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We investigate the exponential stability of the zero solution to a system of dynamic equa-
tions on time scales. We do this by defining appropriate Lyapunov-type functions and
then formulate certain inequalities on these functions. Several examples are given.

1. Introduction

This paper considers the exponential stability of the zero solution of the first-order vector
dynamic equation

x∆ = f (t,x), t ≥ 0. (1.1)

Throughout the paper, we let x(t, t0,x0) denote a solution of the initial value problem
(IVP) (1.1),

x
(
t0
)= x0, t0 ≥ 0, x0 ∈R. (1.2)

(For the existence, uniqueness, and extendability of solutions of IVPs for (1.1)-(1.2), see
[2, Chapter 8].) Also we assume that f : [0,∞)×Rn→Rn is a continuous function and t
is from a so-called “time scale” T (which is a nonempty closed subset of R). Throughout
the paper, we assume that 0∈ T (for convenience) and that f (t,0)= 0, for all t in the time
scale interval [0,∞) := {t ∈ T : 0≤ t <∞}, and call the zero function the trivial solution
of (1.1).

If T=R, then x∆ = x′ and (1.1)-(1.2) becomes the following IVP for ordinary differ-
ential equations

x′ = f (t,x), t ≥ 0, (1.3)

x
(
t0
)= x0, t0 ≥ 0. (1.4)

Recently, Peterson and Tisdell [7] used Lyapunov-type functions to formulate some suf-
ficient conditions that ensure all solutions to (1.1)-(1.2) are bounded. Earlier, Raffoul [8]
used some similar ideas to obtain boundedness of all solutions of (1.3) and (1.4). Here
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we use Lyapunov-type functions on time scales and then formulate appropriate inequal-
ities on these functions that guarantee that the trivial solution to (1.1) is exponentially or
uniformly exponentially stable on [0,∞). Some of our results are new even for the special
cases T=R and T= Z.

To understand the notation used above and the idea of time scales, some preliminary
definitions are needed.

Definition 1.1. A time scale T is a nonempty closed subset of the real numbers R.

Since we are interested in the asymptotic behavior of solutions near∞, we assume that
T is unbounded above.

Since a time scale may or may not be connected, the concept of the jump operator is
useful.

Definition 1.2. Define the forward jump operator σ(t) at t by

σ(t)= inf{τ > t : τ ∈ T}, ∀t ∈ T, (1.5)

and define the graininess function µ : T→ [0,∞) as µ(t)= σ(t)− t.
Also let xσ(t)= x(σ(t)), that is, xσ is the composite function x ◦ σ . The jump operator

σ then allows the classification of points in a time scale in the following way. If σ(t) > t,
then we say that the point t is right scattered; while if σ(t)= t then, we say the point t is
right dense.

Throughout this work, the assumption is made that T has the topology that it inherits
from the standard topology on the real numbers R.

Definition 1.3. Fix t ∈ T and let x : T→Rn. Define x∆(t) to be the vector (if it exists) with
the property that given ε > 0, there is a neighborhood U of t with

∣∣[xi(σ(t)
)− xi(s)]− x∆i (t)

[
σ(t)− s]∣∣≤ ε∣∣σ(t)− s∣∣, ∀s∈U and each i= 1, . . . ,n.

(1.6)

It is said that x∆(t) is the (delta) derivative of x(t) and that x is (delta) differentiable at t.

Definition 1.4. If G∆(t)= g(t), t ∈ T, then it is said that G is a (delta) antiderivative of g
and the Cauchy (delta) integral is defined by

∫ t
a
g(s)∆s=G(t)−G(a). (1.7)

For a more general definition of the delta integral, see [2, 3].
The following theorem is due to Hilger [5].

Theorem 1.5. Assume that g : T→Rn and let t ∈ T.
(i) If g is differentiable at t, then g is continuous at t.

(ii) If g is continuous at t and t is right scattered, then g is differentiable at t with

g∆(t)= g
(
σ(t)

)− g(t)
σ(t)− t . (1.8)
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(iii) If g is differentiable and t is right dense, then

g∆(t)= lim
s→t

g(t)− g(s)
t− s . (1.9)

(iv) If g is differentiable at t, then g(σ(t))= g(t) +µ(t)g∆(t).

We assume throughout that t0 ≥ 0 and t0 ∈ T. By the time scale interval [t0,∞), we
mean the set {t ∈ T : t0 ≤ t <∞}. The theory of time scales dates back to Hilger [5]. The
monographs [2, 3, 6] also provide an excellent introduction.

2. Lyapunov functions

In this section, we define what Peterson and Tisdell [7] call a type I Lyapunov function
and summarize a few of the results and examples given in [7] relative to what we do here.

Definition 2.1. It is said that V :Rn→R+ is a “type I” Lyapunov function on Rn provided
that

V(x)=
n∑
i=1

Vi
(
xi
)=V1

(
x1
)

+ ···+Vn
(
xn
)
, (2.1)

where each Vi :R+ →R+ is continuously differentiable and Vi(0)= 0.

Peterson and Tisdell [7] proved that ifV is a type I Lyapunov function and the function
V̇ is defined by

V̇(t,x)=
∫ 1

0
∇V(x+hµ(t)

) · f (t,x)dh, (2.2)

where∇= (∂/∂x1, . . . ,∂/∂xn) is the gradient operator and the “·” denotes the usual scalar
product, then, if x is a solution to (1.1), it follows that

[
V
(
x(t)

)]∆ = V̇(t,x(t)
)
. (2.3)

Peterson and Tisdell [7] also show that

V̇(t,x)=




n∑
i=1

[
Vi
(
xi +µ(t) fi(t,x)

)−Vi
(
xi
)]

µ(t)
when µ(t) 
= 0,

∇V(x) · f (t,x) when µ(t)= 0.

(2.4)

Sometimes the domain of V will be a subset D of Rn.
Note that V = V(x) and even if the vector field associated with the dynamic equation

is autonomous, V̇ still depends on t (and x of course) when the graininess function of
T is nonconstant. Several formulas are given in Peterson and Tisdell [7] for V̇(t,x) for
various type I Lyapunov functions V(x). In this paper, the only one of these formulas
that we will use is that if V(x)= ‖x‖2, then

V̇(t,x)= 2x · f (t,x) +µ(t)
∥∥ f (t,x)

∥∥2
. (2.5)
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It is the second term in (2.5) that usually makes the Lyapunov theory for time scales much
more difficult than the continuous case.

3. Exponential stability

In this section, we present some results on the exponential stability of the trivial solution
of (1.1). First we give a few more preliminaries.

Definition 3.1. Assume that g : T→ R. Define and denote g ∈ Crd(T;R) as right-dense
continuous (rd-continuous) if g is continuous at every right-dense point t ∈ T and
lims→t− g(s) exists and is finite at every left-dense point t ∈ T, where left-dense is defined
in the obvious manner.

If g ∈ Crd, then g has a (delta) antiderivative [2, Theorem 1.74]. Now define the so-
called set of regressive functions, � by

�= {p : T−→R; p ∈ Crd(T;R) and 1 + p(t)µ(t) 
= 0 on T
}
. (3.1)

Under the addition on � defined by

(p⊕ q)(t) := p(t) + q(t) +µ(t)p(t)q(t), t ∈ T, (3.2)

� is an Abelian group (see [2, exercise 2.26]), where the additive inverse of p, denoted by
p, is defined by

(p)(t) := −p(t)
1 +µ(t)p(t)

, t ∈ T. (3.3)

Then define the set of positively regressive functions by

�+ = {p ∈� : 1 + p(t)µ(t) > 0 on T
}
. (3.4)

For p ∈ �, the generalized exponential function ep(·, t0) on a time scale T can be
defined (see [2, Theorem 2.35]) to be the unique solution to the IVP

x∆ = p(t)x, x
(
t0
)= x0. (3.5)

We will frequently use the fact that if p ∈�+, then [2, Theorem 2.48] ep(t, t0) > 0 for
t ∈ T. We will use many of the properties of this (generalized) exponential function,
which are summarized in the following theorem (see [2, Theorem 2.36]).

Theorem 3.2. If p, q ∈�, then for t, s, r ∈ T,
(i) e0(t,s)≡ 1 and ep(t, t)≡ 1;

(ii) ep(σ(t),s)= (1 +µ(t)p(t))ep(t,s);
(iii) 1/ep(t,s)= ep(t,s);
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(iv) ep(t,s)= 1/ep(s, t)= ep(s, t);
(v) ep(t,s)ep(s,r)= ep(t,r);

(vi) ep(t,s)eq(t,s)= ep⊕q(t,s);
(vii) ep(t,s)/eq(t,s)= epq(t,s), where p q := p⊕ (q).

It follows from Bernoulli’s inequality (see [2, Theorem 6.2]) that for any time scale, if
the constant λ∈�+, then

0 < eλ
(
t, t0

)≤ 1
1 + λ

(
t− t0

) , t ≥ t0. (3.6)

It follows that

lim
t→∞eλ

(
t, t0

)= 0. (3.7)

In particular, if T = R, then eλ(t, t0) = e−λ(t−t0) and if T = Z+, then eλ(t, t0) = (1 +
λ)−(t−t0). For the growth of generalized exponential functions on time scales, see Bod-
ine and Lutz [1]. With all this in mind, we make the following definition.

Definition 3.3. Say that the trivial solution of (1.1) is exponentially stable on [0,∞) if there
exist a positive constant d, a constant C ∈ R+, and an M > 0 such that for any solution
x(t, t0,x0) of the IVP (1.1)-(1.2), t0 ≥ 0, x0 ∈Rn,

∥∥x(t, t0,x0
)∥∥≤ C(∥∥x0

∥∥, t0
)(
eM

(
t, t0

))d
, ∀t ∈ [t0,∞), (3.8)

where ‖ · ‖ denotes the Euclidean norm on Rn. The trivial solution of (1.1) is said to be
uniformly exponentially stable on [0,∞) if C is independent of t0.

Note that if T = R, then (eλ(t, t0))d = e−λd(t−t0) and if T = Z+, then (eλ(t, t0))d =
(1 + λ)−dλ(t−t0).

We are now ready to present some results.

Theorem 3.4. Assume that D ⊂ Rn contains the origin and there exists a type I Lyapunov
function V :D→ [0,∞) such that for all (t,x)∈ [0,∞)×D,

W
(‖x‖)≤V(x)≤ φ(‖x‖), (3.9)

V̇(t,x)≤ ψ
(‖x‖)−L(M δ)(t)eδ(t,0)

1 +µ(t)M
, (3.10)

ψ
(
φ−1(V(x)

))
+MV(x)≤ 0, (3.11)

where W , φ, ψ are continuous functions such that φ,W : [0,∞) → [0,∞), ψ : [0,∞) →
(−∞,0], ψ is nonincreasing, φ and W are strictly increasing; L≥ 0, δ >M > 0 are constants.
Then all solutions of (1.1)-(1.2) that stay in D satisfy

∥∥x(t)
∥∥≤W−1((V(x0

)
+L
)
eM

(
t, t0

))
, ∀t ≥ t0. (3.12)
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Proof. Let x be a solution to (1.1)-(1.2) that stays in D for all t ≥ 0. Consider

[
V
(
x(t)

)
eM(t,0)

]∆
= V̇(t,x(t)

)
eσM(t,0) +V

(
x(t)

)
e∆M(t,0), using (2.3) and the product rule

≤ (ψ(∥∥x(t
)∥∥)−L(M δ)(t)eδ(t,0)

)
eM(t,0) +MV

(
x(t)

)
eM(t,0), by (3.10)

= (ψ(∥∥x(t
)∥∥)−L(M δ)(t)eδ(t,0) +MV

(
x(t)

))
eM(t,0)

≤ (ψ(φ−1(V(x(t)
)))

+MV
(
x(t)

)−L(M δ)(t)eδ(t,0)
)
eM(t,0), by (3.9)

≤−L(M δ)(t)eδ(t,0)eM(t,0), by (3.11)

=−L(M δ)(t)eMδ(t,0), by Theorem 3.2.
(3.13)

Integrating both sides from t0 to t with x0 = x(t0), we obtain, for t ∈ [t0,∞),

V
(
x(t)

)
eM(t,0)≤V(x0

)
eM
(
t0,0

)−LeMδ(t,0) +LeMδ
(
t0,0

)
≤V(x0

)
eM
(
t0,0

)
+LeMδ

(
t0,0

)
≤ (V(x0

)
+L
)
eM
(
t0,0

)
.

(3.14)

It follows that for t ∈ [t0,∞),

V
(
x(t)

)≤ (V(x0
)

+L
)
eM
(
t0,0

)
eM(t,0)= (V(x0

)
+L
)
eM

(
t, t0

)
. (3.15)

Thus by (3.9),

∥∥x(t)
∥∥≤W−1((V(x0

)
+L
)
eM

(
t, t0

))
, t ∈ [t0,∞). (3.16)

This concludes the proof. �

We now provide a special case of Theorem 3.4 for certain functions φ and ψ.

Theorem 3.5. Assume that D ⊂ Rn contains the origin and there exists a type I Lyapunov
function V :D→ [0,∞) such that for all (t,x)∈ [0,∞)×D,

λ1(t)‖x‖p ≤V(x)≤ λ2(t)‖x‖q, (3.17)

V̇(t,x)≤ −λ3(t)‖x‖r −L(M δ)(t)eδ(t,0)
1 +Mµ(t)

, (3.18)

V(x)−Vr/q(x)≤ 0, (3.19)
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where λ1(t), λ2(t), and λ3(t) are positive functions, where λ1(t) is nondecreasing; p, q, r
are positive constants; L is a nonnegative constant, and δ >M := inf t≥0 λ3(t)/[λ2(t)]r/q > 0.
Then the trivial solution of (1.1) is exponentially stable on [0,∞).

Proof. As in the proof of Theorem 3.4, let x be a solution to (1.1)-(1.2) that stays in D for
all t ≥ 0. Since M = inf t≥0 λ3(t)/[λ2(t)]r/q > 0, eM(t,0) is well defined and positive. Since
λ3(t)/[λ2(t)]r/q ≥M, we have

[
V
(
x(t)

)
eM(t,0)

]∆
= V̇(t,x(t)

)
eσM(t,0) +V

(
x(t)

)
e∆M(t,0), using (2.3) and the product rule

≤ (− λ3(t)
∥∥x(t)

∥∥r −L(M δ)(t)eδ(t,0)
)
eM(t,0) +MV

(
x(t)

)
eM(t,0), by (3.18)

≤
(
−λ3(t)[
λ2(t)

]r/q Vr/q
(
x(t)

)
+MV

(
x(t)

)−L(M δ)(t)eδ(t,0)

)
eM(t,0), by (3.17)

≤ (M(V(x(t)
)−Vr/q

(
x(t)

))−L(M δ)(t)eδ(t,0)
)
eM(t,0)

≤−L(M δ)(t)eMδ(t,0), by (3.19).
(3.20)

Integrating both sides from t0 to t with x0 = x(t0), and by invoking condition (3.17) and
the fact that λ1(t)≥ λ1(t0), we obtain

∥∥x(t)
∥∥≤ λ−1/p

1 (t)
((
V
(
x0
)

+L
)
eM

(
t, t0

))1/p
(3.21)

≤ λ−1/p
1

(
t0
)((

V
(
x0
)

+L
)
eM

(
t, t0

))1/p
, ∀t ≥ t0. (3.22)

This concludes the proof. �

Remark 3.6. In Theorem 3.5, if λi(t)= λi, i= 1,2,3, are positive constants, then the trivial
solution of (1.1) is uniformly exponentially stable on [0,∞). The proof of this remark
follows from Theorem 3.5 by taking δ > λ3/[λ2]r/q and M = λ3/[λ2]r/q.

The next theorem is an extension of [4, Theorem 2.1].

Theorem 3.7. Assume that D ⊂ Rn contains the origin and there exists a type I Lyapunov
function V :D→ [0,∞) such that for all (t,x)∈ [0,∞)×D,

λ1‖x‖p ≤V(x), (3.23)

V̇(t,x)≤ −λ3V(x)−L(ε δ)(t)eδ(t,0)
1 + εµ(t)

, (3.24)

where λ1, λ3, p, δ > 0, L≥ 0 are constants and 0 < ε < min{λ3,δ}. Then the trivial solution
of (1.1) is uniformly exponentially stable on [0,∞).
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Proof. Let x be a solution to (1.1)-(1.2) that stays in D for all t ∈ [0,∞). Since ε ∈�+,
eε(t,0) is well defined and positive. Now consider

[
V
(
x(t)

)
eε(t,0)

]∆
= V̇(t,x(t)

)
eσε (t,0) + εV

(
x(t)

)
eε(t,0)

≤ (− λ3V
(
x(t)

)−L(ε δ)(t)eδ(t,0)
)
eε(t,0) + εV

(
x(t)

)
eε(t,0), by (3.24)

= eε(t,0)
[
εV
(
x(t)

)− λ3V
(
x(t)

)−L(ε δ)(t)eδ(t,0)]

≤−eε(t,0)L(ε δ)(t)eδ(t,0)

=−L(ε δ)(t)eεδ(t,0).
(3.25)

Integrating both sides from t0 to t, we obtain

V
(
x(t
))
eε(t,0)≤V(x0

)
eε
(
t0,0

)−Leεδ(t,0) +Leεδ
(
t0,0

)
≤V(x0

)
eε
(
t0,0

)
+Leεδ

(
t0,0

)
≤ (V(x0

)
+L
)
eε
(
t0,0

)
.

(3.26)

Dividing both sides of the above inequality by eε(t,0), we obtain

V
(
x(t)

)≤ (V(x0
)

+L
)
eε
(
t0,0

)
eε(t,0)

= (V(x0
)

+L
)
eε
(
t, t0

)
.

(3.27)

The proof is completed by invoking condition (3.23). �

4. Examples

We now present some examples to illustrate the theory developed in Section 3.

Example 4.1. Consider the IVP

x∆ = ax+ bx1/3eδ(t,0), x
(
t0
)= x0, (4.1)

where δ > 0, a, b are constants, x0 ∈ R, and t0 ∈ [0,∞). If there is a constant 0 <M < δ
such that

(
2a+ a2µ(t) + 1

)(
1 +Mµ(t)

)≤−M, (4.2)

(
2
3

(
µ(t)b2)3/2

+

∣∣2b+ 2abµ(t)
∣∣3

3

)(
1 +Mµ(t)

)≤−L(M δ)(t), (4.3)

for some constant L≥ 0 and all t ∈ [0,∞), then the trivial solution of (4.1) is uniformly
exponentially stable.



A. C. Peterson and Y. N. Raffoul 141

Proof. We will show that under the above assumptions, the conditions of Remark 3.6 are
satisfied. Choose D = R and V(x) = x2, then (3.17) holds with p = q = 2, λ1 = λ2 = 1.
Now from (2.5),

V̇(t,x)= 2x · f (t,x) +µ(t)
∥∥ f (t,x)

∥∥2

= 2x
(
ax+ bx1/3eδ(t,0)

)
+µ(t)

(
ax+ bx1/3eδ(t,0)

)2

≤ (2a+ a2µ(t)
)
x2 +

∣∣2b+ 2abµ(t)
∣∣x4/3eδ(t,0) + b2µ(t)x2/3(eδ(t,0)

)2
.

(4.4)

To further simplify the above inequality, we make use of Young’s inequality, which says
that for any two nonnegative real numbers w and z, we have

wz ≤ we

e
+
z f

f
, with

1
e

+
1
f
= 1, e, f > 1. (4.5)

Thus, for e = 3/2 and f = 3, we get

x4/3
∣∣2b+ 2abµ(t)

∣∣eδ(t,0)≤
[(
x4/3

)3/2

3/2
+

∣∣2b+ 2abµ(t)
∣∣3(

eδ(t,0)
)3

3

]

= 2
3
x2 +

∣∣2b+ 2abµ(t)
∣∣3(

eδ(t,0)
)3

3
,

x2/3b2µ(t)
(
eδ(t,0)

)2 ≤
(
x2/3

)3

3
+

(
b2µ(t)

(
eδ(t,0)

)2
)3/2

3/2

= x2

3
+

2
3

(
µ(t)b2)3/2(

eδ(t,0)
)3
.

(4.6)

Thus, putting everything together, we arrive at

V̇(t,x)≤ (2a+µ(t)a2 + 1
)
x2 +

[
2
3

(
µ(t)b2)3/2

+

∣∣2b+ 2abµ(t)
∣∣3

3

](
eδ(t,0)

)3

≤ (2a+µ(t)a2 + 1
)
x2 +

[
2
3

(
µ(t)b2)3/2

+

∣∣2b+ 2abµ(t)
∣∣3

3

]
eδ(t,0).

(4.7)

Dividing and multiplying the right-hand side by (1 +Mµ(t)), we see that (3.18) holds
under the above assumptions with r = 2 (note that λ3 =M). Also, since r = q = 2, (3.19)
is satisfied. Therefore all the hypotheses of Remark 3.6 are satisfied and we conclude that
the trivial solution of (4.1) is uniformly exponentially stable. We next look at the three
special cases of (4.1) when T=R, T=N0, and T= hN0 = {0,h,2h, . . .}.
Case 4.2. If T = R, then µ(t) = 0 and it is easy to see that if we assume that a < −1/2,
then (4.2) is true if we take M = −(2a+ 1) > 0. For L = 8|b|3/3(δ−M), condition (4.3)
is satisfied. Hence in this case we conclude that if a < −1/2 and δ > −(2a+ 1), then the
trivial solution to (4.1) is uniformly exponentially stable.
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Case 4.3. If T=N0, then µ(t)= 1 and condition (4.2) cannot be satisfied for positive M.

To get around this, we will adjust the steps leading to inequality (4.7) as follows:

x4/3
∣∣2b+ 2abµ(t)

∣∣eδ(t,0)≤ ∣∣2b+ 2abµ(t)
∣∣[(x4/3

)3/2

3/2
+

(
eδ(t,0)

)3

3

]

= 2
3

∣∣2b+ 2abµ(t)
∣∣x2 +

∣∣2b+ 2abµ(t)
∣∣

3

(
eδ(t,0)

)3
,

x2/3b2µ(t)
(
eδ(t,0)

)2 ≤ b2µ(t)
[

(x2/3)3

3
+

((
eδ(t,0)

)2)3/2

3/2

]

= b2µ(t)
x2

3
+

2
3
µ(t)b2(eδ(t,0)

)3
.

(4.8)

Hence, inequality (4.7) becomes

V̇(t,x)≤
(

2a+µ(t)a2 +
2
3

∣∣2b+ 2abµ(t)
∣∣+

µ(t)b2

3

)
x2

+
[∣∣2b+ 2abµ(t)

∣∣+ (2/3)µ(t)b2

3

]
eδ(t,0).

(4.9)

Now, if T=N0, then µ(t)= 1 and so from this last inequality, given δ > 0, we want to find
0 <M < δ and L≥ 0 such that(

2a+ a2 +
2
3
|2b+ 2ab|+

b2

3

)
(1 +M)≤−M, (4.10)

|2b+ 2ab|+ (2/3)b2

3
(1 +M)≤−L(M δ)(t)= δ−M

1 + δ
L. (4.11)

Note that condition (4.10) is satisfied for all M > 0 sufficiently small if

2a+ a2 +
2
3
|2b+ 2ab|+

b2

3
< 0. (4.12)

For such a 0 <M < δ, if we take

L= 2
(
3|b||1 + a|+ b2

)
(1 +M)(1 + δ)

9(δ−M)
, (4.13)

then (4.3) is satisfied (note that for each δ > 0, we can find such an M so our result holds
for all δ). In conclusion, we have for the case T=N0 that if (4.12) holds, then the trivial
solution of (4.1) is uniformly exponentialy stable. In particular if a=−4/5 and b = 1/5,
then (4.12) is satisfied.

Case 4.4. If T= hN0 = {0,h,2h, . . .}, then µ(t)= h and in this case by (4.2) and (4.3), we
want to find 0 <M < δ and L≥ 0 such that

(
2a+ a2h+ 1

)≤ −M
(1 +Mh)

, (4.14)

∣∣2b+ 2abh
∣∣3

+ (2/3)
(
hb2

)3/2

3
(1 +hM)≤−L(M δ)(t)= δ−M

1 +hδ
L. (4.15)
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Note that (4.14) is satisfied for all M > 0 sufficiently small provided that h > 0 satisfies

ha2 + 2a+ 1 < 0. (4.16)

Now the polynomial

p(a) := ha2 + 2a+ 1 (4.17)

will have distinct real roots

a1(h)=
(− 1−√1−h)

h
,

a2(h)=
(− 1 +

√
1−h)

h

(4.18)

if 0 < h < 1. Therefore if 0 < h < 1 and a1(h) < a < a2(h), then

ha2 + 2a+ 1 < 0 (4.19)

as desired. Now, for such an h, if we let

L=
[(

(2/9)
(
hb2

)3/2
+ |2b+ 2abh|3/3

)
(1 +Mh)

]
δ−M (1 + δh), (4.20)

then (4.15) is satisfied. Putting this all together, we get that if 0 < h < 1 and

a1(h) < a < a2(h), (4.21)

then the trivial solution of (4.1) is uniformly exponentially stable. �

Remark 4.5. It is interesting to note that

lim
h→0+

a2(h)= lim
h→0+

(− 1 +
√

1−h)
h

= −1
2

,

lim
h→0+

a1(h)= lim
h→0+

(− 1−
√

1−h)h=−∞,
(4.22)

recalling that if T = R, then for −∞ < a < −1/2, the zero solution to (4.1) is uniformly
exponentially stable.
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