3.2. In addition to the assumptions imposed on the functions $G, \hat{G}, h, \hat{h}, f_{1}$, and f_{2} in Section 1, suppose that f_{1} and f_{2} satisfy

$$
\begin{gather*}
f_{1}(n, x-y) \leq a_{n} y+b_{n}(x), \quad x \geqslant 0, y \geqslant 0, n \in \mathbb{Z} \tag{3.12}\\
f_{2}(n, x-y) \leq c_{n} x+d_{n}, \quad x \geqslant 0, y \geqslant 0, n \in \mathbb{Z}
\end{gather*}
$$

where $a=\left\{a_{n}\right\}_{n \in \mathbb{Z}}, b=\left\{b_{n}\right\}_{n \in \mathbb{Z}}$, and $c=\left\{c_{n}\right\}$ are positive ω-periodic sequences, and for each $n \in \mathbb{Z}, b_{n}=b_{n}(x)$ is continuous, nonnegative, and $b_{n+\omega}(x)=b_{n}(x)$ for $x \geq 0$. Suppose further that the operators defined by (3.3) satisfy $\rho\left(K_{1}\right)<1$ and $\rho\left(K_{2}\right)<1$. Then (1.3) has at least one periodic solution.

The proof is similar to that of Theorem 3.1 and hence omitted.

4. Applications

We now turn to the existence of nontrivial periodic solutions for the delay difference equation

$$
\begin{equation*}
x_{n+1}=a_{n} x_{n}+h_{n} f_{1}\left(n, x_{n-\tau(n)}\right)-\hat{h}_{n} f_{2}\left(n, x_{n-\tau(n)}\right), \quad n \in \mathbb{Z} \tag{4.1}
\end{equation*}
$$

where $\left\{h_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{\hat{h}_{n}\right\}_{n \in \mathbb{Z}}$ are positive ω-periodic sequences, $\{\tau(n)\}_{n \in \mathbb{Z}}$ is an integervalued ω-periodic sequence, and f_{1}, f_{2} are real continuous functions which satisfy $f_{1}(n+$ $\omega, u)=f_{1}(n, u)$ and $f_{2}(n+\omega, u)=f_{2}(n, u)$ for any $u \in \mathbb{R}^{1}$ and $n \in \mathbb{Z}$.

We proceed formerly from (4.1) and obtain

$$
\begin{equation*}
\Delta\left\{x_{n} \prod_{k=q}^{n-1} \frac{1}{a_{k}}\right\}=\prod_{k=q}^{n} \frac{1}{a_{k}}\left[h_{n} f_{1}\left(n, x_{n-\tau(n)}\right)-\hat{h}_{n} f_{2}\left(n, x_{n-\tau(n)}\right)\right] \tag{4.2}
\end{equation*}
$$

Then summing the above formal equation from n to $n+\omega-1$, we obtain

$$
\begin{equation*}
x_{n}=\sum_{s=n}^{n+\omega-1} G(n, s)\left[h_{s} f_{1}\left(s, x_{s-\tau(s)}\right)-\hat{h}_{s} f_{2}\left(s, x_{s-\tau(s)}\right)\right], \quad n \in \mathbb{Z}, \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
G(n, s)=\left(\prod_{k=n}^{s} \frac{1}{a_{k}}\right)\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}-1\right)^{-1}, \quad n, s \in \mathbb{Z} \tag{4.4}
\end{equation*}
$$

which is positive if $\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ is a positive ω-periodic sequence which satisfies $\prod_{s=0}^{\omega-1} a_{s}^{-1}>1$.
It is not difficult to check that any ω-periodic sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ that satisfies (4.3) is also an ω-periodic solution of (4.1). Furthermore, note that

$$
\begin{gather*}
G(n, n)=\left(\frac{1}{a_{n}}\right)\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}-1\right)^{-1}=G(n+\omega, n+\omega), \\
G(n, n+\omega-1)=\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}\right)\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}-1\right)^{-1}=G(0, \omega-1), \tag{4.5}\\
0<N \equiv \min _{n \leq i \leq n+\omega-1} G(n, s) \leq G(n, s) \leq \max _{n \leq i \leq n+\omega-1} G(n, i) \equiv M, \quad n \leq s \leq n+\omega-1 .
\end{gather*}
$$

Theorem 4.1. Suppose that $\left\{h_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{\hat{h}_{n}\right\}_{n \in \mathbb{Z}}$ are positive ω-periodic sequences, $\{\tau(n)\}_{n \in \mathbb{Z}}$ is an integer-valued ω-periodic sequence, and f_{1}, f_{2} are nonnegative continuous functions which satisfy $f_{1}(n+\omega, u)=f_{1}(n, u)$ and $f_{2}(n+\omega, u)=f_{2}(n, u)$ for any $u \in \mathbb{R}^{1}$ and $n \in \mathbb{Z}$. Suppose further that $\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ is a real sequence which satisfies $\prod_{s=0}^{\omega-1} a_{s}^{-1}>1$. If f_{1} and f_{2} satisfy the additional conditions $f_{1}(n, 0)=0=f_{2}(n, 0)$ for $n \in \mathbb{Z}$ as well as (2.3), (2.4), (2.5), and (2.6) uniformly with respect to all $n \in \mathbb{Z}$, then (4.1) has at least a nontrivial periodic solution.

Indeed, let A_{1}, A_{2}, and A be defined as in the proof of Theorem 2.1. Then from Theorem 2.1, we know that there exists $\left(u^{*}, v^{*}\right) \neq(0,0)$, such that $A\left(u^{*}, v^{*}\right)=\left(u^{*}, v^{*}\right)$, that is,

$$
\begin{align*}
& u_{n}^{*}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(s, u_{s-\tau(s)}^{*}-v_{s-\tau(s)}^{*}\right), \\
& v_{n}^{*}=\sum_{s=n}^{n+\omega-1} G(n, s) \hat{h}_{s} f_{2}\left(s, u_{s-\tau(s)}^{*}-v_{s-\tau(s)}^{*}\right) . \tag{4.6}
\end{align*}
$$

Since $f_{1}(n, 0)=0=f_{2}(n, 0)$ for $n \in \mathbb{Z}$, we know that $u^{*} \neq v^{*}$. (Indeed, if $u^{*}=v^{*}$, then $u^{*}=v^{*}=0$, which is contrary to the fact that $\left(u^{*}, v^{*}\right) \neq(0,0)$.) Thus $u^{*}-v^{*}$ is a nontrivial periodic solution of (4.3), and also a nontrivial periodic solution of (4.1).

Next, we illustrate Theorem 3.1 by considering the delay difference equations

$$
\begin{equation*}
x_{n+1}=a_{n} x_{n}+f\left(n, x_{n-\tau(n)}\right), \quad n \in \mathbb{Z}, \tag{4.7}
\end{equation*}
$$

where $\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ is a positive ω-periodic sequence but $\prod_{s=0}^{\omega-1} a_{s}^{-1}>1,\{\tau(n)\}_{n \in \mathbb{Z}}$ is integervalued ω-periodic sequence, $f(n, u)$ is a real continuous function, and $f(n+\omega, u)=$ $f(n, u)$ for any $u \in \mathbb{R}$ and $n \in \mathbb{Z}$.

The existence of positive periodic solutions for (4.7) have been studied extensively by a number of authors (see, e.g., $[1,3,5,7,8,9]$). Here, we proceed formerly from (4.7) and obtain

$$
\begin{equation*}
\Delta\left\{x_{n} \prod_{k=q}^{n-1} \frac{1}{a_{k}}\right\}=\prod_{k=q}^{n} \frac{1}{a_{k}} f\left(n, x_{n-\tau(n)}\right) . \tag{4.8}
\end{equation*}
$$

Then summing the above formal equation from n to $n+\omega-1$, we obtain

$$
\begin{equation*}
x_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) f\left(s, x_{s-\tau(s)}\right), \quad n \in \mathbb{Z} \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
G(n, s)=\left(\prod_{k=n}^{s} \frac{1}{a_{k}}\right)\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}-1\right)^{-1} \tag{4.10}
\end{equation*}
$$

Set $\lambda_{0}=\left(\prod_{k=0}^{\omega-1}\left(1 / a_{k}\right)-1\right)$, then $G(n, s)=\left(1 / \lambda_{0}\right)\left(\prod_{k=n}^{s}\left(1 / a_{k}\right)\right)$. It is not difficult to check that any ω-periodic sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ that satisfies (4.9) is also an ω-periodic solution of (4.7).

Choose

$$
\begin{gather*}
f(n, x)=\lambda \sin x+p_{n}, \\
f_{1}(n, x)=\lambda \frac{|\sin x|+\sin x}{2}+p_{n}, \tag{4.11}\\
f_{2}(n, x)=\lambda \frac{|\sin x|-\sin x}{2},
\end{gather*}
$$

where $\lambda>0$ and $\left\{p_{n}\right\}$ is a positive ω-periodic sequence. Then $f_{1}(n, x-y) \leq \lambda x+2 \lambda+p_{n}$ and $f_{2}(n, x-y) \leq \lambda y+2 \lambda$ for $x, y \geqslant 0$. Set

$$
\begin{equation*}
\left(K_{i} u\right)_{n}=\lambda \sum_{s=n}^{n+\omega-1} G(n, s) u_{s-\tau(s)}, \quad i=1,2 \tag{4.12}
\end{equation*}
$$

then

$$
\begin{align*}
\left\|K_{i} u\right\| & =\max _{0 \leq n \leq \omega-1}\left|\lambda \sum_{s=n}^{n+\omega-1} G(n, s) u_{s-\tau(s)}\right| \\
& =\max _{0 \leq n \leq \omega-1}\left|\frac{\lambda}{\lambda_{0}} \sum_{s=n}^{n+\omega-1}\left(\prod_{k=n}^{s} \frac{1}{a_{k}}\right) u_{s-\tau(s)}\right| \tag{4.13}\\
& \leq \max _{0 \leq n \leq \omega-1}\left|\frac{\lambda}{\lambda_{0}}\|u\| \sum_{s=n}^{n+\omega-1} \prod_{k=n}^{s} \frac{1}{a_{k}}\right| \\
& =\frac{\lambda}{\lambda_{0}}\|u\| \max _{0 \leq n \leq \omega-1} \sum_{s=n}^{n+\omega-1}\left(\prod_{k=n}^{s} \frac{1}{a_{k}}\right)
\end{align*}
$$

for $i=1,2$. Thus

$$
\begin{equation*}
\left\|K_{i}\right\| \leq \frac{\lambda}{\lambda_{0}} \max _{0 \leq n \leq \omega-1} \sum_{s=n}^{n+\omega-1}\left(\prod_{k=n}^{s} \frac{1}{a_{k}}\right), \quad i=1,2 . \tag{4.14}
\end{equation*}
$$

Since $\rho\left(K_{i}\right) \leq\left\|K_{i}\right\|$, thus $\rho\left(K_{i}\right) \leq\left\|K_{i}\right\|<1$ for

$$
\begin{equation*}
\lambda<\lambda_{0}\left[\max _{0 \leq n \leq \omega-1} \sum_{s=n}^{n+\omega-1}\left(\prod_{k=n}^{s} \frac{1}{a_{k}}\right)\right]^{-1} . \tag{4.15}
\end{equation*}
$$

Under this condition, Theorem 3.1 asserts that (4.7) has at least one periodic solution. Note that 0 is not its solution. Thus, our periodic solution is nontrivial.

Acknowledgment

This work was supported by Natural Science Foundation of Shanxi Province and by the Yanbei Normal University.

References

[1] R. P. Agarwal and P. Y. H. Pang, On a generalized difference system, Nonlinear Anal. 30 (1997), no. 1, 365-376.
[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709.
[3] S. S. Cheng and G. Zhang, Positive periodic solutions of a discrete population model, Funct. Differ. Equ. 7 (2000), no. 3-4, 223-230.
[4] S. Kang and G. Zhang, Existence of nontrivial periodic solutions for first order functional differential equations, Appl. Math. Lett. 18 (2005), no. 1, 101-107.
[5] I. Katsunori, Asymptotic analysis for linear difference equations, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4107-4142.
[6] W.-T. Li and S. S. Cheng, On a neutral difference equation with positive and negative coefficients, Southeast Asian Bull. Math. 22 (1998), no. 4, 407-418.
[7] R. Musielak and J. Popenda, On periodic solutions of a first order difference equation, An. Şti. Univ. "Al. I. Cuza" Iaşi Secț. I a Mat. 34 (1988), no. 2, 125-133.
[8] R. Y. Zhang, Z. C. Wang, Y. Chen, and J. Wu, Periodic solutions of a single species discrete population model with periodic harvest/stock, Comput. Math. Appl. 39 (2000), no. 1-2, 77-90.
[9] Z. Zhang, An algebraic principle for the stability of difference operators, J. Differential Equations 136 (1997), no. 2, 236-247.

Guang Zhang: Department of Mathematics, Qingdao Technological University, Qingdao, Shandong 266033, China

E-mail address: shzhg@qtech.edu.cn
Shugui Kang: Department of Mathematics, Yanbei Normal University, Datong, Shanxi 037000, China

E-mail address: dtkangshugui@yahoo.com.cn
Sui Sun Cheng: Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan E-mail address: sscheng@math.nthu.edu.tw

