ON THE APPEARANCE OF PRIMES IN LINEAR RECURSIVE SEQUENCES

JOHN H. JAROMA

Received 16 August 2004 and in revised form 5 December 2004

We present an application of difference equations to number theory by considering the set of linear second-order recursive relations, $U_{n+2}(\sqrt{R},Q) = \sqrt{R}U_{n+1} - QU_n$, $U_0 = 0$, $U_1 = 1$, and $V_{n+2}(\sqrt{R},Q) = \sqrt{R}V_{n+1} - QV_n$, $V_0 = 2$, $V_1 = \sqrt{R}$, where R and Q are relatively prime integers and $n \in \{0,1,\ldots\}$. These equations describe the set of extended Lucas sequences, or rather, the Lehmer sequences. We add that the *rank of apparition* of an odd prime p in a specific Lehmer sequence is the index of the first term that contains p as a divisor. In this paper, we obtain results that pertain to the rank of apparition of primes of the form $2^n p \pm 1$. Upon doing so, we will also establish rank of apparition results under more explicit hypotheses for some notable special cases of the Lehmer sequences. Presently, there does not exist a closed formula that will produce the rank of apparition of an arbitrary prime in any of the aforementioned sequences.

1. Introduction

Linear recursive equations such as the family of second-order extended Lucas sequences described above have attracted considerable theoretic attention for more than a century. Among other things, they have played an important role in primality testing. For example, the prime character of a number is often a consequence of having *maximal rank of apparition*; that is, rank of apparition equal to $N \pm 1$.

The first objective of this paper is to provide a general rank-of-apparition result for primes of the form $N = 2^n p \pm 1$, where p is a prime. Then, using more explicit criteria, we will determine when such primes have maximal rank of apparition in the specific Lehmer sequences $\{F_n\} = \{U_n(1,-1)\} = \{1,1,2,3,...\}$ and $\{L_n\} = \{V_n(1,-1)\} = \{1,3,4,7,...\}$. Respectively, $\{F_n\}$ and $\{L_n\}$ represent the Fibonacci and the Lucas numbers.

2. The Lucas and Lehmer sequences

In [4], Lucas published the first set of papers that provided an in-depth analysis of the numerical factors of the set of sequences generated by the second-order linear recurrence relation $X_{n+2} = PX_{n+1} - QX_n$, where $n \in \{0, 1, ...\}$ [4]. These sequences also attracted the attention of P. de Fermat, J. Pell, and L. Euler years earlier. Nevertheless, it was Lucas

Copyright © 2005 Hindawi Publishing Corporation Advances in Difference Equations 2005:2 (2005) 145–151 DOI: 10.1155/ADE.2005.145 who undertook the first systematic study of them. In 1913, Carmichael introduced some corrections to Lucas's papers, and also generalized some of the results [1, 2].

We now define the Lucas sequences. Let P and Q be any pair of nonzero relatively prime integers. Then, the Lucas sequences $\{U_n(P,Q)\}$ and the companion Lucas sequences $\{V_n(P,Q)\}$ are recursively given by

$$U_{n+2} = PU_{n+1} - QU_n, \quad U_0 = 0, \quad U_1 = 1, \quad n \in \{0, 1, 2, ...\},$$

 $V_{n+2} = PV_{n+1} - QV_n, \quad V_0 = 2, \quad V_1 = P, \quad n \in \{0, 1, 2, ...\}.$ (2.1)

In [3], Lehmer extended the theory of the Lucas functions to a more general class of sequences described by replacing the parameter P in (2.1) with \sqrt{R} under the assumption that R and Q are relatively prime integers. In particular, the *Lehmer sequences* $\{U_n(\sqrt{R},Q)\}$ and the *companion Lehmer sequences* $\{V_n(\sqrt{R},Q)\}$ are defined as

$$U_{n+2}(\sqrt{R}, Q) = \sqrt{R}U_{n+1} - QU_n, \quad U_0 = 0, \quad U_1 = 1, \quad n \in \{0, 1, ...\},$$
 (2.2)

$$V_{n+2}(\sqrt{R}, Q) = \sqrt{R}V_{n+1} - QV_n, \quad V_0 = 2, \quad V_1 = \sqrt{R}, \quad n \in \{0, 1, ...\}.$$
 (2.3)

We remark that Lehmer's modification of the Lucas sequences shown in (2.2) and (2.3) was motivated by the fact that the discriminant $P^2 - 4Q$ of the characteristic equation of (2.1) cannot be of the form 4k + 2 or 4k + 3.

3. Properties of the Lehmer sequences

Throughout the rest of this paper, p will denote an odd prime. In addition, we also adopt the notation $\omega(p)$ and $\lambda(p)$ to describe, respectively, the rank of apparition of p in $\{U_n\}$ and in $\{V_n\}$. Furthermore, if $\omega(p) = n$, then p is called a *primitive prime factor* of U_n . Similarly, if $\lambda(p) = n$, then p is said to be a primitive prime factor of V_n . Finally, (a/p) shall denote the Legendre symbol of p and q. We now introduce some divisibility characteristics of the Lehmer sequences [3].

Lemma 3.1. Let $p \nmid RQ$. Then, $U_{p-\sigma\epsilon}(\sqrt{R},Q) \equiv 0 \pmod{p}$.

LEMMA 3.2. $p \mid U_n(\sqrt{R}, Q)$ if and only if $n = k\omega$.

LEMMA 3.3. Suppose that $\omega(p)$ is odd. Then $V_n(\sqrt{R},Q)$ is not divisible by p for any value of n. On the other hand, if $\omega(p)$ is even, say 2k, then $V_{(2n+1)k}(\sqrt{R},Q)$ is divisible by p for every n but no other term of the sequence may contain p as a factor.

Lemma 3.4. Let $p \nmid RQ$. Then, $U_{(p-\sigma\varepsilon)/2}(\sqrt{R},Q) \equiv 0 \pmod{p}$ if and only if $\sigma = \tau$.

LEMMA 3.5. Let $p \nmid RQ$. If $p \mid Q$. Then $p \nmid U_n$, for all n. If $p^2 \mid R$, then $\omega(p) = 2$. If $p \mid \Delta$, then $\omega(p) = p$.

4. Rank of apparition of a prime of the form $2^n p \pm 1$ in $\{U_n\}$ and $\{V_n\}$

We now introduce the Legendre symbols $\sigma = (R/p)$, $\tau = (Q/p)$, and $\epsilon = (\Delta/p)$, where $\Delta = R - 4Q$ is the discriminant of the characteristic equation of (2.2) and (2.3). The following

two theorems pertain to the rank of apparition of a prime of the form $2^n p \pm 1$ in the Lehmer sequences. Because of Lemma 3.5, we impose the restriction $q \nmid RQ\Delta$.

THEOREM 4.1. Let $q = 2^n p - 1$ be prime and $q \nmid RQ\Delta$. Also, assume that either $\sigma = 1$, $\epsilon =$ -1, $\tau = -1$ or $\sigma = -1$, $\epsilon = 1$, $\tau = 1$.

- (1) If n = 1, then $\omega(q) = 2p$ and $\lambda(q) = p$.
- (2) If n > 1 and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$.
- (3) If n > 1 and $q \nmid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n p$ and $\lambda(q) = 2^{n-1} p$.

Proof. In each case, $\sigma \epsilon = -1$. So, by Lemma 3.1, $q \mid U_{2^n p}$. Furthermore, since $\sigma \neq \tau$, it follows by Lemma 3.4 that $q \nmid U_{2^{n-1}p}$. Hence, by Lemma 3.2, the only possible values for $\omega(q)$ are 2^n and $2^n p$.

- (1) Let n = 1. Thus, either $\omega(q) = 2$ or $\omega(q) = 2p$. However, by (2.2), we see that $U_2 = 2p$. $\sqrt{R}U_1 - QU_0 = \sqrt{R} \cdot 1 - Q \cdot 0 = \sqrt{R}$. Furthermore, as $q^2 \nmid R$ by hypothesis, we conclude that $\omega(q) = 2p$. Finally, by Lemma 3.3, $\lambda(q) = p$.
- (2) Let n > 1 and $q \mid V_{2^{n-1}}$. Since $q \mid V_{2^{n-1}}$, then because of Lemma 3.3, we infer that qis a primitive prime factor of $V_{2^{n-1}}$. Hence, $\lambda(q) = 2^{n-1}$. Also, by the same lemma, this can happen only if $\omega(q) = 2^n$.
- (3) Let n > 1 and $q \nmid V_{2^{n-1}}$. Then, $\lambda(q) \neq 2^{n-1}$. By Lemma 3.3, this means that $\omega(q) \neq 1$ 2^n . Thus, the only choice for $\omega(q)$ is $2^n p$. Therefore, $\lambda(q) = 2^{n-1} p$.

Theorem 4.2. Let $q = 2^n p + 1$ be prime and $q \nmid RQ\Delta$. Also, assume that either $\sigma = 1$, $\epsilon = 1$, $\tau = -1 \text{ or } \sigma = -1, \, \epsilon = -1, \, \tau = 1.$

- (1) If n = 1, then $\omega(q) = 2p$ and $\lambda(q) = p$.
- (2) If n > 1 and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$.
- (3) If n > 1 and $q \nmid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n p$ and $\lambda(q) = 2^{n-1} p$.

Proof. In all three cases, we see that $\sigma \epsilon = 1$. Hence, $q \mid U_{2^n p}$. In addition, $\sigma \neq \tau$. So, it follows by Lemma 3.4 that $q \nmid U_{2^{n-1}p}$. Thus, the only possible values for $\omega(q)$ are 2^n and $2^n p$.

- (1) Let n = 1. Then, either $\omega(q) = 2$ or $\omega(q) = 2p$. However, from (2.2), $U_2 = \sqrt{RU_1} \frac{1}{2}$ $QU_0 = \sqrt{R} \cdot 1 - Q \cdot 0 = \sqrt{R}$. Since $q \nmid \sqrt{R}$ by hypothesis, we conclude that $\omega(q) = 2p$ and $\lambda(q) = p$.
- (2) Let n > 1 and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$. Using an argument similar to the one given in the second part of Theorem 4.1, we have $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$.
- (3) Let n > 1 and $q \nmid V_{2^{n-1}}(\sqrt{R}, Q)$. Similarly, by an argument analogous to the one provided in the third part of Theorem 4.1, it follows that $\omega(q) = 2^n p$ and $\lambda(q) = 2^{n-1} p$.

5. Explicit results for primes of the form $2^n p \pm 1$ in $\{F_n\}$ and $\{L_n\}$

In this section, we obtain explicit results for the rank of apparition of a prime of the form $2^n p \pm 1$ in the sequences of Fibonacci and Lucas numbers. In both sequences, R = -Q = 1and $\Delta = R - 4Q = 5$.

First, in the following category of primes, we identify values for p and n under which $\epsilon = (\Delta/(2^n p - 1)) = (5/(2^n p - 1)) = -1$. Shortly thereafter, we consider a second category that will allow us to accomplish a similar objective for primes of the form $2^n p + 1$.

Prime Category I.

$$p \equiv 1 \pmod{5}$$
, and either $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$.
 $p \equiv 2 \pmod{5}$, and either $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$.
 $p \equiv 3 \pmod{5}$, and either $n \equiv 0 \pmod{4}$ or $n \equiv 3 \pmod{4}$.
 $p \equiv 4 \pmod{5}$, and either $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$.

LEMMA 5.1. Let $q = 2^n p - 1$ be prime. Then, for any p, n belonging to Prime Category I, it follows that $\epsilon = (5/q) = -1$.

Proof. Since 5 and q are distinct odd primes, both Legendre symbols (5/q) and (q/5) are defined.

By Gauss's reciprocity law,

$$\left(\frac{5}{q}\right)\left(\frac{q}{5}\right) = (-1)^{((5-1)/2)\cdot((q-1)/2)} = (-1)^{2(2^{n-1}p-1)} = 1.$$
 (5.2)

Hence,

$$\left(\frac{5}{q}\right) = \left(\frac{q}{5}\right). \tag{5.3}$$

We now prove the first two cases of Lemma 5.1. The remaining two cases follow similarly, and are omitted.

(1) Suppose that $p \equiv 1 \pmod{5}$, and either $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$. If n = 4r + 2, then

$$\left(\frac{5}{q}\right) = \left(\frac{2^{4r+2}(5k+1) - 1}{5}\right) = \left(\frac{3}{5}\right) = -1.$$
 (5.4)

If n = 4r + 3, then

$$\left(\frac{2^{4r+3}(5k+1)-1}{5}\right) = \left(\frac{2}{5}\right) = -1. \tag{5.5}$$

(2) Suppose that $p \equiv 2 \pmod{5}$, and either $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$. If n = 4r + 1, then

$$\left(\frac{2^{4r+1}(5k+2)-1}{5}\right) = \left(\frac{3}{5}\right) = -1. \tag{5.6}$$

If n = 4r + 2, then

$$\left(\frac{2^{4r+2}(5k+2)-1}{5}\right) = \left(\frac{2}{5}\right) = -1.$$

We now identify values of p and n for which $\epsilon = (\Delta/(2^n p + 1)) = (5/(2^n p + 1)) = 1$.

Prime Category II.

$$p \equiv 1 \pmod{5} \quad \text{and} \quad n \equiv 3 \pmod{4}.$$

$$p \equiv 2 \pmod{5} \quad \text{and} \quad n \equiv 2 \pmod{4}.$$

$$p \equiv 3 \pmod{5} \quad \text{and} \quad n \equiv 0 \pmod{4}.$$

$$p \equiv 4 \pmod{5}, \quad \text{and either} \quad n \equiv 1 \pmod{4} \quad \text{or} \quad n \equiv 0 \pmod{4}.$$

$$(5.8)$$

We demonstrate the first two cases and omit the last two.

LEMMA 5.2. Let $q = 2^n p + 1$ be prime. Then, for any p, n belonging to Prime Category II, it follows that $\epsilon = (5/q) = 1$.

Proof. Using Gauss's reciprocity law, it is easily shown that (5/q) = (q/5). Hence, we have the following.

(1) If $p \equiv 1 \pmod{5}$ and $n \equiv 3 \pmod{4}$, then

$$\left(\frac{5}{q}\right) = \left(\frac{2^{4r+3}(5k+1)+1}{5}\right) = \left(\frac{4}{5}\right) = 1. \tag{5.9}$$

(2) If $p \equiv 2 \pmod{5}$ and $n \equiv 2 \pmod{4}$, then

$$\left(\frac{2^{4r+2}(5k+2)+1}{5}\right) = \left(\frac{4}{5}\right) = 1. \tag{5.10}$$

Before we establish more explicit criteria for the rank of apparition of p in either $\{F_n\}$ or $\{L_n\}$, the next two propositions are needed.

LEMMA 5.3. Let $q = 2^n p - 1$ be prime. If n = 1, then $\tau = (-1/q) = 1$. Otherwise, $\tau = -1$.

Proof. Observe that

$$\left(\frac{Q}{q}\right) = \left(\frac{-1}{q}\right) \equiv (-1)^{(q-1)/2} \equiv (-1)^{2^{n-1}p-1} \pmod{q}.$$
 (5.11)

First, let n = 1. Then, since p - 1 is even, it follows that $\tau = (-1/q) \equiv 1$. On the other hand, if n > 1, then $2^{n-1}p - 1$ is odd. Therefore, $\tau = (-1/q) = -1$.

Lemma 5.4. Let $q = 2^n p + 1$ be prime. If n = 1, then $\tau = (Q/q) = (-1/q) = -1$. Otherwise, $\tau = 1$.

Proof. First, we see that

$$\left(\frac{Q}{q}\right) = \left(\frac{-1}{q}\right) \equiv (-1)^{(q-1)/2} \equiv (-1)^{2^{n-1}p} \pmod{q}. \tag{5.12}$$

If n = 1, then $2^{n-1}p = p$. Thus, $\tau = (-1/q) = -1$. Otherwise, $2^{n-1}p$ is even, and $\tau = (-1/q) = 1$.

We now state and prove our two main results.

THEOREM 5.5. Let $q = 2^n p - 1$ be prime. Then, for any p belonging to Prime Category I such that $q \nmid 5$, the following is true regarding the rank of apparition of q in $\{F_n\}$ and $\{L_n\}$:

- (1) if n = 1, then $\omega(q) = p$ and $\lambda(q)$ does not exist;
- (2) if n > 1 and $q \mid L_{2^{n-1}}$, then $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$;
- (3) if n > 1 and $q \nmid L_{2^{n-1}}$, then $\omega(q) = 2^n p$ and $\lambda(q) = 2^{n-1} p$.

Proof. As *p* belongs to Prime Category I, we have by Lemma 5.1 that $\epsilon = (5/q) = -1$. Furthermore, $\sigma = (1/q) = 1$.

- (1) If n=1, then q=2p-1. Since $\sigma\epsilon=-1$, it follows by Lemma 3.1 that $q\mid F_{2p}$. Also, by Lemma 5.3, we have $\tau=1$. Hence, $\sigma=\tau$. Thus, by Lemma 3.4, $q\mid F_p$. Furthermore, as every factor of F_p is primitive, it follows that $\omega(q)=p$. Finally, because $\omega(q)$ is odd, then by Lemma 3.3, q divides no term of $\{L_n\}$; that is, the rank of apparition of q in $\{L_n\}$ does not exist.
- (2) Let n > 1 and $q \mid L_{2^{n-1}}$. Since $\sigma \epsilon = -1$, then by Lemma 3.1, it follows that $q \mid F_{2^n p}$. In addition, by Lemma 5.3, we see that $\tau = -1$. Hence, $\sigma \neq \tau$. This implies, using Lemma 3.4, that $q \nmid F_{2^{n-1}p}$. Thus, from Lemma 3.2, the only possible values for $\omega(q)$ are 2^n and $2^n p$. However, by hypothesis, $q \mid L_{2^{n-1}}$. Therefore, by Lemma 3.3, this can occur only if $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$.
- (3) Let n > 1 and $q \nmid L_{2^{n-1}}$. Then, by Lemma 3.1, $q \mid F_{2^np}$. However, by Lemma 3.4, $q \nmid F_{2^{n-1}p}$. This implies that either $\omega(q) = 2^n$ or $\omega(q) = 2^np$. Now, by hypothesis, $q \nmid L_{2^{n-1}}$. Thus, since $q \nmid L_{2^{n-1}}$, we conclude by Lemma 3.3 that $\omega(q) \neq 2^n$. Therefore, $\omega(q) = 2^np$ and $\lambda(q) = 2^{n-1}p$.

THEOREM 5.6. Let p be an odd prime such that $q = 2^n p + 1$ is prime. Then, for any p belonging to Prime Category II such that $q \nmid 5$, the following is true regarding the rank of apparition of q in $\{F_n\}$ and $\{L_n\}$:

- (1) if n = 1, then $\omega(q) = 2p$ and $\lambda(q) = p$;
- (2) if n > 1 and $q \mid L_{2^{n-2}}$, then $\omega(q) = 2^{n-1}$ and $\lambda(q) = 2^{n-2}$.

Proof. Since *p* belongs to Prime Category II, we see by Lemma 5.2 that $\epsilon = (5/q) = 1$. Also, $\sigma = (R/q) = (1/q) = 1$.

- (1) If n=1, then q=2p+1. Now, because $\sigma\epsilon=1$, Lemma 3.1 tells us that $q\mid F_{2p}$. In addition, by Lemma 5.4, we have $\tau=-1$. So, $\sigma\neq\tau$. Thus, by Lemma 3.4, $q\nmid F_p$. Therefore, in light of Lemma 3.2, either $\omega(q)=2$ or $\omega(q)=2p$. However, by (2.2), $F_2=\sqrt{R}=1$. Hence, $q\nmid F_2$. Therefore, $\omega(q)=2p$ and $\lambda(q)=p$.
- (2) Let n > 1 and $q \mid L_{2^{n-2}}$. Since $\sigma \epsilon = 1$, by Lemma 3.1, it follows that $q \mid F_{2^n p}$. Also, by Lemma 5.4, $\tau = 1$. Hence, $\sigma = \tau$. This implies by Lemma 3.4 that $q \mid F_{2^{n-1}p}$. Thus, from Lemma 3.2, it follows that $\omega(q)$ is a divisor of $2^{n-1}p$. Moreover, by hypothesis, $q \mid L_{2^{n-2}}$. So, applying Lemma 3.3, we conclude that q can divide no term of $\{L_n\}$ with index less than 2^{n-2} . Therefore, $\lambda(q) = 2^{n-2}$, which can happen only if $\omega(q) = 2^{n-1}$.

Remark 5.7. The case n > 1 and $q \nmid L_{2^{n-2}}$ was not considered. Had it been, we would have been led to the conclusion that $\omega(q) \neq 2^{n-1}$. But by Lemma 3.2, we would not be able to identify $\omega(q)$, since all of the factors of the index $2^{n-1}p$ not equal to 2 would still remain as candidates for the rank of apparition of q in $\{F_n\}$.

Acknowledgment

The author would like to thank both referees, whose expertise and constructive comments improved the quality and the appearance of this paper.

References

- [1] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. of Math. (2) 15 (1913/1914), no. 1-4, 30-48.
- [2] _____, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. of Math. (2) 15 (1913/1914), no. 1–4, 49–70.
- D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. (2) 31 (1930), no. 3, 419-[3] 448.
- [4] É. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321 (French).

John H. Jaroma: Department of Math & Computer Science, Austin College, Sherman, TX 75090, USA

E-mail address: jjaroma@austincollege.edu