MULTIPLE POSITIVE SOLUTIONS OF SINGULAR DISCRETE p-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS

RAVI P. AGARWAL, KANISHKA PERERA, AND DONAL O'REGAN
Received 31 March 2005

We obtain multiple positive solutions of singular discrete p-Laplacian problems using variational methods.

1. Introduction

We consider the boundary value problem

$$
\begin{align*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right) & =f(k, u(k)), \quad k \in[1, n], \\
u(k) & >0, \quad k \in[1, n], \tag{1.1}\\
u(0) & =0=u(n+1),
\end{align*}
$$

where n is an integer greater than or equal to $1,[1, n]$ is the discrete interval $\{1, \ldots, n\}$, $\Delta u(k)=u(k+1)-u(k)$ is the forward difference operator, $\varphi_{p}(s)=|s|^{p-2} s, 1<p<\infty$, and we only assume that $f \in C([1, n] \times(0, \infty))$ satisfies

$$
\begin{equation*}
a_{0}(k) \leq f(k, t) \leq a_{1}(k) t^{-\gamma}, \quad(k, t) \in[1, n] \times\left(0, t_{0}\right) \tag{1.2}
\end{equation*}
$$

for some nontrivial functions $a_{0}, a_{1} \geq 0$ and $\gamma, t_{0}>0$, so that it may be singular at $t=0$ and may change sign.

Let $\lambda_{1}, \varphi_{1}>0$ be the first eigenvalue and eigenfunction of

$$
\begin{align*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right) & =\lambda \varphi_{p}(u(k)), \quad k \in[1, n], \tag{1.3}\\
u(0) & =0=u(n+1) .
\end{align*}
$$

Theorem 1.1. If (1.2) holds and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{f(k, t)}{t^{p-1}}<\lambda_{1}, \quad k \in[1, n] \tag{1.4}
\end{equation*}
$$

then (1.1) has a solution.

Theorem 1.2. If (1.2) holds and

$$
\begin{equation*}
f\left(k, t_{1}\right) \leq 0, \quad k \in[1, n] \tag{1.5}
\end{equation*}
$$

for some $t_{1}>t_{0}$, then (1.1) has a solution $u_{1}<t_{1}$. If, in addition,

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{f(k, t)}{t^{p-1}}>\lambda_{1}, \quad k \in[1, n] \tag{1.6}
\end{equation*}
$$

then there is a second solution $u_{2}>u_{1}$.
Example 1.3. Problem (1.1) with $f(k, t)=t^{-\gamma}+\lambda t^{\beta}$ has a solution for all $\gamma>0$ and λ (resp., $\lambda<\lambda_{1}, \lambda \leq 0$) if $\beta<p-1$ (resp., $\beta=p-1, \beta>p-1$) by Theorem 1.1.

Example 1.4. Problem (1.1) with $f(k, t)=t^{-\gamma}+e^{t}-\lambda$ has two solutions for all $\gamma>0$ and sufficiently large $\lambda>0$ by Theorem 1.2.

Our results seem new even for $p=2$. Other results on discrete p-Laplacian problems can be found in $[1,2]$ in the nonsingular case and in $[3,4,5,6]$ in the singular case.

2. Preliminaries

First we recall the weak comparison principle (see, e.g., Jiang et al. [2]).
Lemma 2.1. If

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right) \geq-\Delta\left(\varphi_{p}(\Delta v(k-1))\right), \quad k \in[1, n], \\
u(0) \geq v(0), \quad u(n+1) \geq v(n+1), \tag{2.1}
\end{gather*}
$$

then $u \geq v$.
Next we prove a local comparison result.
Lemma 2.2. If

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right) \geq-\Delta\left(\varphi_{p}(\Delta v(k-1))\right), \\
u(k)=v(k), \quad u(k \pm 1) \geq v(k \pm 1), \tag{2.2}
\end{gather*}
$$

then $u(k \pm 1)=v(k \pm 1)$.
Proof. We have

$$
\begin{gather*}
-\varphi_{p}(\Delta u(k))+\varphi_{p}(\Delta u(k-1)) \geq-\varphi_{p}(\Delta v(k))+\varphi_{p}(\Delta v(k-1)), \tag{2.3}\\
\Delta u(k) \geq \Delta v(k), \quad \Delta u(k-1) \leq \Delta v(k-1) . \tag{2.4}
\end{gather*}
$$

Combining with the strict monotonicity of φ_{p} shows that

$$
\begin{equation*}
0 \leq \varphi_{p}(\Delta u(k))-\varphi_{p}(\Delta v(k)) \leq \varphi_{p}(\Delta u(k-1))-\varphi_{p}(\Delta v(k-1)) \leq 0, \tag{2.5}
\end{equation*}
$$

and hence, the equalities hold in (2.4).

The following strong comparison principle is now immediate.
Lemma 2.3. If

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right) \geq-\Delta\left(\varphi_{p}(\Delta v(k-1))\right), \quad k \in[1, n], \\
u(0) \geq v(0), \quad u(n+1) \geq v(n+1), \tag{2.6}
\end{gather*}
$$

then either $u>v$ in $[1, n]$, or $u \equiv v$. In particular, if

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right) \geq 0, \quad k \in[1, n], \\
u(0) \geq 0, \quad u(n+1) \geq 0, \tag{2.7}
\end{gather*}
$$

then either $u>0$ in $[1, n]$ or $u \equiv 0$.
Consider the problem

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right)=g(k, u(k)), \quad k \in[1, n], \\
u(0)=0=u(n+1), \tag{2.8}
\end{gather*}
$$

where $g \in C([1, n] \times \mathbb{R})$. The class W of functions $u:[0, n+1] \rightarrow \mathbb{R}$ such that $u(0)=0=$ $u(n+1)$ is an n-dimensional Banach space under the norm

$$
\begin{equation*}
\|u\|=\left(\sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}\right)^{1 / p} \tag{2.9}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Phi_{g}(u)=\sum_{k=1}^{n+1}\left[\frac{1}{p}|\Delta u(k-1)|^{p}-G(k, u(k))\right], \quad u \in W, \tag{2.10}
\end{equation*}
$$

where $G(k, t)=\int_{0}^{t} g(k, s) d s$. Then the functional Φ_{g} is C^{1} with

$$
\begin{align*}
\left(\Phi_{g}^{\prime}(u), v\right) & =\sum_{k=1}^{n+1}\left[\varphi_{p}(\Delta u(k-1)) \Delta v(k-1)-g(k, u(k)) v(k)\right] \tag{2.11}\\
& =-\sum_{k=1}^{n}\left[\Delta\left(\varphi_{p}(\Delta u(k-1))\right)+g(k, u(k))\right] v(k)
\end{align*}
$$

(summing by parts), so solutions of (2.8) are precisely the critical points of Φ_{g}.
Lemma 2.4. If

$$
\begin{equation*}
\limsup _{|t| \rightarrow \infty} \frac{g(k, t)}{|t|^{p-2} t}<\lambda_{1}, \quad k \in[1, n] \tag{2.12}
\end{equation*}
$$

then Φ_{g} has a global minimizer.

Proof. By (2.12), there is a $\lambda \in\left[0, \lambda_{1}\right)$ such that

$$
\begin{equation*}
G(k, t) \leq \frac{\lambda}{p}|t|^{p}+C \tag{2.13}
\end{equation*}
$$

where C denotes a generic positive constant. Since

$$
\begin{equation*}
\lambda_{1}=\min _{u \in W \backslash\{0\}} \frac{\sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}}{\sum_{k=1}^{n}|u(k)|^{p}}, \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
\Phi_{g}(u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|^{p}-C\|u\|, \tag{2.15}
\end{equation*}
$$

so Φ_{g} is bounded from below and coercive.
Lemma 2.5. If

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} \frac{g(k, t)}{t^{p-1}}>\lambda_{1}, \quad \lim _{t \rightarrow-\infty} \frac{g(k, t)}{|t|^{p-1}}=0, \quad k \in[1, n] \tag{2.16}
\end{equation*}
$$

then Φ_{g} satisfies the Palais-Smale compactness condition (PS): every sequence $\left(u_{j}\right)$ in W such that $\Phi_{g}\left(u_{j}\right)$ is bounded and $\Phi_{g}^{\prime}\left(u_{j}\right) \rightarrow 0$ has a convergent subsequence.
Proof. It suffices to show that $\left(u_{j}\right)$ is bounded since W is finite dimensional, so suppose that $\rho_{j}:=\left\|u_{j}\right\| \rightarrow \infty$ for some subsequence. We have

$$
\begin{equation*}
o(1)\left\|u_{j}^{-}\right\|=\left(\Phi_{g}^{\prime}\left(u_{j}\right), u_{j}^{-}\right) \leq-\left\|u_{j}^{-}\right\|^{p}-\sum_{k=1}^{n+1} g\left(k,-u_{j}^{-}(k)\right) u_{j}^{-}(k), \tag{2.17}
\end{equation*}
$$

where $u_{j}^{-}=\max \left\{-u_{j}, 0\right\}$ is the negative part of u_{j}, so it follows from (2.16) that $\left(u_{j}^{-}\right)$is bounded. So, for a further subsequence, $\tilde{u}_{j}:=u_{j} / \rho_{j}$ converges to some $\tilde{u} \geq 0$ in W with $\|\tilde{u}\|=1$.

We may assume that for each k, either $\left(u_{j}(k)\right)$ is bounded or $u_{j}(k) \rightarrow \infty$. In the former case, $\tilde{u}(k)=0$ and $g\left(k, u_{j}(k)\right) / \rho_{j}^{p-1} \rightarrow 0$, and in the latter case, $g\left(k, u_{j}(k)\right) \geq 0$ for large j by (2.16). So it follows from

$$
\begin{equation*}
o(1)=\frac{\left(\Phi_{g}^{\prime}\left(u_{j}\right), v\right)}{\rho_{j}^{p-1}}=\sum_{k=1}^{n+1}\left[\varphi_{p}\left(\Delta \tilde{u}_{j}(k-1)\right) \Delta v(k-1)-\frac{g\left(k, u_{j}(k)\right)}{\rho_{j}^{p-1}} v(k)\right] \tag{2.18}
\end{equation*}
$$

that

$$
\begin{equation*}
\sum_{k=1}^{n+1} \varphi_{p}(\Delta \tilde{u}(k-1)) \Delta v(k-1) \geq 0 \quad \forall v \geq 0 \tag{2.19}
\end{equation*}
$$

and hence, $\tilde{u}>0$ in $[1, n]$ by Lemma 2.3. Then $u_{j}(k) \rightarrow \infty$ for each k, and hence, (2.18) can be written as

$$
\begin{equation*}
\sum_{k=1}^{n+1}\left[\varphi_{p}\left(\Delta \tilde{u}_{j}(k-1)\right) \Delta v(k-1)-\alpha_{j}(k) \tilde{u}_{j}(k)^{p-1} v(k)\right]=o(1), \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{j}(k)=\frac{g\left(k, u_{j}(k)\right)}{u_{j}(k)^{p-1}} \geq \lambda, \quad j \text { large }, \tag{2.21}
\end{equation*}
$$

for some $\lambda>\lambda_{1}$ by (2.16).
Choosing v appropriately and passing to the limit shows that each $\alpha_{j}(k)$ converges to some $\alpha(k) \geq \lambda$ and

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta \tilde{u}(k-1))\right)=\alpha(k) \tilde{u}(k)^{p-1}, \quad k \in[1, n], \\
\tilde{u}(0)=0=\widetilde{u}(n+1) . \tag{2.22}
\end{gather*}
$$

This implies that the first eigenvalue of the corresponding weighted eigenvalue problem is given by

$$
\begin{equation*}
\min _{u \in W \backslash\{0\}} \frac{\sum_{k=1}^{n+1}|\Delta u(k-1)|^{p}}{\sum_{k=1}^{n} \alpha(k)|u(k)|^{p}}=1 . \tag{2.23}
\end{equation*}
$$

Then

$$
\begin{equation*}
1 \leq \frac{\sum_{k=1}^{n+1}\left|\Delta \varphi_{1}(k-1)\right|^{p}}{\sum_{k=1}^{n} \alpha(k) \varphi_{1}(k)^{p}} \leq \frac{\lambda_{1}}{\lambda}<1 \tag{2.24}
\end{equation*}
$$

a contradiction.

3. Proofs

The problem

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right)=a_{0}(k), \quad k \in[1, n], \\
u(0)=0=u(n+1), \tag{3.1}
\end{gather*}
$$

has a unique solution $u_{0}>0$ by Lemmas 2.3 and 2.4. Fix $\varepsilon \in(0,1]$ so small that $\underline{u}:=$ $\varepsilon^{1 /(p-1)} u_{0}<t_{0}$. Then

$$
\begin{equation*}
-\Delta\left(\varphi_{p}(\Delta \underline{u}(k-1))\right)-f(k, \underline{u}(k)) \leq-(1-\varepsilon) a_{0}(k) \leq 0 \tag{3.2}
\end{equation*}
$$

by (1.2), so \underline{u} is a subsolution of (1.1). Let

$$
f_{\underline{u}}(k, t)= \begin{cases}f(k, t), & t \geq \underline{u}(k), \tag{3.3}\\ f(k, \underline{u}(k)), & t<\underline{u}(k) .\end{cases}
$$

Proof of Theorem 1.1. By (1.4), there are $\lambda \in\left[0, \lambda_{1}\right)$ and $T>t_{0}$ such that

$$
\begin{equation*}
f(k, t) \leq \lambda t^{p-1}, \quad(k, t) \in[1, n] \times(T, \infty) . \tag{3.4}
\end{equation*}
$$

Then

$$
f_{\underline{u}}(k, t) \begin{cases}\leq a_{1}(k) \underline{u}(k)^{-\gamma}+\max f\left([1, n] \times\left[t_{0}, T\right]\right)+\lambda t^{p-1}, & t \geq 0 \tag{3.5}\\ \geq a_{0}(k), & t<0\end{cases}
$$

by (1.2), so the modified problem

$$
\begin{gather*}
-\Delta\left(\varphi_{p}(\Delta u(k-1))\right)=f_{\underline{u}}(k, u(k)), \quad k \in[1, n], \\
u(0)=0=u(n+1), \tag{3.6}
\end{gather*}
$$

has a solution u by Lemma 2.4. By Lemma 2.1, $u \geq \underline{u}$, and hence, also a solution of (1.1).

Proof of Theorem 1.2. Noting that t_{1} is a supersolution of (3.6), let

$$
\tilde{f}_{\underline{u}}(k, t)= \begin{cases}f_{\underline{u}}\left(k, t_{1}\right), & t>t_{1}, \tag{3.7}\\ f_{\underline{u}}(k, t), & t \leq t_{1} .\end{cases}
$$

By (1.2),

$$
\tilde{f}_{\underline{u}}(k, t) \begin{cases}\leq a_{1}(k) \underline{u}(k)^{-\gamma}+\max f\left([1, n] \times\left[t_{0}, t_{1}\right]\right), & t \geq 0 \tag{3.8}\\ \geq a_{0}(k), & t<0\end{cases}
$$

so $\Phi_{\tilde{f}_{\underline{u}}}$ has a global minimizer u_{1} by Lemma 2.4. By Lemmas 2.1 and $2.2, \underline{u} \leq u_{1}<t_{1}$, so $\Phi_{\tilde{f}_{\underline{u}}}=\Phi_{f_{\underline{u}}}$ near u_{1} and hence, u_{1} is a local minimizer of $\Phi_{f_{\underline{u}}}$. Let

$$
f_{u_{1}}(k, t)= \begin{cases}f(k, t), & t \geq u_{1}(k) \tag{3.9}\\ f\left(k, u_{1}(k)\right), & t<u_{1}(k)\end{cases}
$$

Since u_{1} is also a subsolution of (1.1), repeating the above argument with u_{1} in place of \underline{u}, we see that $\Phi_{f_{u_{1}}}$ also has a local minimizer, which we assume is u_{1} itself, for otherwise we are done. By (1.6), there are $\lambda>\lambda_{1}$ and $T>t_{1}$ such that

$$
\begin{equation*}
f(k, t) \geq \lambda t^{p-1}, \quad(k, t) \in[1, n] \times(T, \infty) \tag{3.10}
\end{equation*}
$$

so

$$
\begin{equation*}
\Phi_{f_{u_{1}}}\left(t \varphi_{1}\right) \leq-\frac{t^{p}}{p}\left(\frac{\lambda}{\lambda_{1}}-1\right)+C t<\Phi_{f_{u_{1}}}\left(u_{1}\right), \quad t>0 \text { large. } \tag{3.11}
\end{equation*}
$$

Since $\Phi_{f_{u_{1}}}$ satisfies (PS) by Lemma 2.5, the mountain-pass lemma now gives a second critical point u_{2}, which is greater than u_{1} by Lemmas 2.1 and 2.2.

References

[1] R. Avery and J. Henderson, Existence of three positive pseudo-symmetric solutions for a one dimensional discrete p-Laplacian, J. Difference Equ. Appl. 10 (2004), no. 6, 529-539.
[2] D. Jiang, J. Chu, D. O'Regan, and R. P. Agarwal, Positive solutions for continuous and discrete boundary value problems to the one-dimension p-Laplacian, Math. Inequal. Appl. 7 (2004), no. 4, 523-534.
[3] D. Jiang, D. O'Regan, and R. P. Agarwal, A generalized upper and lower solution method for singular discrete boundary value problems for the one-dimensional p-Laplacian, to appear in J. Appl. Anal.
[4] , Existence theory for single and multiple solutions to singular boundary value problems for the one-dimension p-Laplacian, Adv. Math. Sci. Appl. 13 (2003), no. 1, 179-199.
[5] D. Jiang, L. Zhang, D. O'Regan, and R. P. Agarwal, Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension p-Laplacian, Archivum Mathematicum (Brno) 40 (2004), no. 4, 367-381.
[6] D. Q. Jiang, P. Y. H. Pang, and R. P. Agarwal, Upper and lower solutions method and a superlinear singular discrete boundary value problem, to appear in Dynam. Systems Appl.

Ravi P. Agarwal: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

E-mail address: agarwal@fit.edu
Kanishka Perera: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

E-mail address: kperera@fit.edu
Donal O'Regan: Department of Mathematics, National University of Ireland, Galway, Ireland E-mail address: donal.oregan@nuigalway.ie

