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We extend some results obtained in 1998 and 1999 by studying the periodicity of the
solutions of the fuzzy difference equations xn+1 =max{A/xn,A/xn−1, . . . ,A/xn−k}, xn+1 =
max{A0/xn,A1/xn−1}, where k is a positive integer, A, Ai, i= 0,1, are positive fuzzy num-
bers, and the initial values xi, i=−k,−k + 1, . . . ,0 (resp., i=−1,0) of the first (resp., sec-
ond) equation are positive fuzzy numbers.

1. Introduction

Difference equations are often used in the study of linear and nonlinear physical, physio-
logical, and economical problems (for partial review see [3, 6]). This fact leads to the fast
promotion of the theory of difference equations which someone can find, for instance,
in [1, 7, 9]. More precisely, max-difference equations have increasing interest since max
operators have applications in automatic control (see [2, 11, 17, 18] and the references
cited therein).

Nowadays, a modern and promising approach for engineering, social, and environ-
mental problems with imprecise, uncertain input-output data arises, the fuzzy approach.
This is an expectable effect, since fuzzy logic can handle various types of vagueness but
particularly vagueness related to human linguistic and thinking (for partial review see
[8, 12]).

The increasing interest in applications of these two scientific fields contributed to the
appearance of fuzzy difference equations (see [4, 5, 10, 13, 14, 15, 16]).

In [17], Szalkai studied the periodicity of the solutions of the ordinary difference equa-
tion

xn+1 =max
{
A

xn
,
A

xn−1
, . . . ,

A

xn−k

}
, (1.1)

where k is a positive integer, A is a real constant, xi, i=−k,−k+ 1, . . . ,0 are real numbers.
More precisely, if A is a positive real constant and xi, i=−k,−k+ 1, . . . ,0 are positive real
numbers, he proved that every positive solution of (1.1) is eventually periodic of period
k+ 2.
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In [2], Amleh et al. studied the periodicity of the solutions of the ordinary difference
equation

xn+1 =max
{
A0

xn
,
A1

xn−1

}
, (1.2)

where A0, A1 are positive real constants and x−1, x0 are real numbers. More precisely, if
A0, A1 are positive constants, x−1, x0 are positive real numbers, A0 > A1 (resp., A0 = A1)
(resp., A0 < A1), then every positive solution of (1.2) is eventually periodic of period two
(resp., three) (resp., four).

In this paper, our goal is to extend the above mentioned results for the corresponding
fuzzy difference equations (1.1) and (1.2) where A, A0, A1 are positive fuzzy numbers and
xi, i=−k,−k + 1, . . . ,0, x−1, x0 are positive fuzzy numbers. Moreover, we find conditions
so that the corresponding fuzzy equations (1.1) and (1.2) have unbounded solutions,
something that does not happen in case of the ordinary difference equations (1.1) and
(1.2).

We note that, in order to study the behavior of a parametric fuzzy difference equation
we use the following technique: we investigate the behavior of the solutions of a related
family of systems of two parametric ordinary difference equations and then, using these
results and the fuzzy analog of some concepts known by the theory of ordinary difference
equations, we prove our main effects concerning the fuzzy difference equation.

2. Preliminaries

We need the following definitions.
For a set B we denote by B̄ the closure of B. We say that a function A from R+ = (0,∞)

into the interval [0,1] is a fuzzy number if A is normal, convex fuzzy set (see [13]), upper
semicontinuous and the support suppA=⋃a∈(0,1] [A]a = {x : A(x) > 0} is compact. Then
from [12, Theorems 3.1.5 and 3.1.8] the a-cuts of the fuzzy number A, [A]a = {x ∈R+ :
A(x)≥ a} are closed intervals.

We say that a fuzzy number A is positive if suppA⊂ (0,∞).
It is obvious that if A is a positive real number, then A is a positive fuzzy number and

[A]a = [A,A], a∈ (0,1]. In this case, we say that A is a trivial fuzzy number.
Let Bi, i= 0,1, . . . ,k, k is a positive integer, be fuzzy numbers such that

[
Bi
]
a =

[
Bi,l,a,Bi,r,a

]
, i= 0,1, . . . ,k, a∈ (0,1], (2.1)

and for any a∈ (0,1]

Cl,a =max
{
Bi,l,a, i= 0,1, . . . ,k

}
, Cr,a =max

{
Bi,r,a, i= 0,1, . . . ,k

}
. (2.2)

Then by [19, Theorem 2.1], (Cl,a,Cr,a) determines a fuzzy number C such that

[C]a =
[
Cl,a,Cr,a

]
, a∈ (0,1]. (2.3)

According to [8] and [14, Lemma 2.3] we can define

C =max
{
Bi, i= 0,1, . . . ,k

}
. (2.4)



G. Stefanidou and G. Papaschinopoulos 155

We say that xn is a positive solution of (1.1) (resp., (1.2)) if xn is a sequence of positive
fuzzy numbers which satisfies (1.1) (resp., (1.2)).

We say that a sequence of positive fuzzy numbers xn persists (resp., is bounded) if there
exists a positive number M (resp., N) such that

suppxn ⊂ [M,∞),
(
resp., suppxn ⊂ (0,N]

)
, n= 1,2, . . . . (2.5)

In addition, we say that xn is bounded and persists if there exist numbers M,N ∈ (0,∞)
such that

suppxn ⊂ [M,N], n= 1,2, . . . . (2.6)

A solution xn of (1.1) (resp., (1.2)) is said to be eventually periodic of period r, r is a
positive integer, if there exists a positive integer m such that

xn+r = xn, n=m,m+ 1, . . . . (2.7)

3. Existence and uniqueness of the positive solutions
of fuzzy difference equations (1.1) and (1.2)

In this section, we study the existence and the uniqueness of the positive solutions of the
fuzzy difference equations (1.1) and (1.2).

Proposition 3.1. Suppose that A, A0, A1 are positive fuzzy numbers. Then for all positive
fuzzy numbers x−k,x−k+1, . . . ,x0 (resp., x−1, x0) there exists a unique positive solution xn of
(1.1) (resp., (1.2)) with initial values x−k,x−k+1, . . . ,x0 (resp., x−1, x0).

Proof. Suppose that

[A]a =
[
Al,a,Ar,a

]
, a∈ (0,1]. (3.1)

Let xi, i=−k,−k+ 1, . . . ,0 be positive fuzzy numbers such that

[
xi
]
a =

[
Li,a,Ri,a

]
, i=−k,−k+ 1, . . . ,0, a∈ (0,1] (3.2)

and let (Ln,a,Rn,a), n= 0,1, . . . ,a∈ (0,1], be the unique positive solution of the system of
difference equations

Ln+1,a =max
{
Al,a

Rn,a
,
Al,a

Rn−1,a
, . . . ,

Al,a

Rn−k,a

}
,

Rn+1,a =max
{
Ar,a

Ln,a
,
Ar,a

Ln−1,a
, . . . ,

Ar,a

Ln−k,a

} (3.3)

with initial values (Li,a,Ri,a), i = −k,−k + 1, . . . ,0. Using [19, Theorem 2.1] and relation
(3.3) and working as in [13, Proposition 2.1] and [15, Proposition 1] we can easily prove
that (Ln,a,Rn,a), n = 1,2, . . . , a ∈ (0,1] determines a sequence of positive fuzzy numbers
xn such that

[
xn
]
a =

[
Ln,a,Rn,a

]
, n= 1,2, . . . , a∈ (0,1]. (3.4)
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Now, we prove that xn satisfies (1.1) with initial values xi, i=−k,−k+ 1, . . . ,0. From (3.1),
(3.2), (3.3), (3.4), [15, Lemma 1], and by a slight generalization of [14, Lemma 2.3] we
have

[
max

{
A

xn
,
A

xn−1
, . . . ,

A

xn−k

}]
a

=
[

max
{
Al,a

Rn,a
,
Al,a

Rn−1,a
, . . . ,

Al,a

Rn−k,a

}
,max

{
Ar,a

Ln,a
,
Ar,a

Ln−1,a
, . . . ,

Ar,a

Ln−k,a

}]

= [Ln+1,a,Rn+1,a
]= [xn+1

]
a, a∈ (0,1].

(3.5)

From (3.5) and arguing as in [13, Proposition 2.1] and [15, Proposition 1] we have that
xn is the unique positive solution of (1.1) with initial values xi, i=−k, −k+ 1, . . . , 0.

Now, suppose that

[
Ai
]
a =

[
Ai,l,a,Ai,r,a

]
, i= 0,1, a∈ (0,1]. (3.6)

Arguing as above and using (3.6) we can easily prove that if xi, i=−1,0 are positive fuzzy
numbers which satisfy (3.2) for k = 1, then there exists a unique positive solution xn
of (1.2) with initial values xi, i = −1,0 such that (3.4) holds and (Ln,a,Rn,a) satisfies the
system of difference equations

Ln+1,a =max
{
A0,l,a

Rn,a
,
A1,l,a

Rn−1,a

}
, Rn+1,a =max

{
A0,r,a

Ln,a
,
A1,r,a

Ln−1,a

}
. (3.7)

This completes the proof of the proposition. �

4. Behavior of the positive solutions of fuzzy equation (1.1)

In this section, we study the behavior of the positive solutions of (1.1). Firstly, we study
the periodicity of the positive solutions of (1.1). We need the following lemmas.

Lemma 4.1. Let A, a, b be positive numbers such that ab �=A. If

ab < A (resp., ab > A), (4.1)

then there exist positive numbers ȳ, z̄ such that

ȳz̄ =A, (4.2)

a < ȳ, b < z̄
(
resp., a > ȳ, b > z̄

)
. (4.3)

Proof. Suppose that (4.1) is satisfied. Then if ε is a positive number such that

ε <
A− ab

b

(
resp., ε <

ab−A

b

)
,

ȳ = a+ ε, z̄ = A

a+ ε

(
resp., ȳ = a− ε, z̄ = A

a− ε
)

,
(4.4)

it is obvious that (4.2) and (4.3) hold. This completes the proof of the lemma. �
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Lemma 4.2. Consider the system of difference equations

yn+1 =max
{
A

zn
,
A

zn−1
, . . . ,

A

zn−k

}
, zn+1 =max

{
A

yn
,

A

yn−1
, . . . ,

A

yn−k

}
, (4.5)

where A is a positive real constant, k is a positive integer, and yi, zi, i=−k,−k+ 1, . . . ,0 are
positive real numbers. Then every positive solution (yn,zn) of (4.5) is eventually periodic of
period k+ 2.

Proof. Let (yn,zn) be an arbitrary positive solution of (4.5). Firstly, suppose that there
exists a λ∈ {1,2, . . . ,k+ 2} such that

yλzλ < A. (4.6)

Then from (4.6) and Lemma 4.1 there exist positive constants ȳ, z̄ such that (4.2) holds
and

yλ < ȳ, zλ < z̄. (4.7)

From (4.2), (4.5), and (4.7) we have, for i= λ+ 1,λ+ 2, . . . ,k+ λ+ 1,

yi =max
{

A

zi−1
,
A

zi−2
, . . . ,

A

zi−k−1

}
≥ A

zλ
>
A

z̄
= ȳ, zi > z̄. (4.8)

Then relations (4.2), (4.5), and (4.8) imply that

yk+λ+2 =max
{

A

zk+λ+1
,
A

zk+λ
, . . . ,

A

zλ+1

}
<
A

z̄
= ȳ, zk+λ+2 < z̄. (4.9)

Therefore, from (4.2), (4.5), (4.8), and (4.9) we take, for j = k + λ+ 3,k + λ+ 4, . . . ,2k +
λ+ 3,

yj =max
{

A

zj−1
,
A

zj−2
, . . . ,

A

zj−k−1

}
= A

zk+λ+2
, zj = A

yk+λ+2
. (4.10)

So, from (4.5), (4.9), (4.10) and working inductively for i= 0,1, . . . and j = 3,4, . . . ,k + 3
we can easily prove that

yk+λ+2+i(k+2) = yk+λ+2, yk+λ+ j+i(k+2) = A

zk+λ+2
,

zk+λ+2+i(k+2) = zk+λ+2, zk+λ+ j+i(k+2) = A

yk+λ+2

(4.11)

and so it is obvious that (yn,zn) is eventually periodic of period k+ 2.
Therefore, if relation

yk+2zk+2 < A (4.12)

holds, then (yn,zn) is eventually periodic of period k+ 2.
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Now, suppose that relation

yk+2zk+2 > A (4.13)

is satisfied. Then from (4.13) and Lemma 4.1 there exist positive constants ȳ, z̄ such that
(4.2) holds and

yk+2 > ȳ, zk+2 > z̄. (4.14)

Moreover, from (4.5) and (4.14) there exist λ,µ∈ {1,2, . . . ,k+ 1} such that

yk+2 =max
{

A

zk+1
,
A

zk
, . . . ,

A

z1

}
= A

zλ
> ȳ, zk+2 = A

yµ
> z̄. (4.15)

Hence, from (4.2) and (4.15) it follows that

zλ < z̄, yµ < ȳ. (4.16)

We prove that λ = µ. Suppose on the contrary that λ �= µ. Without loss of generality we
may suppose that 1≤ µ≤ λ− 1. Then from (4.2), (4.5), and (4.16) we get

zλ =max
{

A

yλ−1
,
A

yλ−2
, . . . ,

A

yλ−k−1

}
≥ A

yµ
> z̄ (4.17)

which contradicts to (4.16). Hence, λ= µ and from (4.2) and (4.16) we have

yλzλ < A (4.18)

and so (yn,zn) is eventually periodic of period k+ 2 if (4.13) holds.
Finally, suppose that

yk+2zk+2 =A. (4.19)

From (4.5) it is obvious that

yk+2 ≥ A

zi
, zk+2 ≥ A

yi
, i= 1,2, . . . ,k+ 1. (4.20)

Therefore, relations (4.5), (4.19), and (4.20) imply that

yk+3 =max
{
yk+2,

A

zk+1
, . . . ,

A

z2

}
= yk+2, zk+3 = zk+2. (4.21)

Hence, using (4.19), (4.20), (4.21) and working inductively we can easily prove that

yk+i = yk+2, zk+i = zk+2, i= 3,4, . . . (4.22)

and so it is obvious that (yn,zn) is eventually periodic of period k+ 2 if (4.19) holds. This
completes the proof of the lemma. �
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Proposition 4.3. Consider (1.1) where A is a positive real constant and x−k,x−k+1, . . . ,x0

are positive fuzzy numbers. Then every positive solution of (1.1) is eventually periodic of
period k+ 2.

Proof. Let xn be a positive solution of (1.1) with initial values x−k,x−k+1, . . . ,x0 such that
(3.2) and (3.4) hold. From Proposition 3.1, (Ln,a,Rn,a), n= 1,2, . . . , a∈ (0,1] satisfies sys-
tem (3.3). Using Lemma 4.2 we have that

Ln+k+2,a = Ln,a, Rn+k+2,a = Rn,a, n= 2k+ 4,2k+ 5, . . . , a∈ (0,1]. (4.23)

Therefore, from (3.4) and (4.23) we have that xn is eventually periodic of period k + 2.
This completes the proof of the proposition. �

Now, we find conditions so that every positive solution of (1.1) neither is bounded nor
persists. We need the following lemma.

Lemma 4.4. Consider the system of difference equations

yn+1 =max
{
B

zn
,
B

zn−1
, . . . ,

B

zn−k

}
, zn+1 =max

{
C

yn
,

C

yn−1
, . . . ,

C

yn−k

}
, (4.24)

where k is a positive integer, yi, zi, i=−k,−k + 1, . . . ,0 are positive real numbers, and B, C
are positive real constants such that

B < C. (4.25)

Then for every positive solution (yn,zn) of (4.24) the following relations hold:

lim
n→∞zn =∞, lim

n→∞ yn = 0. (4.26)

Proof. Since for any n≥ 1 we have

C

yn
= C

max
{
B/zn−1,B/zn−2, . . . ,B/zn−k−1

} = λmin
{
zn−1,zn−2, . . . ,zn−k−1

}
, (4.27)

where λ= C/B, from (4.24) we get

zn+1 =max
{
λmin

{
zn−1,zn−2, . . . ,zn−k−1

}
,

C

yn−1
, . . . ,

C

yn−k

}
(4.28)

and clearly

zn+1 ≥ λmin
{
zn−1,zn−2, . . . ,zn−k−1

}
, n= 1,2, . . . . (4.29)

Using (4.29) we can easily prove that

zn ≥ λmin
{
z1,z0, . . . ,z−k

}
, n= 2,3, . . . ,k+ 3, (4.30)
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and so

zn ≥ λ2 min
{
z1,z0, . . . ,z−k

}
, n= k+ 4,k+ 5, . . . ,2k+ 5. (4.31)

From (4.31) and working inductively we get, for r = 3,4, . . . ,

zn ≥ λr min
{
z1,z0, . . . ,z−k

}
, n= (r− 1)k+ 2r, (r− 1)k+ 2r + 1, . . . ,r(k+ 2) + 1. (4.32)

Obviously, from (4.25) and (4.32) we have that

lim
n→∞zn =∞. (4.33)

Hence, relations (4.24) and (4.33) imply that

lim
n→∞ yn = 0 (4.34)

and so from (4.33) and (4.34) we have that relations (4.26) are true. This completes the
proof of the lemma. �

Proposition 4.5. Consider (1.1) where k is a positive integer, A is a nontrivial positive
fuzzy number, and x−k,x−k+1, . . . ,x0 are positive fuzzy numbers. Then every positive solution
of (1.1) is unbounded and does not persist.

Proof. Let xn be a positive solution of (1.1) with initial values x−k,x−k+1, . . . ,x0 such that
(3.2) and (3.4) hold. Since A is a nontrivial positive fuzzy number there exists an ā∈ (0,1]
such that

Al,ā < Ar,ā. (4.35)

Moreover, since (4.35) holds and (Ln,a,Rn,a), a ∈ (0,1] satisfies system (3.3), then from
Lemma 4.4 we have that

lim
n→∞Rn,ā =∞, lim

n→∞Ln,ā = 0. (4.36)

Therefore, from (4.36) there are no positive numbers M, N such that
⋃

a∈(0,1][Ln,a,Rn,a]⊂
[M,N]. This completes the proof of the proposition. �

From Propositions 4.3 and 4.5 the following corollary results.

Corollary 4.6. Consider the fuzzy difference equation (1.1) where A is a positive fuzzy
number. Then the following statements are true.

(i) Every positive solution of (1.1) is eventually periodic of period k+ 2 if and only if A is
a trivial fuzzy number.

(ii) Every positive solution of (1.1) neither is bounded nor persists if and only if A is a
nontrivial fuzzy number.
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5. Behavior of the positive solutions of fuzzy equation (1.2)

Firstly, we study the periodicity of the positive solutions of (1.2). We need the following
lemma.

Lemma 5.1. Consider the system of difference equations

yn+1 =max
{
B

zn
,
D

zn−1

}
, zn+1 =max

{
C

yn
,

E

yn−1

}
, (5.1)

where B, D, C, E are positive real constants and the initial values y−1, y0, z−1, z0 are positive
real numbers. Then the following statements are true.

(i) If

B = C, B ≥ E ≥D, B, D, C, E are not all equal, (5.2)

then every positive solution of system (5.1) is eventually periodic of period two.
(ii) If

D = E, D ≥ C ≥ B, B, D, C, E are not all equal, (5.3)

then every positive solution of system (5.1) is eventually periodic of period four.

Proof. We give a sketch of the proof (for more details see the appendix). Let (yn,zn) be a
positive solution of (5.1).

(i) Firstly, we prove that if there exists an m∈ {1,2, . . .} such that

E ≤ ymzm ≤ B2

E
, (5.4)

then (yn,zn) is eventually periodic of period two.
Moreover, we prove that if for an m ∈ {1,2} relation (5.4) does not hold, then there

exists a w ∈ {1,2,3} such that

uw = ywzw < E. (5.5)

In addition, we prove that if

D ≤ uw < E, (5.6)

then um for m = w + 2 satisfies relation (5.4) which implies that (yn,zn) is eventually
periodic of period two.

Finally, if

uw < D, (5.7)

then we prove that there exists an r ∈ {0,1, . . .} such that

(
DE

B2

)r+1

≤ uw
D
≤
(
DE

B2

)r
(5.8)
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and um for m = w + 3r + 3 satisfies relation (5.4) or (5.6) and so (yn,zn) is eventually
periodic of period two.

(ii) Firstly, we prove that if there exists an m∈ {1,2, . . .} such that

C2

D
≤ ymzm ≤D, (5.9)

then (yn,zn) is eventually periodic of period four.
In addition, we prove that if relation (5.9) does not hold for m ∈ {1,2,3} then there

exists a p ∈ {1,2,3,4} such that

up = ypzp <
C2

D
. (5.10)

Furthermore, if

B2

D
≤ up <

C2

D
, (5.11)

we prove that (5.9) holds for m = p + 4 or m = p + 5. Therefore, the solution (yn,zn) is
eventually periodic of period four.

Finally, if

up <
B2

D
, (5.12)

then we prove that there exists a q ∈ {0,1, . . .} such that

(
BC

D2

)q+1

≤ upD

B2
≤
(
BC

D2

)q
(5.13)

and either (5.9) or (5.11) holds for m= p+ 3q+ 3 and so (yn,zn) is eventually periodic of
period four. �

Proposition 5.2. Consider the fuzzy difference equation (1.2) where Ai, i = 0,1 are
nonequal positive fuzzy numbers such that (3.6) holds and the initial values xi, i = −1,0
are positive fuzzy numbers. Then the following statements are true.

(i) If A0 is a positive trivial fuzzy number such that

A0,l,a = A0,r,a = A0, a∈ (0,1], max
{
A0− ε,A1

}= A0− ε, (5.14)

where ε is a real constant, 0 < ε < A0, then every positive solution of (1.2) is eventually
periodic of period two.

(ii) If A1 is a positive trivial fuzzy number such that

A1,l,a = A1,r,a = A1, a∈ (0,1], max
{
A0,A1− ε

}= A1− ε, (5.15)

where ε is a real constant, 0 < ε < A1, then every positive solution of (1.2) is eventually
periodic of period four.
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Proof. Let xn be a positive solution of (1.2) with initial values xi, i=−1,0 such that rela-
tions (3.2) for k = 1 and (3.4) hold, then (Ln,a,Rn,a), n= 1,2, . . . , a∈ (0,1] satisfies system
(3.7).

(i) Firstly, suppose that (5.14) is satisfied. We define the set E ⊂ (0,1] as follows: for
any a∈ E there exists an ma ∈ {1,2} such that

A1,l,a ≤ uma,a ≤ A2
0

A1,r,a
, un,a = Ln,aRn,a, n= 1,2, . . . , a∈ E. (5.16)

Then from statement (i) of Lemma 5.1 the sequences Ln,a, Rn,a, a ∈ E are periodic se-
quences of period two for n≥ 5. Moreover, since for any a∈ (0,1]−E the relation (5.16)
does not hold, then from statement (i) of Lemma 5.1 for any a∈ (0,1]−E there exists a
wa ∈ {1,2,3} and an ra ∈ {0,1, . . .} such that

uwa,a < A1,l,a,
(
A1,l,aA1,r,a

A2
0

)ra+1

≤ uwa,a

A1,l,a
≤
(
A1,l,aA1,r,a

A2
0

)ra
. (5.17)

Hence, from statement (i) of Lemma 5.1, Ln,a, Rn,a, a∈ (0,1]−E are periodic sequences
of period two for n≥wa + 3ra + 3 and so for n≥ 3ra + 6.

We prove that there exists an r ∈ {1,2, . . .} such that

r ≥ ra, a∈ (0,1]−E. (5.18)

Since xi, i= 1,2,3 are positive fuzzy numbers there exist positive real numbers K , L such
that [Li,a,Ri,a]⊂ [K ,L], i= 1,2,3, a∈ (0,1]−E. Then from (5.14) and (5.17) there exists
an r ∈ {1,2, . . .} such that, for a∈ (0,1]−E,

(
A1,l,aA1,r,a

A2
0

)r
≤
(
A0− ε
A0

)2r

≤ K2

A0− ε ≤
uwa,a

A1,l,a
≤
(
A1,l,aA1,r,a

A2
0

)ra
(5.19)

and so from (5.14) relation (5.18) is satisfied. Therefore, from (5.18) it follows that Ln,a,
Rn,a, a∈ (0,1]−E are periodic sequences of period two for n≥ 3r + 6 and so xn is even-
tually periodic of period two.

Arguing as above and using statement (ii) of Lemma 5.1 we can easily prove that every
positive solution of (1.2) is eventually periodic of period four if relation (5.15) holds. This
completes the proof of the proposition. �

In the last proposition of this paper we find conditions so that every positive solution
of (1.2) neither is bounded nor persists. We need the following lemma.

Lemma 5.3. Consider system (5.1) where B, D, C, E are positive real constants, z−1, z0, y−1,
y0 are positive real numbers. If one of the following statements:

(i) B < C, D < E,
(ii) B < C, D < C,

(iii) D < E, B < E,
is satisfied, then for every positive solution (yn,zn) of (5.1) relations (4.26) hold.
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Proof. Firstly, suppose that conditions (i) of Lemma 5.3 are satisfied then we have that
either

C > D (5.20)

or

E > B (5.21)

holds. Suppose that (5.20) holds. From (5.1) it is obvious that for n= 1,2, . . . ,

C

yn
= C

max
{
B/zn−1,D/zn−2

} ≥ λmin
{
zn−1,zn−2

}
, λ=min

{
C

B
,
C

D

}
. (5.22)

Hence, from (5.1), (5.22) it follows that relation (4.29) holds for k = 1. Then arguing as
in Lemma 4.4 we can prove relations (4.26).

Now, consider that relation (5.21) holds. From (5.1) it is obvious that for n= 2,3, . . . ,

E

yn−1
= E

max
{
B/zn−2,D/zn−3

} ≥ µmin
{
zn−2,zn−3

}
, µ=min

{
E

B
,
E

D

}
, (5.23)

then from (5.1), (5.23) it follows that

zn+1 ≥ µmin
{
zn−2,zn−3

}
, n= 2,3, . . . . (5.24)

In view of (5.24) and using the same argument to prove (4.32) we get for r = 1,2, . . . ,

zn ≥ µr min
{
z2,z1,z0,z−1

}
, n= 4r− 1,4r,4r + 1,4r + 2. (5.25)

Thus, from (5.25) it is obvious that relations (4.26) are satisfied.
Now, suppose that relations (ii) (resp., (iii)) of Lemma 5.3 hold. Then relation (4.29)

for k = 1 (resp., (5.25)) holds which implies that (4.26) is true. This completes the proof
of the lemma. �

Proposition 5.4. Consider the fuzzy difference equation (1.2) where Ai, i= 0,1 are positive
fuzzy numbers such that (3.6) holds and the initial values xi, i = −1,0 are positive fuzzy
numbers. If there exists an a∈ (0,1] which satisfies one of the the following conditions:

(i) A0,l,a < A0,r,a, A1,l,a < A1,r,a,
(ii) A0,l,a < A0,r,a, A1,l,a < A0,r,a,

(iii) A0,l,a < A1,r,a, A1,l,a < A1,r,a,
then the solution xn of (1.2) neither is bounded nor persists.

Proof. Let xn be a positive solution of (1.2) with initial values x−1, x0 such that relations
(3.2) for k = 1 and (3.4) hold. Since there exists an a∈ (0,1] such that one of the relations
(i), (ii), (iii) of Proposition 5.4 holds and (Ln,a,Rn,a), a ∈ (0,1] satisfies (3.7) then from
Lemma 5.3 and arguing as in Proposition 4.5 we can easily prove that the solution xn of
(1.2) neither is bounded nor persists. This completes the proof of the proposition. �
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Appendix

Proof of Lemma 5.1. Let (yn,zn) be a positive solution of (5.1).
(i) Firstly, we prove that if there exists an m ∈ {1,2, . . .} such that (5.4) holds, then

(yn,zn) is eventually periodic of period two. Relations (5.1) and (5.2) imply that

znyn−1 ≥ B, ynzn−1 ≥ B, n= 1,2, . . . . (A.1)

From (5.2), (5.4), and (A.1) we get

D

zm−1
≤ D

B
ym ≤ B

zm
,

E

ym−1
≤ E

B
zm ≤ B

ym
. (A.2)

Using (5.1), (5.2), and (A.2) it follows that

ym+1 =max
{
B

zm
,

D

zm−1

}
= B

zm
, zm+1 = B

ym
. (A.3)

From (5.1), (5.2), (5.4), and (A.3) we can easily prove that

ym+2 =max
{
ym,

D

zm

}
= ym, zm+2 = zm,

ym+3 =max
{
B

zm
,
D

B
ym

}
= B

zm
= ym+1, zm+3 = zm+1.

(A.4)

Therefore, using (5.1), (A.4) and working inductively we can easily prove that

yn+2 = yn, zn+2 = zn, n=m+ 2,m+ 3, . . . (A.5)

and so (yn,zn) is eventually periodic of period two.
Now, we prove that there exists an m ∈ {1,2, . . .} such that (5.4) holds. If there exists

an m∈ {1,2} such that (5.4) is satisfied, then the proof is completed. Now, suppose that
for any m∈ {1,2} relation (5.4) is not true. We claim that there exists a w ∈ {1,2,3} such
that (5.5) holds. If for w = 1,2 relation (5.5) does not hold, then from (5.2) and since
(5.4) is not true for m= 1,2 we have

uw >
B2

E
> E, w = 1,2. (A.6)

Hence, from (5.1), (5.2), (A.1), and (A.6) we get

y3z3 =max
{

B2

y2z2
,
BE

y1z2
,
DB

y2z1
,
DE

y1z1

}
< E (A.7)

and so our claim is true.
Then since from (A.1) and (5.5), relations (A.2) for m= w hold, from (5.1) and (5.2)

we have that relations (A.3) for m = w are true. Using (5.1), (5.2), (5.5), and (A.3) for
m=w we can easily prove that

uw+2 =max
{
uw,

BE

ywzw+1
,

DB

yw+1zw
,
DE

uw

}
=max

{
E,

DE

uw

}
. (A.8)
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Since (5.5) holds we have that either (5.6) or (5.7) is satisfied.
Firstly, suppose that (5.6) holds then from (A.8) we get uw+2 = E and so relation (5.4)

is satisfied for m=w+ 2, which means that (yn,zn) is eventually periodic of period two.
Now, suppose that (5.7) holds. From (5.2) and (5.7) there exists an r ∈ {0,1, . . .} such

that (5.8) holds. Now, we prove that, for all s= 0,1, . . . ,r + 1,

yw+3s = ywBs

Es
, zw+3s = zwBs

Ds
, yw+3s+1 = Ds

zwBs−1
, zw+3s+1 = Es

ywBs−1
. (A.9)

Relations (A.3) for m=w imply that (A.9) is true for s= 0. Suppose that (A.9) is true for
an s= j ∈ {0,1, . . . ,r}. Then from (5.1), (5.2), (5.8), (A.9) we have

yw+3 j+2 =max
{
Bj yw
Ej ,

Dj+1

zwB j

}
= Dj+1

zwB j ,

zw+3 j+2 =max
{
Bjzw
Dj ,

Ej+1

ywB j

}
= Ej+1

ywB j .

(A.10)

Moreover, using (5.1), (5.2), (5.8), (A.9), and (A.10) it follows that

yw+3 j+3 = Bj+1yw
Ej+1 , zw+3 j+3 = Bj+1zw

Dj+1 , yw+3 j+4 = Dj+1

Bjzw
, zw+3 j+4 = Ej+1

Bj yw
.

(A.11)

From relations (5.8) and (A.9) for j = r + 1 we take that (A.9) is true for s= 0,1, . . . ,r + 1.
Finally, from relations (A.11) it follows that

D ≤ uw+3r+3 ≤ B2

E
(A.12)

which means that either (5.4) or (5.6) holds for m = w + 3r + 3. Therefore, (yn,zn) is
eventually periodic of period two. This completes the proof of statement (i).

(ii) Firstly, we prove that if there exists an m ∈ {1,2, . . .} such that (5.9) holds, then
(yn,zn) is eventually periodic of period four. Relations (5.1), (5.3) imply that

znyn−1 ≥ C, ynzn−1 ≥ B, znyn−2 ≥D, n= 1,2, . . . . (A.13)

Then from (5.1), (5.3), (5.9), and (A.13) we can easily prove that

ym+1 =max
{
B

zm
,

D

zm−1

}
≤ D

B
ym, zm+1 ≤ D

C
zm. (A.14)

In addition, from (5.1), (5.3), (5.9), and (A.13), we get

B

zm+1
≤ B

C
ym ≤ BD

C

1
zm
≤ D

zm
(A.15)

and so from (5.1) we have

ym+2 =max
{

B

zm+1
,
D

zm

}
= D

zm
. (A.16)
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In what follows, we consider the following four cases:
(A1) ymzm ≤ BD/C,
(A2) ymzm−1 ≤D2/C, zm/zm−1 ≤D/C,
(A3) ymzm−1 ≤D2/C, zm/zm−1 > D/C,
(A4) ymzm > BD/C, ymzm−1 > D2/C.
Suppose that (A1) or (A2) is satisfied, then from (5.1) it is obvious that

C

D
ym ≤max

{
B

zm
,

D

zm−1

}
= ym+1 (A.17)

which implies that

zm+2 =max
{

C

ym+1
,
D

ym

}
= D

ym
. (A.18)

Also, since relations (5.3), (5.9), and (A.14) imply that

B

D
ym ≤ B

zm
≤ BD

C

1
zm+1

≤ D

zm+1
, (A.19)

then from (5.1), (A.18), and (A.19) we have

ym+3 =max
{
B

D
ym,

D

zm+1

}
= D

zm+1
. (A.20)

In addition, if zm/zm−1 ≤D/C, then from (5.1), (5.3) we can easily prove that

zmym+1 =max
{
B,D

zm
zm−1

}
≤ D2

C
. (A.21)

Moreover, if (A1) is true then from (A.13), we get that zm/zm−1 = zmym/ymzm−1 ≤ D/C
and so if (A1) or (A2) is satisfied, then from (5.1), (5.3), (A.16), and (A.21) we take

zm+3 =max
{
C

D
zm,

D

ym+1

}
= D

ym+1
. (A.22)

According to relations (5.1), (5.3), (A.13), (A.14), (A.16), (A.18), (A.20), and (A.22) it is
easy to prove that

ym+4 = ym, zm+4 = zm, ym+5 = ym+1, zm+5 = zm+1. (A.23)

Therefore, using (5.1), (5.3), (A.23) and working inductively we can easily prove that for
n=m+ 2,m+ 3, . . . the following relations hold:

yn+4 = yn, zn+4 = zn, (A.24)

which means that (yn,zn) is eventually periodic of period four.
Now, suppose that condition (A3) holds then obviously, relations (A.18) and (A.20)

are satisfied. From (5.1), (5.3) and arguing as in (A.21) we have that zmym+1 > D2/C and
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so from (5.1), (5.3), and (A.16) it follows that

zm+3 = C

ym+2
= C

D
zm. (A.25)

Since from (A.13) and condition (A3) we get (C/D)zmym > zm−1ym ≥ B then from (5.1),
(5.3), (5.9), (A.13), (A.14), (A.16), (A.18), (A.20), and (A.25) we can prove that

ym+4 = ym, zm+4 = zm, ym+5 = D2

Czm
, zm+5 = zm+1,

ym+6 = ym+2, zm+6 = D

ym
= zm+2, ym+7 = ym+3, zm+7 = C

D
zm = zm+3.

(A.26)

Using (5.1), (5.3), (A.26) and working inductively we can easily prove that (A.24) is true
for n=m+ 4,m+ 5, . . . and so (yn,zn) is eventually periodic of period four.

Finally, consider that condition (A4) is satisfied. From (5.1), (5.3), (5.9), (A.14) and
condition (A4) we get

ym+1 <
C

D
ym, ym+1zm <

C

D
ymzm ≤ C ≤ D2

C
, zm+1ym+1 < ymzm ≤D. (A.27)

Then, in view of (5.1), (5.3), (A.13), (A.14), (A.16), and (A.27) we have

zm+2 = C

ym+1
, ym+3 = D

zm+1
, zm+3 = D

ym+1
, ym+4 = Dym+1

C
,

zm+4 = zm, ym+5 = ym+1, zm+5 =max
{

C2

Dym+1
,zm+1

}
.

(A.28)

If zm+1ym+1 > C2/D, then from (5.1), (5.3), and (A.28) we get

zm+5 = zm+1, ym+6 = ym+2, zm+6 = C

ym+1
= zm+2. (A.29)

Then from relations (5.1), (5.3), (A.28), (A.29) and working inductively we take relations
(A.24) for n=m+ 3,m+ 4, . . . and so yn, zn is eventually periodic of period four.

Finally, if zm+1ym+1 ≤ C2/D from the last relation of (A.28) we get

zm+5 = C2

D

1
ym+1

. (A.30)

Then from (A.27), (A.28), and (A.30) we get

ym+5zm+5 = C2

D
, ym+5zm+4 ≤ D2

C
. (A.31)

Therefore, from (A.31) it is obvious that relations (5.9) and (A2) or (A3) for m=m+ 5
are satisfied and so (yn,zn) is eventually periodic of period four.

Now, we prove that there exists an m∈ {1,2, . . .} such that (5.9) holds. If there exists an
m∈ {1,2,3,4} such that (5.9) is satisfied, then the proof is completed. Now, suppose that
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for any m∈ {1,2,3,4} relation (5.9) is not true. We claim that there exists a p ∈ {1,2,3,4}
such that relation (5.10) holds. If for p = 1,2 relation (5.10) does not hold and since (5.9)
is not true for m= 1,2, we have

u1,u2 > D. (A.32)

Firstly, suppose that

z1y2 > D. (A.33)

Then since from (5.1) and (5.3) it follows that

un+1 =max
{
BC

un
,

BD

znyn−1
,

CD

ynzn−1
,
D2

un−1

}
, un = ynzn, (A.34)

using relations (5.3), (A.13), (A.32), (A.33), (A.34) we have

u3 < max
{
BC

D
,
BD

C
,C,D

}
=D (A.35)

and since (5.9) does not hold for m= 3, we get that (5.10) is true for p = 3.
Now, suppose that

z1y2 ≤D, u3 ≥D. (A.36)

Relations (5.1), (5.3), (A.32), and (A.36) imply that

y3z2 =max
{
B,

Dz2y2

z1y2

}
> D. (A.37)

Then from (5.3), (A.13), (A.32), (A.34), (A.36), and (A.37) we can prove that

u4 < max
{
BC

D
,
BD

C
,C,D

}
=D (A.38)

and so (5.10) is true for p = 4. Thus, our claim is true.
In view of (5.10) and (A.13) it follows that

D

yp−1
≤ D

C
zp <

C

yp
(A.39)

and so from (5.1) and (5.3) we get that

zp+1 = C

yp
. (A.40)

Since (5.10) holds we have that either (5.11) or (5.12) is satisfied.
Firstly, suppose that (5.11) holds then using (5.1), (A.13) and arguing as in (A.14)

we get

yp+1 ≤ D

B
yp. (A.41)
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From (5.1), (5.3), (5.11), and (A.40) we get

yp+2 = D

zp
, zp+2 =max

{
C

yp+1
,
D

yp

}
. (A.42)

Firstly, suppose

yp+1 <
C

D
yp, (A.43)

then from (A.42) we have

zp+2 = C

yp+1
. (A.44)

Using (5.3), (5.11), (A.43) it follows that

C

D
zp <

C3

D2

1
yp

<
C4

D3

1
yp+1

≤ D

yp+1
,

BD

C2
yp <

B

zp
≤ yp+1 (A.45)

and so from relations (5.1), (5.3), (5.11), (A.40), (A.41), (A.42), (A.43), and (A.44) we get

yp+3 =
Dyp
C

, zp+3 = D

yp+1
, yp+4 =

Dyp+1

C
, zp+4 = C2

Dyp
, (A.46)

yp+5 = yp+1, zp+5 = C2

Dyp+1
. (A.47)

From (A.47) clearly,

yp+5zp+5 = C2

D
(A.48)

and so relation (5.9) holds for m= p+ 5 which means that (yn,zn) is eventually periodic
of period four.

Now, suppose that

yp+1 ≥ C

D
yp. (A.49)

Then (5.1), (5.3), and (A.49) imply that

zp+2 = D

yp
. (A.50)

Since from (A.13) and (A.41) it results that B/zp+3 ≤ (B/D)yp+1 ≤ yp then using (5.1),
(5.3), (5.11), (A.40), (A.42), and (A.50) we get

yp+3 =
Dyp
C

, zp+3 ≥ D

yp+1
, yp+4 = yp, zp+4 = C2

Dyp
. (A.51)
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From (A.51) we get

yp+4zp+4 = C2

D
(A.52)

and so relation (5.9) holds for m= p+ 4, which means that (yn,zn) is eventually periodic
of period four.

Finally, suppose that relation (5.12) holds. From (5.3) and (5.12) there exists a q ∈
{0,1, . . .} such that relation (5.13) holds. Using the same argument to prove (A.9), we can
prove that, for all s= 0,1, . . . ,q+ 1,

yp+3s =
ypDs

Cs
, zp+3s =

zpDs

Bs
, yp+3s+1 = Bs+1

zpDs
, zp+3s+1 = Cs+1

ypDs
. (A.53)

From (5.3), (5.13), and (A.53) for s= q+ 1 it easily results that

B2

D
≤ up+3q+3 ≤ BD

C
≤D (A.54)

and so we have that either (5.9) or (5.11) is satisfied for m= p+ 3q+ 3, which means that
(yn,zn) is eventually periodic of period four. Thus, the proof of the lemma is completed.
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