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We present existence results for discontinuous first- and continuous second-order dy-
namic equations on a time scale subject to fixed-time impulses and nonlinear boundary
conditions.

1. Introduction

We first briefly survey the recent results for existence of solutions to first-order problems
with fixed-time impulses. Periodic boundary conditions using upper and lower solutions
were considered in [19], using degree theory. A nonlinear alternative of Leray-Schauder
type was used in [15] for initial conditions or periodic boundary conditions. The mono-
tone iterative technique was employed in [14] for antiperiodic and nonlinear boundary
conditions. Lower and upper solutions and periodic boundary conditions were studied
in [20]. Semilinear damped initial value problems in a Banach space using fixed point
theory were investigated in [6]. In [9], existence of solutions for the differential equa-
tion u′(t)= q(u(t))g(t,u(t)) subject to a general boundary condition is proven, in which
g is Carathéodory and q ∈ L∞, and existence of lower and upper solutions is assumed.
Schauder’s fixed point theorem was used there. This generalized an earlier result found
in [18]. It appears that little has been done concerning dynamic equations with impulses
on time scales (see [4, 5, 16] for earlier results). In Section 2, the present paper uses ideas
from [9] to prove an existence result for discontinuous dynamic equations on a time scale
subject to fixed-time impulses and nonlinear boundary conditions.

The study of boundary value problems for nonlinear second-order differential equa-
tions with impulses has appeared in many papers (see [10, 11, 13] and the references
therein). In Section 3, we use ideas from [12, 16] to prove an existence result for second-
order dynamic equations on a time scale subject to fixed-time impulses and nonlinear
boundary conditions. Nonlinear boundary conditions cover, among others, the periodic
and the Dirichlet conditions, and have been introduced for ordinary differential equa-
tions by Adje in [1]. Assuming the existence of a lower and an upper solution, we prove
that the solution of the boundary value problem stays between them.

In [2], it was shown that the upper and lower solution method will not work for
first-order dynamic equations involving ∆-derivatives, unless restrictive assumptions are
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made. Hence, in Section 2, we work with the ∇-derivative. In Section 3, we can use the
more conventional ∆-derivative.

The monographs [17, 21] are good general references on impulsive differential
equations—discussion of applications may be found in these books. Applications of the
results given in this paper could involve those typically modelled on time scales which are
subjected to sudden major influences, for example, an insect population sprayed with an
insecticide or a financial market affected by a major terrorist attack.

For our purposes, we let T be a time scale (a closed subset of R), let [a,b] be the
closed and bounded interval in T, that is, [a,b] := {t ∈ T : a ≤ t ≤ b} and a,b ∈ T. For
the readers’ convenience, we state a few basic definitions on a time scale T [7, 8].

Obviously a time scale Tmay or may not be connected. Therefore, we have the concept
of forward and backward jump operators as follows: define σ ,ρ : T �→ T by

σ(t)= inf{s∈ T : s > t}, ρ(t)= sup{s∈ T : s < t}. (1.1)

If σ(t)= t, σ(t) > t, ρ(t)= t, ρ(t) < t, then t ∈ T is called right dense (rd), right scattered,
left dense, left scattered, respectively. We also define the graininess function µ : T �→ [0,∞)
as µ(t) = σ(t)− t. The sets Tκ, Tκ which are derived from T are as follows: if T has
a left-scattered maximum t1, then Tκ = T− {t1}, otherwise Tκ = T. If T has a right-
scattered minimum t2, then Tκ = T−{t2}, otherwise Tκ = T. If f : T �→ R is a function,
we define the functions f σ : Tκ �→ R by f σ(t) = f (σ(t)) for all t ∈ Tκ, f ρ : Tκ �→ R by
f ρ(t)= f (ρ(t)) for all t ∈ Tκ and σ0(t)= ρ0(t)= t.

If f : T �→R is a function and t ∈ Tκ, then the delta derivative of f at a point t is defined
to be the number f ∆(t) (provided it exists) with the property that, for each ε > 0, there is
a neighborhood of U1 of t such that

∣∣[ f (σ(t)
)− f (s)

]− f ∆(t)
[
σ(t)− s

]∣∣≤ ε
∣∣σ(t)− s

∣∣, (1.2)

for all s ∈ U1. If t ∈ Tκ, then we define the nabla derivative of f at a point t to be the
number f ∇(t) (provided it exists) with the property that, for each ε > 0, there is a neigh-
borhood of U2 of t such that

∣∣[ f (ρ(t)
)− f (s)

]− f ∇(t)
[
ρ(t)− s

]∣∣≤ ε
∣∣ρ(t)− s

∣∣, (1.3)

for all s∈U2.

Remark 1.1. If T = R, then f ∆(t) = f ∇(t) = f ′(t), and if T = Z, then f ∆(t) = ∆ f (t) =
f (t+ 1)− f (t) and f ∇(t)=∇ f (t)= f (t)− f (t− 1).

A function F : T→ R is called a ∆-antiderivative of f : T→ R provided F∆(t) = f (t)
holds for all t ∈ Tk. Then the Cauchy ∆-integral from a to t of f is defined by

∫ t

a
f (s)�s= F(t)−F(a) ∀t ∈ T. (1.4)
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A function Φ : T→R is called a ∇-antiderivative of f : T→R provided Φ∇(t)= f (t)
for all t ∈ Tk. We then define the Cauchy∇-integral from a to t of f by

∫ t

a
f (s)∇s=Φ(t)−Φ(a) ∀t ∈ T. (1.5)

Note that, in the case T=R, we have

∫ b

a
f (t)∆t =

∫ b

a
f (t)∇t =

∫ b

a
f (t)dt, (1.6)

and, in the case T= Z, we have

∫ b

a
f (t)∆t =

b−1∑
k=a

f (k),
∫ b

a
f (t)∇t =

b∑
k=a+1

f (k), (1.7)

where a,b ∈ T with a≤ b.
There are two types of impulse effects that are studied in the literature. The first is the

“fixed-time impulse”: a set of times 0 < t1 < t2 < ··· < tn < T is specified, and the solution
is required to satisfy

u
(
t+
k

)= Ik
(
u
(
tk
))

(1.8)

for k = 1,2, . . . ,n, where the functions Ik provide the “impulse.” Also studied are “variable-
time impulses,” in which a set of curves t = τ1(x), t = τ2(x), . . . , t = τn(x) is given, and the
solution satisfies u(t+) = Ik(u(t)) for t = τk(u(t)), k = 1,2, . . . ,n. Impulses of both types
introduce discontinuities in the solution. As mentioned in [17] and other works in the
reference list, applications involving impulse effects can be found in biology, medicine,
physics, economics, pharmacokinetics, and engineering. In this paper, we consider fixed-
time impulses. Without loss of generality, we investigate systems with a single impulse.

2. First order

Let 0, t1,T ∈ T with 0 < t1 < T and t1 right dense. Let J = [0,T]∩T,

u∇(t)= g
(
t,u(t)

)
, t ∈ J \ {t1}, (2.1)

u
(
t+
1

)= I
(
u
(
t1
))

, (2.2)

B
(
u(0),u(T)

)= 0. (2.3)

Note that (2.3) covers as special cases many initial and boundary conditions found in

the literature. Let J1 = [0, t1]∩ J , J2 = (t1,T]∩ J . Define
∫ b
a y(s)∇s = ∫(a,b] y(s)∇s, where

the integrals in Section 2 are with respect to the Lebesgue ∇-measure as defined by Atici
and Guseinov in [3].
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Let ui be the restriction of u : J →R to Ji, i= 1,2, then

�
(
J1
)= {u : J1 −→R : u is continuous on J1

}
,

�
(
J2
)= {u : J2 −→R : u is continuous on J2 and u

(
t+
1

)
exists

}
,

A= {u : J −→R : u1 ∈�
(
J1
)

and u2 ∈�
(
J2
)}
.

(2.4)

For u∈A, let ‖u‖ = sup{|u(t)| : t ∈ J}. (A,‖ · ‖) is a Banach space. For u,v ∈ A,

[u,v]≡ {w ∈A : u(t)≤w(t)≤ v(t)∀t ∈ J
}
. (2.5)

Definition 2.1. u : T→R is a solution of (2.1)–(2.3) if
(i) u∈ A,

(ii)

u(t)= u(0) +
∫ t

0
g
(
s,u(s)

)∇s, t ∈ J1,

u(t)= I
(
u
(
t1
))

+
∫ t

t1
g
(
s,u(s)

)∇s, t ∈ J2,
(2.6)

(iii) B(u(0),u(T))= 0.

We call α : J →R a lower solution of (2.1)–(2.3) if
(i) α∈A,

(ii) α(b)−α(a)≤ ∫ ba g(s,α(s))∇s for a≤ b and a,b ∈ J1, or a,b ∈ J2,
(iii) α(t+

1 )≤ I(α(t1)),
(iv) B(α(0),α(T))≤ 0.

We call β : J →R an upper solution of (2.1)–(2.3) if it satisfies the same assumptions,
but replace ≤ with ≥.

Let p(t,x)=max{α(t),min{x,β(t)}}. We have the following assumptions throughout
this section:

(1) for each x ∈R, g(·,x) is Lebesgue∇-measurable on J ,
(2) for a.e. (∇) t ∈ J , g(t,·) is continuous,

(3) there is an h : J → [0,∞),
∫ T

0 h(s)∇s <∞ such that |g(t, p(t,x))| ≤ h(t) a.e. (∇) on
J , for all x ∈R,

(4) I :R→R is continuous and nondecreasing,
(5) B : R×R→ R is continuous and for each x ∈ [α(0),β(0)], B(x,·) is nonincreas-

ing.

Note. a.e. (∇) denotes the Lebesgue∇-measure.

Theorem 2.2. Assume that conditions (1)–(5) are satisfied and α, β are lower and upper
solutions of (2.1)–(2.3) with α(t)≤ β(t) for all t ∈ J . Then, there exists a solution u to (2.1)–
(2.3) such that u∈ [α,β].
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Proof. Our proof follows that of Cabada and Liz [9]. Define an operator G : A→ A by

Gu(t)= p
(
0,u(0)

)
+
∫ t

0
g
(
s, p
(
s,u(s)

))∇s, t ∈ J1, (2.7)

Gu(t)= I
(
p
(
t1,u

(
t1
)))

+
∫ t

t1
g
(
s, p
(
s,u(s)

))∇s, t ∈ J2, (2.8)

where u(0)≡ u(0)−B(u(0),u(T)).

Claim 2.3. If u is a fixed point of the operator G, then u is a solution of (2.1)–(2.3) such
that u∈ [α,β].

Proof of Claim 2.3. We assume that u∈A satisfies

u(t)= p
(
0,u(0)

)
+
∫ t

0
g
(
s, p
(
s,u(s)

))∇s, t ∈ J1, (2.9)

u(t)= I
(
p
(
t1,u(t1

)))
+
∫ t

t1
g
(
s, p
(
s,u(s)

))∇s, t ∈ J2. (2.10)

Subclaim 1. u(t)∈ [α(t),β(t)], for all t ∈ J .

Note that, by letting t = 0 in the right-hand side of (2.9), we have
∫
∅ g(s, p(s,u(s)))∇s=

0 and hence u(0)= p(0,u(0)) which is in [α(0),β(0)] by the definition of p. Suppose there
exists a t′1 ∈ (0, t1]∩ J such that α(t′1) > u(t′1). Since α(0)≤ u(0), there exists a t′2 ∈ [0, t′1)∩
J such that α(t′2)≤ u(t′2) and α(t) > u(t) on (t′2, t′1]∩ J . Then, g(t, p(t,u(t)))= g(t,α(t)) for
all t ∈ (t′2, t′1]∩ J . We then have, for any t ∈ (t′2, t′1]∩ J ,

∫ t

0
g
(
s, p
(
s,u(s)

))∇s= u(t)− p
(
0,u(0)

)= u
(
t′2
)− p

(
0,u(0)

)
+u(t)−u

(
t′2
)
,

∫ t′2

0
g
(
s, p
(
s,u(s)

))∇s+u(t)−u
(
t′2
)

=⇒ u(t)−u
(
t′2
)=

∫ t

0
g
(
s, p
(
s,u(s)

))∇s−
∫ t′2

0
g
(
s, p
(
s,u(s)

))∇s

=
∫ t

t′2
g
(
s, p
(
s,u(s)

))∇s=
∫ t′2

0
g
(
s,α(s)

)∇s.

(2.11)

From assumption (ii) of the definition of lower solution, we have

α(t)−α
(
t′2
)≤

∫ t

t′2
g
(
s,α(s)

)∇s. (2.12)

We then have

u(t)−u
(
t′2
)=

∫ t

t′2
g
(
s,α(s)

)∇s≥ α(t)−α
(
t′2
)

(2.13)

and recalling that α(t′2) ≤ u(t′2) and u(t) < α(t), this is a contradiction. Hence, α ≤ u on
J1. Similarly, u≤ β on J1.
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We then have

α
(
t1
)≤ u

(
t1
)≤ β

(
t1
)
, (2.14)

and using the fact that I is nondecreasing, we have

α
(
t+
1

)≤ I
(
α
(
t1
))≤ I

(
u
(
t1
))≤ I

(
β
(
t1
))≤ β

(
t+
1

)
. (2.15)

We also have I(u(t1))= I(p(t1,u(t1))
)= u(t+

1 ) and hence from (2.15) we conclude

α
(
t+
1

)≤ u
(
t+
1

)≤ β
(
t+
1

)
. (2.16)

We may now proceed as before to get α≤ u≤ β on J2, establishing Subclaim 1.
We may apply Subclaim 1 to (2.9) to verify that u satisfies the first equation in property

(ii) of a solution to (2.1)–(2.3), and apply Subclaim 1 to (2.10) to verify that u satisfies
the second equation in property (ii).

Subclaim 2. u(0)∈ [α(0),β(0)].

Suppose that α(0) > u(0) = u(0)−B(u(0),u(T)). Thus, u(0) = p(0,u(0)) = α(0) and
hence B(u(0),u(T)) > 0. Using assumption (5), we have B(α(0),α(T))≥ B(α(0),u(T)) >
0, which contradicts α being a lower solution of (2.1)–(2.3). We then have α(0) ≤ u(0)
and, similarly, u(0)≤ β(0), establishing Subclaim 2.

As a result of Subclaim 2, we have u(0)= p(0,u(0))= u(0)= u(0)−B(u(0),u(T)) and
hence B(u(0),u(T))= 0, establishing Claim 2.3. �

Claim 2.4. G : A→ A has a fixed point.

Proof of Claim 2.4. We will apply Schauder’s fixed point theorem.
Let K = ‖α‖+‖β‖. Define w : J →R by w(t)= K +

∫ t
0 h(s)∇s.

Let

S= {u∈ A :
∣∣u(0)

∣∣≤ K ,
∣∣u(t+

1

)∣∣≤ K ,
∣∣u(b)−u(a)

∣∣≤w(b)−w(a)

on 0≤ a≤ b ≤ t1 or t1 < a≤ b ≤ T , where a,b ∈ J
}
.

(2.17)

It can be shown that S is a convex and compact subset of (A,‖ · ‖).

Subclaim 3. G(S)⊆ S.

Let u∈ S and consider Gu. Let t = 0 in (2.7) to obtain
∣∣Gu(0)

∣∣= ∣∣p(0,u(0)
)∣∣≤max

{∣∣α(0)
∣∣,
∣∣β(0)

∣∣}≤ K. (2.18)

Note that α(t1)≤ p(t1,u(t1))≤ β(t1), hence

α
(
t+
1

)≤ I
(
α
(
t1
))≤ I

(
p
(
t1,u

(
t1
)))≤ I

(
β
(
t1
))≤ β

(
t+
1

)
,∣∣I(p(t1,u

(
t1
)))∣∣≤max

{∣∣α(t+
1

)∣∣,
∣∣β(t+

1

)∣∣}≤ K.
(2.19)

Let t ↓ t1 in (2.8) to obtain
∣∣Gu(t+

1

)∣∣= ∣∣I(p(t1,u
(
t1
)))∣∣≤ K. (2.20)
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Let a,b ∈ J with 0≤ a≤ b≤ t1,

∣∣Gu(b)−Gu(a)
∣∣=

∣∣∣∣
∫ b

a
g
(
s, p
(
s,u(s)

))∇s
∣∣∣∣≤

∫ b

a
h(s)∇s=w(b)−w(a). (2.21)

Similar results hold for t1 < a≤ b ≤ T .

Subclaim 4. G : S→ S is continuous.

Let
{
un
}∞
n=1 ⊆ S which converges to u ∈ S in the space (A,‖ · ‖). Note that un → u

uniformly on compact subsets of J . Let n∈N and t ∈ J1, then

Gu(t)−Gun(t)

=Gu(t)− p
(
0,u(0)

)− [Gun(t)− p
(
0,un(0)

)]
+ p
(
0,u(0)

)− p
(
0,un(0)

)

=
∫ t

0
g
(
s, p
(
s,u(s)

))∇s−
∫ t

0
g
(
s, p
(
s,un(s)

))∇s+ p
(
0,u(0)

)− p
(
0,un(0)

) (2.22)

and hence
∣∣Gu(t)−Gun(t)

∣∣

≤
∫ t1

0

∣∣g(s, p(s,u(s)
))− g

(
s, p
(
s,un(s)

))∣∣∇s+ p
(
0,u(0)

)− p
(
0,un(0)

)
.

(2.23)

Now take limn→∞ and apply the Lebesgue dominated convergence theorem and the
continuity of g in its second variable and of p to conclude

lim
n→∞

∣∣Gun(t)−Gu(t)
∣∣= 0. (2.24)

Note that (2.23) does not involve t in its right-hand side, so we can conclude that the
convergence is uniform on J1.

A similar argument shows that Gun→G uniformly on compact subsets of J2.
Hence, by Subclaims 3 and 4, Schauder’s fixed point theorem applies to G, finishing

the proof of Claim 2.4. �

Claims 2.3 and 2.4 yield the desired result. �

Example 2.5. Let T= [0,1]∪ [2,3], t1 = 2, g(t,x)= t2 + x2, I(x)= x + 1, u(0)= 0. (Note
that I is not bounded, as required in [4].)

α(t)= 0 is a lower solution .
To construct β on [0,1], we solve β′ = 1 + β2 (≥ t2 + β2), β(0) = 0. Then this implies

that β(t)= tan t. By considering boundary conditions, we have

β(2)= β(0) +
∫ 2

0
β∇(s)∇s= β(0) +

∫ 1

0
β′(s)ds+β∇(2),

β(2)= tan1 +
β(2)−β(1)

2− 1
=⇒ β(2)= β(2)=⇒ β(2) is arbitrary, let β(2)= 1,

β(2+)= I
(
β(2)

)= 2.

(2.25)
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To construct β on [2,3], we solve β′ = 9 +β2 (≥ t2 +β2), β(2)= 2, then we have

β = 3tan
(

tan−1
(

2
3

)
+ 3t− 6

)
. (2.26)

Applying Theorem 2.2, we know there exists a solution u such that 0 ≤ u(t) ≤ β(t) for
t ∈ T.

3. Second order

In this section, we are concerned with second-order dynamic equations with functional
boundary conditions and impulse:

y��(t)= f
(
t, yσ(t)

)
, t ∈ Tκ2 ≡ [a,b] \ {t1}, (3.1)

L1
(
y(a), y∆(a), y

(
σ2(b)

)
, y∆
(
σ
(
b)
))= 0, (3.2)

L2
(
y(a), y

(
σ2(b)

))= 0, (3.3)

y
(
t+
1

)− y
(
t−1
)= r1, (3.4)

y∆
(
t+
1

)− y∆
(
t−1
)= I

(
y
(
t1
)
, y∆
(
t−1
))

, (3.5)

where t1 ∈ T with a < t1 < b and t1 right-dense, r1 ∈ R, I is a real-valued function and
J = [a,b]. We set y∆(t1) = y∆(t+

1 ) if t1 is left-scattered, and y∆(t1) = y∆(t−1 ) if t1 is left-
dense. We note that these impulses are different from those studied in [16]. (3.2) and
(3.3) cover many conditions found in the literature such as separated and nonseparated
boundary conditions, respectively,

L1(x, y,z,w)= x, L2(x, y)= y,

L1(x, y,z,w)= y− z, L2(x, y)= y− x,
(3.6)

as in [7, Chapter 4].
Let J1 = [a, t1], J2 = (t1,b]. We define the following spaces of functions.
Let yi be the restriction of y : J →R to Ji, i= 1,2, then

�′(J1)= {y : J1 −→R : y and y∆ are continuous on J1
}

,

�′(J2)= {y : J2 −→R : y and y∆ are continuous on J2 and y
(
t+
1

)
and y∆

(
t+
1

)
exist

}
,

A= {y : J −→R : y1 ∈�′(J1) and y2 ∈�′(J2)}.
(3.7)

For y ∈ A, let ‖y‖ = sup{|y(t)| : t ∈ J}. (A,‖ · ‖) is a Banach space. For x, y ∈A,

[x, y]≡ {z ∈A : x(t)≤ z(t)≤ y(t)∀t ∈ J
}
. (3.8)

Now we introduce the concept of lower and upper solutions of problem (3.1)–(3.5) as
follows.
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Definition 3.1. The functions α and β are, respectively, a lower and an upper solution of
problem (3.1)–(3.5) if the following properties hold:

(i) α, β ∈A;
(ii)

α∆∆(t)≥ f
(
t,ασ(t)

)
on t ∈ [a,b] \ {t1},

L1
(
α(a),α∆(a),α

(
σ2(b)

)
,α∆
(
σ(b)

))≥ 0,

L2
(
α(a),α

(
σ2(b)

))= 0, L2
(
α(a),·) is injective,

α
(
t+
1

)−α
(
t−1
)= r1,

α∆
(
t+
1

)−α∆
(
t−1
)≥ I

(
α(t1

)
,α∆
(
t−1 )
)
;

(3.9)

(iii)

β∆∆(t)≤ f
(
t,βσ(t)

)
on t ∈ [a,b] \ {t1},

L1
(
β(a),β∆(a),β

(
σ2(b)

)
,β∆
(
σ(b)

))≤ 0,

L2
(
β(a),β

(
σ2(b)

))= 0, L2
(
β(a),·) is injective,

β
(
t+
1

)−β
(
t−1
)= r1,

β∆
(
t+
1

)−β∆
(
t−1
)≤ I

(
β
(
t1
)
,β∆
(
t−1
))
.

(3.10)

We assume the following conditions are satisfied for the functions f , L1 and L2, and I .
(F) The function f : [a,b]×R→R is continuous.
(L) L1 ∈ C(R4,R) is nondecreasing in the second variable, nonincreasing in the

fourth. Moreover, L2 : R2 → R is a continuous function and it is nonincreasing
with respect to its first variable.

(I) I is continuous and strictly increasing with respect to the first variable and non-
increasing in the second variable.

We consider the following modified truncated problem:

y��(t)− yσ(t)= f
(
t, p
(
σ(t), yσ(t)

))− p
(
σ(t), yσ(t)

)
, t ∈ Tκ2 ≡ [a,b] \ {t1}, (3.11)

y(a)= L∗1
(
y(a), y∆(a), y

(
σ2(b)

)
, y∆
(
σ(b)

))
, (3.12)

y
(
σ2(b)

)= L∗2
(
y(a), y

(
σ2(b)

))
, (3.13)

r1 = y
(
t+
1

)− y
(
t−1
)
, (3.14)

y∆
(
t+
1

)− y∆
(
t−1
)= I

(
y
(
t1
)
, y∆
(
t−1
))

, (3.15)

where p(t, y)=min{max{α(t), y},β(t)},

L∗1 (x, y,z,w)= p
(
a,x+L1(x, y,z,w)

) ∀(x, y,z,w)∈R4,

L∗2 (x, y)= p
(
σ2(b), y−L2(x, y)

) ∀(x, y)∈R2.
(3.16)

Theorem 3.2. Assume that conditions (F) and (L) are satisfied. If there exist a lower solu-
tion α and an upper solution β of (3.1)–(3.5) such that α ≤ β on T, then the BVP (3.11)–
(3.15) has a solution.
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Proof. It is not difficult to verify that the problem

y∆∆− yσ = 0, t ∈ [a,b],

y(a)= y
(
σ2(b)

)= 0,
(3.17)

has only the trivial solution.
By using [7, Theorem 4.67 and Corollary 4.74], we have that for every h ∈ Crd[a,b]

and A,B ∈R, the problem

y∆∆− yσ = h(t), t ∈ [a,b],

y(a)=A, y
(
σ2(b)

)= B,
(3.18)

has a solution y(t) if and only if the operator

Qy(t)= Ay1(t) +By2(t) +
∫ σ(b)

a
G(t,s)h(s)∆s (3.19)

has a fixed point. Here y1(t), y2(t) are the solutions of the linear homogeneous equation
y∆∆− yσ = 0, t ∈ [a,b] and satisfy the boundary conditions y1(a)= 1, y1(σ2(b))= 0 and
y2(a)= 0, y2(σ2(b))= 1.

G is called the Green’s function of the Dirichlet problem. One can verify that (see [7,
page 169]) it is continuous in [a,σ2(b)]× [a,σ2(b)] and G∆(·,s) is continuous at t �= s=
σ(s) and bounded in [a,σ2(b)].

Define

Qy(t)= L∗1
(
y(a), y∆(a), y

(
σ2(b)

)
, y∆
(
σ(b)

))
y1(t) +L∗2

(
y(a), y

(
σ2(b)

))
y2(t)

+
∫ σ(b)

a
G(t,s)

{
f
(
s, p
(
σ(s), yσ(s)

))− p
(
σ(s), y

(
σ(s)

))}
∆s+L

(
t, y(t)

)
,

(3.20)

where

L(t, y)=




y2(t)
W

[
y1
(
t1
)
I
(
y
(
t1
)
, y∆
(
t−1
))− r1y

�
1

(
t1
)]

, a≤ t ≤ t1,

y1(t)
W

[
y2
(
t1
)
I
(
y
(
t1
)
, y∆
(
t−1
))− r1y

�
2

(
t1
)]

, t1 ≤ t ≤ σ2(b),

(3.21)

where W = y2(t1)y1
∆(t1)− y1(t1)y2

∆(t1).
One can easily observe that Q has a fixed point y if and only if y is a solution of (3.11)–

(3.15).
Since L1, L2, p, and G are bounded and continuous, it can be shown that there exists

R > 0 such that the compact operator Q : S→ S where S= {y ∈A : ‖y‖ ≤ R}.
Since S is a closed, bounded, and convex set, in view of the Tychonoff-Schauder fixed

point theorem, there is at least one fixed point of Q. �

Theorem 3.3. Assume that conditions (F) and (I) are satisfied. Let α and β be a lower and
upper solution, respectively, of the problem (3.1)–(3.5) such that α ≤ β on T. Then every
solution of the BVP (3.11)–(3.15) belongs to the sector [α,β].
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Proof. Let y be a solution of (3.11)–(3.15), by definition of L∗1 and L∗2 , we know that
y(a)∈ [α(a),β(a)] and y(σ2(b))∈ [α(σ2(b)),β(σ2(b))]. We will prove that y ∈ [α,β] for
t ∈ (a,σ2(b)).

Consider z(t)= y(t)−β(t). By definition of β, z is continuous on [a,σ2(b)]. Suppose,
to the contrary, there is a t∗ ∈ (a, t1)∪ (t1,σ2(b)) such that (y− β)(t∗)=maxt∈T{y(t)−
β(t)} > 0.

Suppose that t∗ is left scattered. In this case, we have that

y∆
(
t∗
)≤ β∆

(
t∗
)
, y∆∆

(
ρ
(
t∗
))≤ β∆∆

(
ρ
(
t∗
))
. (3.22)

Consequently, by using condition F, we arrive at the following contradiction:

0 > y∆∆
(
ρ
(
t∗
))−β∆∆

(
ρ
(
t∗
))− (y(t∗)−β(t∗)

)
≥ f

(
ρ(t∗),β(t∗)

)− f
(
ρ(t∗),β(t∗)

)= 0.
(3.23)

When t∗ is left dense the contradiction holds in a similar way.
Now suppose t∗ = t1.

Case 1. t1 is left scattered.

Then we have z∆(t+
1 ) ≤ 0 and z∆(t+

1 ) = z∆(t1). Consequently, by using condition (I),
we arrive at the following contradiction:

0= z∆
(
t+
1

)− z∆
(
t−1
)

= y∆
(
t+
1

)− y∆
(
t−1
)− [β∆(t+

1

)−β∆
(
t−1
)]

≥ I
(
y(t1

)
, y∆
(
t1
))− I

(
β
(
t1
)
,β∆
(
t1
))

> I
(
β
(
t1
)
, y∆
(
t1
))− I

(
β
(
t1
)
,β∆
(
t1
))≥ 0.

(3.24)

Case 2. t1 is left dense.

For sufficiently small ε > 0, we have

z∆(s)≥ 0 for s∈ (t1− ε, t1
)
, z∆

(
s∗
)≤ 0 for s∗ ∈ (t1, t1 + ε

)
. (3.25)

Then the contradiction holds in a similar way.
Analogously, the fact that α(t)≤ y(t) for all t ∈ T can be shown. �

Theorem 3.4. Assume that (L) holds. If y ∈ [α,β] is a solution of (3.11)–(3.15), then y
satisfies equalities (3.1)–(3.5).

Proof. If y(σ2(b)) − L2(y(a), y(σ2(b))) < α(σ2(b)), the definition of L∗2 gives us that
y(σ2(b))= α(σ2(b)).

Now using (L), we obtain a contradiction:

α
(
σ2(b)

)
> y
(
σ2(b)

)−L2
(
y(a), y

(
σ2(b)

))
≥ α

(
σ2(b)

)−L2
(
α(a),α

(
σ2(b)

))= α
(
σ2(b)

)
.

(3.26)

Analogously, we arrive at α(σ2(b))≤ y(σ2(b))−L2(y(a), y(σ2(b)))≤ β(σ2(b)) and (3.13)
implies that L2(y(a), y(σ2(b)))= 0.
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To prove that L1(y(a), y∆(a), y(σ2(b)), y∆(σ(b)))= 0, it is enough using (3.12) to show

α(a)≤ y(a) +L1
(
y(a), y∆(a), y

(
σ2(b)

)
, y∆
(
σ(b)

))≤ β(a). (3.27)

If y(a) + L1(y(a), y∆(a), y(σ2(b)), y∆(σ(b))) < α(a), then y(a) = α(a) implies that 0 =
L2(y(a), y(σ2(b)))= L2(α(a),α(σ2(b))).

Since L2 is injective with respect to the second variable, we have y(σ2(b))= α(σ2(b)).
Using the definition of L1, we obtain a contradiction:

α(a) > y(a) +L1
(
y(a), y∆(a), y

(
σ2(b)

)
, y∆
(
σ(b)

))
≥ α(a) +L1

(
α(a),α∆(a),α

(
σ2(b)

)
,α∆
(
σ(b)

))≥ α(a).
(3.28)

Here we used the fact that y ∈ [α,β], and α(a)= y(a), α(σ2(b))= y(σ2(b)), consequently,
it follows that y∆(a)≥ α∆(a) and y∆(σ(b))≤ α∆(σ(b)). The other inequality holds simi-
larly. �

Example 3.5. Let T be any time scale and let the point 1/2 be a right-dense point in
T∩ [0,1]. We define f , L1, and L2 in the following way:

f (t, y)= y sinh
(
(y− 1)2), L1(x, y,z,w)= 1− x,

L2(x, y)=−y, I(x, y)= x− 1.
(3.29)

Next we consider the following boundary value problem:

y��(t)= f
(
t, yσ(t)

)
, t ∈ [0,1]κ

2 \
{

1
2

}
, (3.30)

y(0)= 1, (3.31)

y(1)= 0, (3.32)

y
(

1
2

+)
− y
(

1
2

−)
=−1, (3.33)

y∆
(

1
2

+)
− y∆

(
1
2

−)
= I
(
y
(

1
2

)
, y∆
(

1
2

−))
. (3.34)

One can easily verify that

α(t)=




0, if t ∈
[

0,
1
2

]
,

2(t− 1), if t ∈
(

1
2

,1
]

,
(3.35)

is a lower solution and

β(t)=




2t+ 1, if t ∈
[

0,
1
2

]
,

−2(t− 1), if t ∈
(

1
2

,1
]

,
(3.36)

is an upper solution of the problem (3.30)–(3.34).
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Theorem 3.3 assures that there exists a solution y(t) of the problem (3.30)–(3.34) such
that y ∈ [α,β]. We note that

y(t)=




1, if t ∈
[

0,
1
2

]
,

0, if t ∈
(

1
2

,1
]

,
(3.37)

is one such solution.
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