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Received 30 January 2004 and in revised form 26 May 2004

Recessive and dominant solutions for the nonoscillatory half-linear difference equation
are investigated. By using a uniqueness result for the zero-convergent solutions satisfying
a suitable final condition, we prove that recessive solutions are the “smallest solutions in a
neighborhood of infinity,” like in the linear case. Other asymptotic properties of recessive
and dominant solutions are treated too.

1. Introduction

Consider the second-order half-linear difference equation

∆
(
anΦ

(
∆xn

))
+ bnΦ

(
xn+1

)= 0, (1.1)

where ∆ is the forward difference operator ∆xn = xn+1 − xn, Φ(u) = |u|p−2u with p > 1,
and a= {an}, b = {bn} are positive real sequences for n≥ 1.

It is known that there is a surprising similarity between (1.1) and the linear difference
equation

∆
(
an∆xn

)
+ bnxn+1 = 0. (1.2)

In particular, for (1.1), the Sturmian theory continues to hold (see, e.g., [15]), and also
Kneser- or Hille-type oscillation and nonoscillation criteria can be formulated (see, e.g.,
[10]).

Another concept recently extended to the half-linear case is the concept of a reces-
sive solution (see [11]). We recall (see, e.g., [1, 8, 14]) that in the linear case, if (1.2) is
nonoscillatory, then there exists a nontrivial solution u= {un}, uniquely determined up
to a constant factor, such that

lim
n

un
xn
= 0, (1.3)

where x = {xn} denotes an arbitrary nontrivial solution of (1.2), linearly independent of
u. Solution u is called a recessive solution and x a dominant solution. Both solutions play
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an important role in different contexts (see, e.g., [1, 4, 6] and references therein). In the
linear case (see, e.g., [1, Chapter 6.3], [3, Theorem 6.8], [8, 14]), recessive solutions u and
dominant solutions x can be equivalently characterized by the properties

∞∑ 1
anunun+1

=∞,
∞∑ 1

anxnxn+1
<∞, (1.4)

∆un
un

<
∆xn
xn

for large n. (1.5)

As mentioned above, the concept of a recessive solution has been extended in [11] to
the nonoscillatory half-linear equation (1.1) by the following way. Consider the general-
ized Riccati equation

∆wn− bn +
(

1− an
Φ
(
Φ∗(an)+Φ∗(wn

)))wn = 0, (1.6)

where Φ∗ denotes the inverse function of Φ. If (1.1) is nonoscillatory, in [11] it is proved
that there exists a solution w∞ = {w∞n } of (1.6), such that an +w∞n > 0 for large n, with
the property that for any other solution w = {wn} of (1.6), with an + wn > 0 in some
neighborhood of∞,

w∞n < wn for large n. (1.7)

Such solution w∞ is called (eventually) a minimal solution of (1.6) and the solution u =
{un} of (1.1), given by

∆un =Φ∗
(
w∞n
an

)
un, (1.8)

is called a recessive solution of (1.1). Since (1.1) is nonoscillatory, for any solution x = {xn}
of (1.1), the sequence wx = {wx

n}, where

wx
n =

anΦ
(
∆xn

)
Φ
(
xn
) , (1.9)

is, for large n, a solution of the generalized Riccati equation (1.6) and so property (1.7)
coincides with (1.5), stated in the linear case.

In [11], the open problems whether analogous results as the limit characterization
(1.3) and the summation property (1.4) hold in the half-linear case have been also posed.
In the case when b is eventually negative, a complete answer to both questions has been
given by the authors in a recent paper [6].

Our aim here is to continue this study, by considering the case when bn is positive and

∞∑
n=1

bnΦ

( ∞∑
j=n+1

1
Φ∗(aj

)
)
<∞. (1.10)

We will give a positive answer to the question posed in [11] concerning the limit char-
acterization of the recessive solution, by showing that properties (1.3) and (1.5) are equiv-
alent also in the half-linear case. In addition, two summation criteria, which reduce to
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(1.4) in the linear case, are proved. These results are useful also in the numerical com-
putation of recessive solutions. Indeed, as pointed out in [4, Chapter 5], the recessive
behavior can be easily destroyed by numerical errors.

A similar problem has been studied and completely solved in [7] for the half-linear
differential equations

(
a(t)Φ(x′)

)′
+ b(t)Φ(x)= 0, (1.11)

where a, b are continuous positive functions for t ≥ 0, without any additional condition.
One of the tools used in [7] for proving limit and integral characterization of principal
solutions is based on certain properties of a suitable quadratic functional studied in [9].
Since in the discrete case such properties are not known, a different approach is used here
and the additional condition (1.10) is required.

A discussion concerning the role of (1.10) and open problems completes the paper.

2. Preliminaries

Throughout the paper, for brevity, by “solution of (1.1)” we mean a nontrivial solution
of (1.1). A solution x = {xn} of (1.1) is said to be nonoscillatory if there exists Nx ≥ 1
such that xnxn+1 > 0 for n ≥ Nx. Since, as claimed, the Sturm-type separation theorem
holds for (1.1), a solution of (1.1) is nonoscillatory if and only if every solution of (1.1) is
nonoscillatory. Hence, (1.1) is called nonoscillatory if its solutions are nonoscillatory.

The half-linear equation is characterized by the homogeneity property, which means
that if x = {xn} is a solution of (1.1), then also λx is a solution for any constant λ. This
property will be used in our later consideration.

Let x = {xn} be a solution of (1.1) and denote its quasi-difference with x[1] = {x[1]
n },

x[1]
n = anΦ(∆xn). Observe that from (1.10), it follows that

∞∑
n=1

1
Φ∗(an) <∞. (2.1)

Under assumption (1.10), equation (1.1) is nonoscillatory, as the following result
shows.

Lemma 2.1. If condition (1.10) is satisfied, then (1.1) is nonoscillatory. More precisely, if
(1.10) holds, then (1.1) has a (nonoscillatory) solution u= {un} satisfying

lim
n
un = 0, lim

n
u[1]
n = cu, cu ∈R \ {0}. (2.2)

Lemma 2.1 can be obtained from existing results. For instance it follows, with minor
changes, from [13, 16], in which the same conclusion has been proved for systems, or
equations, with delay. In particular in [16, Theorem 4.2], some additional assumptions on
superlinearity are required. For the sake of completeness, a sketch of the proof is provided
here.
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Proof (sketch). Choose n0 large so that

∞∑
k=n0

bkΦ

( ∞∑
j=k+1

1
Φ∗(aj

)
)
<

1
2
. (2.3)

Consider the Banach space B∞n0
of all converging sequences defined for every integer n≥

n0, endowed with the topology of the supremum norm, and consider the set Ω ⊂ B∞n0

given by

Ω=
{
u= {un}∈ B∞n0

:
1
2

∞∑
j=n

1
Φ∗(aj

) ≤ un ≤
∞∑
j=n

1
Φ∗(aj

) , n≥ n0

}
. (2.4)

Consider the operator � : Ω→ B∞n0
defined by �(u)= y = {yn}, where

yn =
∞∑
k=n

1
Φ∗(ak)Φ∗

(
− 1 +

∞∑
i=k

biΦ
(
ui+1

))
. (2.5)

It is easy to show that �(Ω)⊂Ω. Using the discrete version of a well-known compactness
result by Avramescu (see, e.g., [2, Remark 3.3.1]), one can check that �(Ω) is relatively
compact in B∞n0

. Because � is also continuous in Ω, by the Schauder fixed-point theorem,
there exists a fixed point u= {un} of the operator � in Ω. Finally we have limn un = 0 and

limn u
[1]
n 	= 0, that is, the assertion. �

The next lemma states the possible types of all nonoscillatory solutions of (1.1).

Lemma 2.2. Assume (1.10) and let x = {xn} be a solution of (1.1). Then
(i) x and its quasi-difference x[1] are eventually strongly monotone;

(ii) x is bounded;
(iii) if limn xn = 0, then limn x

[1]
n = µx, where −∞ ≤ µx < 0 or 0 < µx ≤∞ according to

whether xn > 0 or xn < 0 for large n, respectively.

Proof. Without loss of generality, assume that xn > 0 for n≥ n0 ≥ 1.

Claim (i). From (1.1), the quasi-difference x[1] is eventually decreasing and so {∆xn} has
eventually a fixed sign (different from zero), that is, x is eventually strongly monotone.

Since for large n we have ∆x[1]
n < 0, x[1] is strongly monotone too.

Claim (ii). Since x[1] is eventually decreasing, we have for n≥ n0,

∆xn ≤Φ∗(x[1]
n0

) 1
Φ∗(an) ; (2.6)

by summation from n0 to n, we obtain

xn+1 ≤ xn0 +Φ∗(x[1]
n0

) n∑
k=n0

1
Φ∗(ak) . (2.7)

If x is unbounded, in view of (2.1), inequality (2.7) gives a contradiction as n→∞.
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Claim (iii). Since x is eventually strongly monotone, positive and limn xn = 0, x is even-

tually decreasing and so ∆xn < 0 for large n. If limn x
[1]
n = 0, then, by summation of (1.1)

from n to∞, we obtain x[1]
n > 0 for large n, which is a contradiction. �

We close this section with the following version of the discrete Gronwall inequality.

Lemma 2.3. Let z,w be two nonnegative sequences for n≥N ≥ 1 such that
∑∞

j=N wjzj+1 <∞
and

∑∞
j=N wj <∞. If for n≥N ,

zn ≤
∞∑
j=n

wjzj+1, (2.8)

then zn = 0 for every n≥N .

Proof. Define the sequence v = {vn} as follows:

vn =
∞∑
j=n

wjzj+1. (2.9)

In view of (2.8), we have zn ≤ vn for n≥N . Then ∆vn =−wnzn+1 ≥−wnvn+1 or

∆vn +wnvn+1 ≥ 0. (2.10)

Since wn ≥ 0 and
∑∞

n=N wn <∞, we have 0 <
∏∞

j=N (1 +wj)−1 <∞. Putting

hn =
∞∏
j=n

1
1 +wj

, (2.11)

we have hn > 0 and ∆hn = hnwn. Multiplying (2.10) by hn, we obtain (n≥N)

hn∆vn +hnwnvn+1 = hn∆vn +∆hnvn+1 = ∆
(
hnvn

)≥ 0. (2.12)

Since limn vn = 0 and {hn} is bounded, from (2.12) we have hnvn ≤ 0 and so vn = 0.
�

3. Recessive and dominant solutions

As already claimed, in [11] the notion of a recessive solution has been extended by using
the Riccati equation approach, and for (1.1) reads as follows.

Definition 3.1. A solution u= {un} of (1.1) is said to be a recessive solution of (1.1) if for
every nontrivial solution x = {xn} of (1.1) such that x 	= λu, λ∈R \ {0},

∆un
un

<
∆xn
xn

for large n. (3.1)

The following theorem holds.



198 Recessive solutions for half-linear equations

Theorem 3.2 (see [11]). If (1.1) is nonoscillatory, recessive solutions of (1.1) exist and they
are determined up to a constant factor.

Analogously to the linear case, every solution of (1.1), which is not a recessive solution,
is called a dominant solution.

The following result characterizes the recessive solution of (1.1).

Proposition 3.3. Assume (1.10). If u= {un} is a recessive solution of (1.1), then (2.2) holds
and un∆un < 0 for large n.

Proof. Without loss of generality, assume u eventually positive. If condition (2.2) does
not hold, from Lemma 2.2 we obtain

lim
n
un = �u > 0 or lim

n
u[1]
n =−∞. (3.2)

In view of Lemma 2.1, there exists a solution z = {zn} of (1.1) satisfying (2.2). Then z 	=
λu for every λ∈R \ {0} and so from (3.1),

∆un
un

<
∆zn
zn

for large n. (3.3)

Without loss of generality, assume z eventually positive. Then (3.3) implies that∆(un/zn)<
0 and so limn(un/zn) = c, 0 ≤ c <∞, which gives a contradiction with (3.2). The second
statement follows from Lemma 2.2(i). �

The following uniqueness result will play an important role in our later consideration.

Theorem 3.4. Assume (1.10). For any fixed c ∈R \ {0}, there exists a unique solution u=
{un} of (1.1) such that

lim
n
un = 0, lim

n
u[1]
n = c. (3.4)

Proof. The existence follows from Lemma 2.1 and the homogeneity property. It remains
to prove the uniqueness. The argument is suggested by [12, Theorem 4.3]. Without loss
of generality, let x = {xn}, z = {zn} be two eventually positive solutions of (1.1) satisfying
xn > 0, zn > 0 for N ≥ 1 and

lim
n
xn = lim

n
zn = 0, lim

n
x[1]
n = lim

n
z[1]
n = c < 0. (3.5)

Since sequences x[1] and z[1] are eventually decreasing, we can assume also that for n≥N ,

0 <− c

2
<−x[1]

n <−c, 0 <− c

2
<−z[1]

n <−c. (3.6)

For brevity, denote

An =
∞∑
k=n

1
Φ∗(ak) . (3.7)
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Summing the equalities x[1]
n = anΦ(∆xn), z[1]

n = anΦ(∆zn), we obtain

xn =
∞∑
k=n

1
Φ∗(ak)Φ∗

(
− x[1]

k

)
, zn =

∞∑
k=n

1
Φ∗(ak)Φ∗

(
− z[1]

k

)
, (3.8)

or, in view of (3.6),

−Φ∗
(
c

2

)
An < xn <−Φ∗(c)An, −Φ∗

(
c

2

)
An < zn <−Φ∗(c)An. (3.9)

Recalling that Φ(r)= r p−1 for r > 0, by the mean-value theorem we obtain

∣∣Φ(xn)−Φ
(
zn
)∣∣≤ (p− 1)

(
wn
)p−2∣∣xn− zn

∣∣, (3.10)

where wn =max{xn,zn} or wn =min{xn,zn} or wn = 1 according to p > 2, 1 < p < 2, or
p = 2, respectively. Then, in view of (3.9), for any p > 1, there exists a positive constant
M such that

(p− 1)
(
wn
)p−2 ≤M

(
An
)p−2

. (3.11)

Taking into account (3.8), we have

∣∣Φ(xn)−Φ
(
zn
)∣∣≤M

(
An
)p−2∣∣xn− zn

∣∣
≤M

(
An
)p−2

∞∑
k=n

1
Φ∗(ak)

∣∣∣Φ∗
(
− x[1]

k

)
−Φ∗

(
− z[1]

k

)∣∣∣. (3.12)

Similarly, again by applying the mean-value theorem and taking into account that

limnΦ∗(x[1]
n )= limnΦ∗(z[1]

n )=Φ∗(c) < 0, there exists a positive constant H such that
∣∣∣Φ∗

(
x[1]
n

)
−Φ∗

(
z[1]
n

)∣∣∣≤H
∣∣∣x[1]

n − z[1]
n

∣∣∣. (3.13)

Summing (1.1) from n to∞, n≥N , we obtain

x[1]
n = c+

∞∑
k=n

bkΦ
(
xk+1

)
, z[1]

n = c+
∞∑
k=n

bkΦ
(
zk+1

)
. (3.14)

Thus from (3.12) and (3.13), we have

∣∣∣Φ∗
(
x[1]
n

)
−Φ∗

(
z[1]
n

)∣∣∣≤H
∞∑
k=n

bk
∣∣Φ(xk+1

)−Φ
(
zk+1

)∣∣

≤HM
∞∑
k=n

bk
(
Ak+1

)p−2
∞∑

j=k+1

1
Φ∗(aj

)∣∣∣Φ∗
(
z[1]
j

)
−Φ∗

(
x[1]
j

)∣∣∣.
(3.15)

Putting

un = sup
{∣∣∣Φ∗

(
x[1]
k

)
−Φ∗

(
z[1]
k

)∣∣∣ : k ≥ n
}

, (3.16)
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we obtain

un ≤HM
∞∑
k=n

bk
(
Ak+1

)p−2
∞∑

j=k+1

1
Φ∗(aj

)uj

≤HM
∞∑
k=n

bkuk+1
(
Ak+1

)p−2
∞∑

j=k+1

1
Φ∗(aj

)

=HM
∞∑
k=n

bkΦ
(
Ak+1

)
uk+1.

(3.17)

Taking into account (1.10), we can apply Lemma 2.3 and we obtain un ≡ 0 for n ≥ N .

This implies that x[1]
n = z[1]

n for every n≥N and the assertion easily follows. �

In view of the homogeneity property, from Theorem 3.4 we obtain the following result.

Corollary 3.5. Assume (1.10). If u= {un} and w = {wn} are two solutions of (1.1) such
that

lim
n
un = lim

n
wn = 0, lim

n
u[1]
n = cu, lim

n
w[1]
n = dw, (3.18)

where cu,dw ∈R \ {0}, then there exists λ∈R \ {0} such that u= λw.

Proof. Let z = {zn} be the solution of (1.1) given by zn = (cu/dw)wn. Then limn zn = 0,

limn z
[1]
n = cu, and, in view of Theorem 3.4, we have z = u. �

Proposition 3.3 and Corollary 3.5 yield the following characterization of the recessive
solution.

Corollary 3.6. Assume (1.10). Any solution u= {un} of (1.1) is a recessive solution if and
only if (2.2) holds.

Proof. If u is a recessive solution, then Proposition 3.3 gives the assertion. Now assume
that u satisfies (2.2). In view of Theorem 3.2, there exists a recessive solution of (1.1), say

w = {wn}. From Proposition 3.3, we have limnwn = 0, limnw
[1]
n = cw, cw ∈R \ {0}. Then,

in view of Corollary 3.5, there exists µ ∈ R \ {0} such that u = µw, so u is a recessive
solution. �

Remark 3.7. Corollary 3.6 gives also an asymptotic estimate for the recessive solution.
Indeed from (2.2), we have for the recessive solution u of (1.1)

lim
n

un
An
=Φ∗(cu), cu ∈R \ {0}, (3.19)

where An is defined in (3.7).

4. Applications

Using Proposition 3.3 and Corollaries 3.5 and 3.6, it is easy to show that the most char-
acteristic property of the recessive solution to be the “smallest solution in a neighborhood
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of infinity,” stated in the linear case, continues to hold also for (1.1). Indeed the following
result, which gives a positive answer to the claimed open problem posed in [11], holds.

Theorem 4.1. Assume (1.10) and let u= {un} be a solution of (1.1). Then u is a recessive
solution if and only if

lim
n

un
xn
= 0 (4.1)

for every solution x = {xn} of (1.1) such that x 	= λu, λ∈R \ {0}.
Proof. If u is a recessive solution of (1.1), from Proposition 3.3 we have limn un = 0,

limn u
[1]
n = cu, cu ∈ R \ {0}. Let x = {xn} be another solution of (1.1) such that x 	= λu,

λ ∈ R \ {0}. Since the recessive solution is unique up to a constant factor, x is not the
recessive solution. By Corollary 3.6 and Lemma 2.2, we have limn xn = cx, 0 < |cx| <∞, or

limn xn = 0, limn |x[1]
n | =∞ and so (4.1) holds.

Conversely assume (4.1) for every solution x of (1.1) such that x 	= λu, λ∈R \ {0}. By
contradiction, suppose that u is not a recessive solution and let z = {zn} be a recessive
solution of (1.1). Then z 	= λu for λ∈R \ {0} and so

lim
n

un
zn
= 0. (4.2)

Since u is not a recessive solution, again from Lemma 2.2 and Corollary 3.6, we obtain

limn un = cu, (0 < |cu| <∞) or limn un = 0, limn |u[1]
n | = ∞, which gives a contradiction

with (4.2). �

Recessive solutions satisfy the following summation properties.

Theorem 4.2. Assume (1.10). If u = {un} is a recessive solution of (1.1), then there exists
N ≥ 1 such that

∞∑
n=N

1
Φ∗(an)unun+1

=∞, (4.3)

∞∑
n=N

∆un

u[1]
n unun+1

=∞. (4.4)

Proof. By Lemma 2.2, let un be eventually positive. From Proposition 3.3, we have

limn u
[1]
n = c, c < 0, and so, by the discrete L’Hopital rule (see [1, Theorem 1.8.7]),

limn un/An = −c, where An is defined by (3.7). Then there exists N ≥ 1 such that un <
−2cAn for n≥N , which implies that (N <m)

m∑
n=N

1
Φ∗(an)unun+1

>
1

4c2

m∑
n=N

1
Φ∗(an)AnAn+1

= 1
4c2

m∑
n=N

−∆An

AnAn+1

= 1
4c2

m∑
n=N

∆
(

1
An

)
= 1

4c2

[
1
Am

− 1
AN

] (4.5)

and, as m→∞, we obtain (4.3).
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We show that also (4.4) holds. In view of Proposition 3.3, without loss of generality,

we can assume that un > 0, u[1]
n < 0 for n≥N . Since limn u

[1]
n = c, c < 0, the series

∞∑
n=N

∆un

u[1]
n unun+1

,
∞∑

n=N

−∆un
unun+1

(4.6)

have the same character. Because

∞∑
n=N

−∆un
unun+1

=
∞∑

n=N
∆
(

1
un

)
, (4.7)

and limn un = 0, the assertion follows. �

Clearly, in the linear case, conditions (4.3) and (4.4) reduce to (1.4). When both series∑∞
j=1[Φ∗(aj)]−1,

∑∞
j=1 bj converge, then the following stronger result holds.

Theorem 4.3. Assume (2.1) and
∑∞

j=1 bj <∞. Any solution u= {un} of (1.1) is a recessive
solution if and only if (4.3) holds or, equivalently, a solution x = {xn} of (1.1) is a dominant
solution if and only if there exists N ≥ 1 such that

∞∑
n=N

1
Φ∗(an)xnxn+1

<∞. (4.8)

Proof. By Theorem 4.2, it is sufficient to prove that if (4.3) holds, then u is a recessive
solution. Since, in view of Lemma 2.2(ii), every solution x of (1.1) is bounded, by sum-
mation of (1.1) from n to∞we obtain the boundedness of x[1]. Hence from Corollary 3.5,
we have limn xn = cx, 0 < |cx| <∞ and the assertion follows. �

The following example illustrates our results. It also shows that property (4.4) does
not mean that u is necessarily a recessive solution.

Example 4.4. Consider the half-linear difference equation

∆
(
anΦ

(
∆xn

))
+ bnΦ

(
xn+1

)= 0, (4.9)

where Φ(u)= u2 sgnu and

an = n(n+ 1)(n+ 2)2, bn = 8(n+ 1)(n+ 2)

n
[
(n+ 1)(n+ 2)− 1

]2 . (4.10)

We have

1
Φ∗(an) =

1
Φ∗(n(n+ 1)(n+ 2)2

) < 1
n(n+ 1)

, (4.11)
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so
∑∞

n=1 1/Φ∗(an) <∞,
∑∞

n=1 bn <∞, and condition (1.10) is satisfied. It is easy to verify
that the sequence x = {xn},

xn = 1− 1
n(n+ 1)

, (4.12)

is a solution of (4.9). By Corollary 3.6 or Theorem 4.3, x is a dominant solution. However,
x satisfies condition (4.4) because the series

∞∑
n=1

∆xn

x[1]
n xnxn+1

,
∞∑
n=1

1
n+ 2

(4.13)

have the same character. Moreover, since the limit

lim
n
nAn = lim

n
n
∞∑
k=n

√
1
ak

(4.14)

is finite and different from zero, in view of Remark 3.7, also the limit limn nun is finite and
different from zero for any recessive solution u of (4.9).

5. Concluding remarks

Theorems 4.2 and 4.3, and Example 4.4 illustrate some difficulties concerning the char-
acterization of the recessive solution via summation criteria. For instance, when (1.10)
holds and

∑∞
n=1 bn =∞, does property (4.3), or (4.4), imply that u = {un} is a recessive

solution?
When (1.1) is nonoscillatory and (1.10) is not satisfied, that is,

∞∑
n=1

bnΦ

( ∞∑
j=n+1

1
Φ∗(aj

)
)
=∞, (5.1)

the asymptotic characterization of the recessive solution is different. In fact, in such a
case, equation (1.1) does not have solutions u satisfying (2.2), as it can be proved using a
similar argument, with minor change, like in [13, Theorems 1 and 9]. Moreover if (1.1)
is nonoscillatory, (2.1) and (5.1) hold, then it may happen that every solution x of (1.1)
satisfies

lim
n
xn = 0, lim

n

∣∣x[1]
n

∣∣=∞, (5.2)

as follows from [13, Theorems 9 and 10] or [16, Theorems 3.4 and 3.5]. Hence it seems to
be difficult to prove the limit characterization and the summation properties of recessive
solutions using only the knowledge of the asymptotic behavior of solutions and their
quasi-differences. This problem, when (1.10) fails, jointly with a discussion about related
summation criteria, is considered in the forthcoming paper [5].
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