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We study the trichotomy character, the stability, and the oscillatory behavior of the posi-
tive solutions of a fuzzy difference equation.

1. Introduction

Difference equations have already been successfully applied in a number of sciences (for
a detailed study of the theory of difference equations and their applications, see [1, 2, 7,
8, 11].

The problem of identifying, modeling, and solving a nonlinear difference equation
concerning a real-world phenomenon from experimental input-output data, which is
uncertain, incomplete, imprecise, or vague, has been attracting increasing attention in
recent years. In addition, nowadays, there is an increasing recognition that for under-
standing vagueness, a fuzzy approach is required. The effect is the introdution and the
study of the fuzzy difference equations (see [3, 4, 13, 14, 15]).

In this paper, we study the trichotomy character, the stability, and the oscillatory be-
havior of the positive solutions of the fuzzy difference equation

xn+1 = A+

∑k
i=1 cixn−pi∑m
j=1djxn−qj

, (1.1)

where k,m∈ {1,2, . . .}, A,ci,dj , i∈ {1,2, . . . ,k}, j ∈ {1,2, . . . ,m}, are positive fuzzy num-
bers, pi, i ∈ {1,2, . . . ,k}, qj , j ∈ {1,2, . . . ,m}, are positive integers such that p1 < p2 <
··· < pk, q1 < q2 < ··· < qm, and the initial values xi, i∈ {−π,−π + 1, . . . ,0}, where

π =max
{
pk,qm

}
, (1.2)

are positive fuzzy numbers.
Studying a fuzzy difference equation results concerning the behavior of a related family

of systems of parametric ordinary difference equations is required. Some necessary results
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concerning the corresponding family of systems of ordinary difference equations of (1.1)
have been proved in [16] and others are given in this paper.

2. Preliminaries

We need the following definitions.
For a set B, we denote by B the closure of B. We say that a fuzzy set A, from R+ = (0,∞)

into the interval [0,1], is a fuzzy number, if A is normal, convex, upper semicontinu-
ous (see [14]), and the support suppA=⋃a∈(0,1] [A]a = {x : A(x) > 0} is compact. Then
from [12, Theorems 3.1.5 and 3.1.8], the a-cuts of the fuzzy number A, [A]a = {x ∈R+ :
A(x)≥ a}, are closed intervals.

We say that a fuzzy number A is positive if suppA⊂ (0,∞).
It is obvious that if A is a positive real number, then A is a positive fuzzy number and

[A]a = [A,A], a∈ (0,1]. In this case, we say that A is a trivial fuzzy number.
We say that xn is a positive solution of (1.1) if xn is a sequence of positive fuzzy numbers

which satisfies (1.1).
A positive fuzzy number x is a positive equilibrium for (1.1) if

x = A+

∑k
i=1 cix∑m
j=1djx

. (2.1)

Let E, H be fuzzy numbers with

[E]a = [El,a,Er,a], [H]a = [Hl,a,Hr,a], a∈ (0,1]. (2.2)

According to [10] and [13, Lemma 2.3], we have that MIN{E,H} = E if

El,a ≤Hl,a, Er,a ≤Hr,a, a∈ (0,1]. (2.3)

Moreover, let ci, fi,dj ,gj , i = 1,2, . . . ,k, j = 1,2, . . . ,m, be positive fuzzy numbers such
that for a∈ (0,1],

[
ci
]
a =

[
ci,l,a,ci,r,a

]
,

[
fi
]
a =

[
fi,l,a, fi,r,a

]
,[

dj
]
a =

[
dj,l,a,dj,r,a

]
,

[
gj
]
a =

[
gj,l,a,gj,r,a

]
,

(2.4)

E =
∑k

i=1 ci∑m
j=1dj

, H =
∑k

i=1 fi∑m
j=1 gj

. (2.5)

We will say that E is less than H and we will write

E ≺H (2.6)

if

∑k
i=1 supa∈(0,1] ci,r,a∑m
j=1 infa∈(0,1]dj,l,a

<

∑k
i=1 infa∈(0,1] fi,l,a∑m
j=1 supa∈(0,1] gj,r,a

. (2.7)
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In addition, we will say that E is equal to H and we will write

E
.=H if E ≺H , H ≺ E, (2.8)

which means that for i= 1,2, . . . ,k, j = 1,2, . . . ,m, and a∈ (0,1],

ci,l,a = ci,r,a, fi,l,a = fi,r,a, dj,l,a = dj,r,a, gj,l,a = gj,r,a, (2.9)

and so

El,a = Er,a =Hl,a =Hr,a, a∈ (0,1], (2.10)

which imples that E, H are equal real numbers.
For the fuzzy numbers E, H , we give the metric (see [9, 17, 18])

D(E,H)= supmax
{∣∣El,a−Hl,a

∣∣,
∣∣Er,a−Hr,a

∣∣}, (2.11)

where sup is taken for all a∈ (0,1].
The fuzzy analog of boundedness and persistence (see [5, 6]) is given as follows: we

say that a sequence of positive fuzzy numbers xn persists (resp., is bounded) if there exists
a positive number M (resp., N) such that

suppxn ⊂ [M,∞)
(
resp., suppxn ⊂ (0,N]

)
, n= 1,2, . . . . (2.12)

In addition, we say that xn is bounded and persists if there exist numbers M,N ∈ (0,∞)
such that

suppxn ⊂ [M,N], n= 1,2, . . . . (2.13)

Let xn be a sequence of positive fuzzy numbers such that

[
xn
]
a =

[
Ln,a,Rn,a

]
, a∈ (0,1], n= 0,1, . . . , (2.14)

and let x be a positive fuzzy number such that

[x]a = [La,Ra], a∈ (0,1]. (2.15)

We say that xn nearly converges to x with respect to D as n→∞ if for every δ > 0, there
exists a measurable set T , T ⊂ (0,1], of measure less than δ such that

limDT
(
xn,x

)= 0, as n−→∞, (2.16)

where

DT
(
xn,x

)= sup
a∈(0,1]−T

{
max

{∣∣Ln,a−La
∣∣,
∣∣Rn,a−Ra

∣∣}}. (2.17)

If T =∅, we say that xn converges to x with respect to D as n→∞.
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Let X be the set of positive fuzzy numbers. Let E,H ∈ X . From [18, Theorem 2.1], we
have that El,a, Hl,a (resp., Er,a, Hr,a) are increasing (resp., decreasing) functions on (0,1].
Therefore, using the definition of the fuzzy numbers, there exist the Lebesque integrals

∫
J

∣∣El,a−Hl,a
∣∣da,

∫
J

∣∣Er,a−Hr,a
∣∣da, (2.18)

where J = (0,1]. We define the function D1 : X ×X → R+ such that

D1(E,H)=max

{∫
J

∣∣El,a−Hl,a
∣∣da,

∫
J

∣∣Er,a−Hr,a
∣∣da

}
. (2.19)

If D1(E,H)= 0, we have that there exists a measurable set T of measure zero such that

El,a =Hl,a, Er,a =Hr,a ∀a∈ (0,1]−T. (2.20)

We consider, however, two fuzzy numbers E, H to be equivalent if there exists a measur-
able set T of measure zero such that (2.20) hold and if we do not distinguish between
equivalence of fuzzy numbers, then X becomes a metric space with metric D1.

We say that a sequence of positive fuzzy numbers xn converges to a positive fuzzy
number x with respect to D1 as n→∞ if

limD1
(
xn,x

)= 0, as n−→∞. (2.21)

We define the fuzzy analog for periodicity (see [11]) as follows.
A sequence {xn} of positive fuzzy numbers xn is said to be periodic of period p if

D
(
xn+p,xn

)= 0, n= 0,1, . . . . (2.22)

Suppose that (1.1) has a unique positive equilibrium x. We say that the positive equi-
librium x of (1.1) is stable if for every ε > 0, there exists a δ = δ(ε) such that for every pos-
itive solution xn of (1.1) which satisfies D

(
x−i,x

)≤ δ, i= 0,1, . . . ,π, we have D
(
xn,x

)≤ ε
for all n≥ 0.

Moreover, we say that the positive equilibrium x of (1.1) is nearly asymptotically stable
if it is stable and every positive solution of (1.1) nearly tends to the positive equilibrium
of (1.1) with respect to D as n→∞.

Finally, we give the fuzzy analog of the concept of oscillation (see [11]). Let xn be a
sequence of positive fuzzy numbers and let x be a positive fuzzy number. We say that xn
oscillates about x if for every n0 ∈N, there exist s,m∈N, s,m≥ n0, such that

MIN
{
xm,x

}= xm, MIN
{
xs,x

}= x (2.23)

or

MIN
{
xm,x

}= x, MIN
{
xs,x

}= xs. (2.24)
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3. Main results

Arguing as in [13, 14, 15], we can easily prove the following proposition which concerns
the existence and the uniqueness of the positive solutions of (1.1).

Proposition 3.1. Consider (1.1), where k,m∈ {1,2, . . .}, A,ci,dj , i∈ {1,2, . . . ,k}, j ∈ {1,
2, . . . ,m}, are positive fuzzy numbers, and pi, qj , i∈ {1,2, . . . ,k}, j ∈ {1,2, . . . ,m}, are pos-
itive integers. Then for any positive fuzzy numbers x−π ,x−π+1, . . . ,x0, there exists a unique
positive solution xn of (1.1) with initial values x−π ,x−π+1, . . . ,x0.

Now, we present conditions so that (1.1) has unbounded solutions.

Proposition 3.2. Consider (1.1), where k,m∈ {1,2, . . .}, A,ci,dj , i∈ {1,2, . . . ,k}, j ∈ {1,
2, . . . ,m}, are positive fuzzy numbers, and pi, i∈ {1,2, . . . ,k}, qj , j ∈ {1,2, . . . ,m}, are posi-
tive integers. If

A≺G, G=
∑k

i=1 ci∑m
j=1dj

, (3.1)

then (1.1) has unbounded solutions.

Proof. Let

[A]a =
[
Al,a,Ar,a

]
, a∈ (0,1]. (3.2)

From (2.4) and (3.2) and since A, ci, dj , i = 1,2, . . . ,k, j = 1,2, . . . ,m, are positive fuzzy
numbers, there exist positive real numbers B, C, ai, ei, hj , bj , i= 1,2, . . . ,k, j = 1,2, . . . ,m,
such that

B = inf
a∈(0,1]

Al,a, C = sup
a∈(0,1]

Ar,a, ai = inf
a∈(0,1]

ci,l,a,

ei = sup
a∈(0,1]

ci,r,a, hj = inf
a∈(0,1]

dj,l,a, bj = sup
a∈(0,1]

dj,r,a.
(3.3)

Let xn be a positive solution of (1.1) such that (2.14) hold and the initial values xi, i =
−π,−π + 1, . . . ,0, are positive fuzzy numbers which satisfy

[
xi
]
a =

[
Li,a,Ri,a

]
, i=−π,−π + 1, . . . ,0, a∈ (0,1] (3.4)

and for a fixed ā∈ (0,1], the relations

Ri,ā >
Z2

W −C
, Li,ā <W , i=−π,−π + 1, . . . ,0, (3.5)

are satisfied, where

Z =
∑k

i=1 ei∑m
j=1hj

, W =
∑k

i=1 ai∑m
j=1 bj

. (3.6)
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Using [15, Lemma 1], we can easily prove that Ln,a, Rn,a satisfy the family of systems of
parametric ordinary difference equations

Ln+1,a =Al,a +

∑k
i=1 ci,l,aLn−pi,a∑m
j=1dj,r,aRn−qj ,a

,

Rn+1,a =Ar,a +

∑k
i=1 ci,r,aRn−pi,a∑m
j=1dj,l,aLn−qj ,a

,

n= 0,1, . . . . (3.7)

Since (3.1) holds, it is obvious that

Al,ā <

∑k
i=1 ci,r,ā∑m
j=1dj,l,ā

. (3.8)

Using (3.8) and applying [16, Proposition 1] to the system (3.7) for a= ā, we have that

lim
n→∞Ln,ā=Al,ā , lim

n→∞Rn,ā =∞. (3.9)

Therefore, from (3.9), the solution xn of (1.1) which satisfies (3.4) and (3.5) is un-
bounded. �

Remark 3.3. From the proof of Proposition 3.2, it is obvious that (1.1) has unbounded
solutions if there exists at least one a∈ (0,1] such that (3.8) holds.

In the following proposition, we study the boundedness and persistence of the positive
solutions of (1.1).

Proposition 3.4. Consider (1.1), where k,m ∈ {1,2, . . .}, A,ci,dj , i ∈ {1,2, . . . ,k}, j ∈
{1,2, . . . ,m}, are positive fuzzy numbers, and pi, i ∈ {1,2, . . . ,k}, qj , j ∈ {1,2, . . . ,m}, are
positive integers. If either

A
.=G (3.10)

or

G≺A (3.11)

holds, then every positive solution of (1.1) is bounded and persists.

Proof. Firstly, suppose that (3.10) is satisfied; then A, ci, dj , i = 1,2, . . . ,k, j = 1,2, . . . ,m,
are positive real numbers. Hence, for i= 1,2, . . . ,k, j = 1,2, . . . ,m, we get

A= Al,a = Ar,a, ci = ci,l,a = ci,r,a, dj = dj,l,a = dj,r,a, a∈ (0,1], (3.12)

A=
∑k

i=1 ci∑m
j=1dj

. (3.13)
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Let xn be a positive solution of (1.1) such that (2.14) hold and let xi, i = −π,−π +
1, . . . ,0, be the positive initial values of xn such that (3.4) hold. Then there exist positive
numbers Ti, Si, i=−π,−π + 1, . . . ,0, such that

Ti ≤ Li,a,Ri,a ≤ Si, i=−π,−π + 1, . . . ,0. (3.14)

Let (yn,zn) be the positive solution of the system of ordinary difference equations

yn+1 = A+

∑k
i=1 ci yn−pi∑m
j=1djzn−qj

, zn+1 = A+

∑k
i=1 cizn−pi∑m
j=1dj yn−qj

, (3.15)

with initial values (yi,zi), i = −π,−π + 1, . . . ,0, such that yi = Ti, zi = Si, i = −π,−π +
1, . . . ,0. Then from (3.14) and (3.15), we can easily prove that

y1 ≤ L1,a, R1,a ≤ z1, a∈ (0,1], (3.16)

and working inductively, we take

yn ≤ Ln,a, Rn,a ≤ zn, n= 1,2, . . . , a∈ (0,1]. (3.17)

Since from (3.13) and [16, Proposition 3], (yn, zn) is bounded and persists, from (3.17),
it is obvious that xn is also bounded and persists.

Now, suppose that (3.11) holds; then

B > Z, C >W. (3.18)

We concider the system of ordinary difference equations

yn+1 = B+

∑k
i=1 ai yn−pi∑m
j=1 bjzn−qj

, zn+1 = C+

∑k
i=1 eizn−pi∑m
j=1hj yn−qj

, (3.19)

where B,C,ai,ei,bj ,hj , i= 1,2, . . . ,k, j = 1,2, . . . ,m, are defined in (3.3).
Let (yn,zn) be a solution of (3.19) with initial values (yi,zi), i=−π,−π + 1, . . . ,0, such

that yi = Ti, zi = Si, i = −π,−π + 1, . . . ,0, where Ti,Si, i = −π,−π + 1, . . . ,0, are defined
in (3.14). Arguing as above, we can prove that (3.17) holds. Since from (3.18) and [16,
Proposition 3], (yn, zn) is bounded and persists, then from (3.17), it is obvious that, xn is
also bounded and persists. This completes the proof of the proposition. �

In what follows, we need the following lemmas.

Lemma 3.5. Let ri,s j , i= 1,2, . . . ,k, j = 1,2, . . . ,m, be positive integers such that

(
r1,r2, . . . ,rk,s1,s2, . . . ,sm

)= 1, (3.20)

where (r1,r2, . . . ,rk,s1,s2, . . . ,sm) is the greatest common divisor of the integers ri,s j , i= 1,2,
. . . ,k, j = 1,2, . . . ,m. Then the following statements are true.
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(I) There exists an even positive integer w1 such that for any nonnegative integer p, there
exist nonnegative integers αip, βjp, i= 1,2, . . . ,k, j = 1,2, . . . ,m, such that

k∑
i=1

αipri +
m∑
j=1

βjps j =w1 + 2p, p = 0,1, . . . , (3.21)

where
∑m

j=1βjp is an even integer.
(II) Suppose that all ri, i= 1,2, . . . ,k, are not even and all s j , j = 1,2, . . . ,m, are not odd

integers. Then there exists an odd positive integer w2 such that for any nonnegative integer p,
there exist nonnegative integers γip, δjp, i= 1,2, . . . ,k, j = 1,2, . . . ,m, such that

k∑
i=1

γipri +
m∑
j=1

δjps j =w2 + 2p, p = 0,1, . . . , (3.22)

where
∑m

j=1 δjp is an even integer.
(III) Suppose that all ri, i= 1,2, . . . ,k, are not even and all s j , j = 1,2, . . . ,m, are not odd

integers. Then there exists an even positive integer w3 such that for any nonnegative integer p,
there exist nonnegative integers εip, ξj p, i= 1,2, . . . ,k, j = 1,2, . . . ,m, such that

k∑
i=1

εipri +
m∑
j=1

ξj ps j =w3 + 2p, p = 0,1, . . . , (3.23)

where
∑m

j=1 ξj p is an odd integer.
(IV) There exists an odd positive integer w4 such that for any nonnegative integer p, there

exist nonnegative integers λip, µjp, i= 1,2, . . . ,k, j = 1,2, . . . ,m, such that

k∑
i=1

λipri +
m∑
j=1

µjps j =w4 + 2p, p = 0,1, . . . , (3.24)

where
∑m

j=1µjp is an odd integer.

Proof. (I) Since(3.20) holds, there exist integers ηi, ι j , i = 1,2, . . . ,k, j = 1,2, . . . ,m, such
that

k∑
i=1

ηiri +
m∑
j=1

ι j s j = 1. (3.25)

If for any real number a, we denote by [a] the integral part of a, we set for i= 2,3, . . . ,k,
j = 1,2, . . . ,m,

α1p = 2pη1 + 2
k∑
i=2

ri + 2
m∑
j=1

s j − 2
k∑
i=2

gipri− 2
m∑
j=1

hjps j ,

αip = 2pηi + 2gipr1, βjp = 2pι j + 2hjpr1,

(3.26)
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where

gip =
[−pηi

r1

]
+ 1, hjp =

[−pι j
r1

]
+ 1, i= 2,3, . . . ,k, j = 1,2, . . . ,m. (3.27)

Therefore, from (3.25) and (3.26), we can easily prove that αip,βjp, i = 1,2, . . . ,k, j =
1,2, . . . ,m, which are defined in (3.26), are positive integers satisfying (3.21) for

w1 = 2r1

( k∑
i=2

ri +
m∑
j=1

s j

)
(3.28)

and
∑m

j=1βjp is an even number.
(II) Firstly, suppose that one of ri, i= 1,2, . . . ,k, is an odd positive integer and without

loss of generality, let r1 be an odd positive integer. Relation (3.22) follows immediately if
we set for i= 2, . . . ,k and for j = 1,2, . . . ,m,

γ1p = α1p + 1, γip = αip, δjp = βjp, w2 =w1 + r1. (3.29)

Now, suppose that ri, i = 1,2, . . . ,k, are even positive integers; then from (3.20), one
of s j , j = 1,2, . . . ,m, is an odd positive integer and from the hypothesis, one of s j , j =
1,2, . . . ,m, is an even positive integer. Without loss of generality, let s1 be an odd positive
integer and s2 be an even positive integer. Relation (3.22) follows immediately if we set
for i= 1,2, . . . ,k and for j = 3, . . . ,m,

γip = αip, δ1p = β1p + 1, δ2p = β2p + 1, δjp = βjp, w2 =w1 + s1 + s2.

(3.30)

(III) Firstly, suppose that one of s j , j = 1,2, . . . ,m, is an even positive integer and with-
out loss of generality, let s1 be an even positive integer. Relation (3.23) follows immedi-
ately if we set for i= 1,2, . . . ,k and j = 2, . . . ,m,

εip = αip, ξ1p = β1p + 1, ξj p = βjp, w3 =w1 + s1. (3.31)

Now, suppose that s j , j = 1,2, . . . ,m, are odd positive integers; then from the hypoth-
esis, at least one of ri, i= 1,2, . . . ,k, is an odd positive integer, and without loss of gener-
ality, let r1 be an odd integer. Relation (3.23) follows immediately if we set for i= 2, . . . ,k,
j = 2,3, . . . ,m,

ε1p = α1p + 1, εip = αip, δ1p = β1p + 1, δjp = βjp, w3 =w1 + s1 + r1.
(3.32)

(IV) Firstly, suppose that at least one of s j , j = 1,2, . . . ,m, is an odd positive integer
and without loss of generality, let s1 be an odd positive integer. Relation (3.24) follows
immediately if we set for i= 1,2, . . . ,k, j = 2,3, . . . ,m,

λip = αip, µ1p = β1p + 1, µjp = βjp, w4 =w1 + s1. (3.33)
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Now, suppose that s j , j = 1,2, . . . ,m, are even positive integers; then from (3.20), at
least one of ri, i= 1,2, . . . ,k, is an odd positive integer, and without loss of generality, let r1

be an odd positive integer. Relation (3.24) follows immediately if we set for i= 2,3, . . . ,k,
j = 2,3, . . . ,m,

λ1p = α1p + 1, λip = αip, µ1p = β1p + r1, µjp = βjp, w4 =w1 + r1
(
s1 + 1

)
.

(3.34)

This completes the proof of the lemma. �

Lemma 3.6. Consider system (3.19), where B,C are positive constants such that

B =
∑k

i=1 ei∑m
j=1hj

, C =
∑k

i=1 ai∑m
j=1 bj

. (3.35)

Then the following statements are true.
(I) Let r be a common divisor of the integers pi + 1, qj + 1, i= 1,2, . . . ,k, j = 1,2, . . . ,m,

such that

pi + 1= rri, i= 1,2, . . . ,k, qj + 1= rs j , j = 1,2, . . . ,m; (3.36)

then system (3.19) has periodic solutions of prime period r. Moreover, if all ri, i= 1,2, . . . ,k,
(resp., s j , j = 1,2, . . . ,m) are even (resp., odd) positive integers, then system (3.19) has peri-
odic solutions of prime period 2r.

(II) Let r be the greatest common divisor of the integers pi + 1, qj + 1, i= 1,2, . . . ,k, j =
1,2, . . . ,m, such that (3.36) hold; then if all ri, i= 1,2, . . . ,k, (resp., s j , j = 1,2, . . . ,m) are even
(resp., odd) positive integers, every positive solution of (3.19) tends to a periodic solution of
period 2r; otherwise, every positive solution of (3.19) tends to a periodic solution of period r.

Proof. (I) From relations (3.35), (3.36), and [16, Proposition 2], system (3.19) has peri-
odic solutions of prime period r.

Now, we prove that system (3.19) has periodic solutions of prime period 2r, if all ri,
i= 1,2, . . . ,k, (resp., s j , j = 1,2, . . . ,m) are even (resp., odd) positive integers.

Suppose first that pk < qm. Let (yn,zn) be a positive solution of (3.19) with initial values
satisfying

y−rsm+2rλ+ζ = y−r+ζ , z−rsm+2rλ+ζ = z−r+ζ ,

y−rsm+2rν+r+ζ = y−2r+ζ , z−rsm+2rν+r+ζ = z−2r+ζ ,

λ= 0,1, . . . ,
sm− 1

2
, ν= 0,1, . . . ,

sm− 3
2

, ζ = 1,2, . . . ,r,

(3.37)

and, in addition, for ζ = 1,2, . . . ,r,

y−2r+ζ > B, y−r+ζ > B, z−r+ζ = Cy−2r+ζ

y−2r+ζ −B
, z−2r+ζ = Cy−r+ζ

y−r+ζ −B
. (3.38)
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From (3.19), (3.35), (3.36), (3.37), and (3.38), we get for ζ = 1,2, . . . ,r,

yζ = B+C
y−2r+ζ

z−r+ζ
= y−2r+ζ , zζ = C+B

z−2r+ζ

y−r+ζ
= z−2r+ζ ,

yr+ζ = B+C
y−r+ζ

z−2r+ζ
= y−r+ζ , zr+ζ = C+B

z−r+ζ

y−2r+ζ
= z−r+ζ .

(3.39)

Let a v ∈ {2,3, . . .
}

. Suppose that for all u= 1,2, . . . ,v− 1 and ζ = 1,2, . . . ,r, we have

y2ur+ζ = y−2r+ζ , z2ur+ζ = z−2r+ζ , y2ur+r+ζ = y−r+ζ , z2ur+r+ζ = z−r+ζ . (3.40)

Then from (3.19), (3.35)–(3.40), we get for ζ = 1,2, . . . ,r,

y2vr+ζ = B+C
y−2r+ζ

z−r+ζ
= y−2r+ζ . (3.41)

Similarly, we can prove that for ζ = 1,2, . . . ,r,

z2vr+ζ = z−2r+ζ , y2vr+r+ζ = y−r+ζ , z2vr+r+ζ = z−r+ζ . (3.42)

Therefore, from (3.39)–(3.42), we have that system (3.19) has periodic solutions of
period 2r.

Now, suppose that qm < pk. Let (yn,zn) be a positive solution of (3.19) such that the
initial values satisfy relations (3.38) and for ω = 0,1, . . . ,rk/2− 1, θ = 1,2, . . . ,2r,

y−rrk+2rω+θ = y−2r+θ , z−rrk+2rω+θ = z−2r+θ. (3.43)

Then arguing as above, we can easily prove that (yn,zn) is a periodic solution of period 2r.
This completes the proof of statement (I).

(II) Now, we prove that every positive solution of system (3.19) tends to a periodic
solution of period κr, where

κ=

2 if ri, i= 1,2, . . . ,k, are even, s j , j = 1,2, . . . ,m, are odd,

1 otherwise.
(3.44)

Let (yn,zn) be an arbitrary positive solution of (3.19). We prove that there exist the

lim
n→∞ yκnr+i = εi, i= 0,1, . . . ,κr− 1. (3.45)

We fix a τ ∈ {0,1, . . . ,κr − 1}. Since from [16, Proposition 3], the solution (yn,zn) is
bounded and persists, we have

liminf
n→∞ yκnr+τ = lτ ≥ B, liminf

n→∞ zκnr+τ =mτ ≥ C,

limsup
n→∞

yκnr+τ = Lτ <∞, limsup
n→∞

zκnr+τ =Mτ <∞.
(3.46)

Therefore, from relations (3.19), (3.35), and (3.46), we take

mτ = CLτ
Lτ −B

, lτ = BMτ

Mτ −C
. (3.47)
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We prove that (3.45) is true for i= τ. Suppose on the contrary that lτ < Lτ . Then from
(3.46), there exists an ε > 0 such that

Lτ > lτ + ε > B+ ε. (3.48)

In view of (3.46), there exists a sequence nµ, µ= 1,2, . . . , such that

lim
µ→∞ yκrnµ+τ = Lτ , lim

µ→∞ yr(κnµ−ri)+τ = Tri,τ ≤ Lτ ,

lim
µ→∞zr(κnµ−s j )+τ = Ssj ,τ ≥mτ.

(3.49)

In view of (3.19), (3.35), (3.46), (3.47), and (3.49), we take

Lτ = B+

∑k
i=1 aiTri,τ∑m
j=1 bjSsj ,τ

≤ B+
CLτ
mτ

= Lτ (3.50)

and obviously, we have that

Tri,τ = Lτ , i= 1,2, . . . ,k,

Ssj ,τ =mτ , j = 1,2, . . . ,m.
(3.51)

In addition, using (3.19), (3.35), (3.46), (3.47), and (3.51), for κ= 2, from statements
(I) and (IV) of Lemma 3.5 and arguing as above, we take for γ = 0,1, . . . ,

lim
µ→∞ yr(2nµ−w1−2γ)+τ = Lτ , lim

µ→∞zr(2nµ−w1−s1−2γ)+τ =mτ , (3.52)

and for κ= 1 and from all the statements of Lemma 3.5,

lim
µ→∞ yr(nµ−w1−2γ)+τ = Lτ , lim

µ→∞ yr(nµ−w2−2γ)+τ = Lτ ,

lim
µ→∞zr(nµ−w3−2γ)+τ =mτ , lim

µ→∞zr(nµ−w4−2γ)+τ =mτ ,
(3.53)

w1,w2,w3,w4 are defined in Lemma 3.5.
Let a σκ ∈ {0,1, . . . , (3− κ)φ}, φ =max

{
rk,sm

}
. Suppose first that κ= 2. Then in view

of (3.19), there exist positive integers p, q and a continuous function Fσ2 : R×R×···×
R→R such that

yr(2nµ+2σ2)+τ = B+Fσ2

(
ζnµ,0, . . . ,ζnµ,p,ξnµ,0, . . . ,ξnµ,q

)
, (3.54)

where for i= 0,1, . . . , p, j = 0,1, . . . ,q,

ζnµ,i = yr(2nµ−w1−2i)+τ , ξnµ, j = zr(2nµ−w1−s1−2 j)+τ . (3.55)

If κ = 1, there exist positive integers v1, v2, v3, v4 and a continuous function Gσ1 : R×
R×···×R→R such that

yr(nµ+σ1)+τ = B+Gσ1

(
ζnµ,0, . . . ,ζnµ,v1 , ζ̄nµ,0, . . . , ζ̄nµ,v2 ,ξnµ,0, . . . ,ξnµ,v3 , ξ̄nµ,0, . . . , ξ̄nµ,v4

)
, (3.56)
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where for i= 0,1, . . . ,v1, ī= 0,1, . . . ,v2, j = 0,1, . . . ,v3, and j̄ = 0,1, . . . ,v4,

ζnµ,i = yr(nµ−w1−2i)+τ , ζ̄nµ,ī = yr(nµ−w2−2ī)+τ ,

ξnµ, j = zr(nµ−w3−2 j)+τ , ξ̄nµ, j̄ = zr(nµ−w4−2 j̄)+τ .
(3.57)

Therefore, from (3.47), (3.52), (3.53), (3.54), and (3.56), it follows that

lim
µ→∞ yr(κnµ+κσκ)+τ = B+

CLτ
mτ

= Lτ. (3.58)

Using the same argument to prove (3.58) and using (3.19), we can easily prove that for
i= 1,2, . . . ,k, j = 1,2, . . . ,m,

lim
µ→∞ yr(κnµ+κσκ−ri)+τ = Lτ , lim

µ→∞zr(κnµ+κσκ−s j )+τ =mτ. (3.59)

Therefore, if δ = ε(mτ −C)/(Lτ − ε−B), then in view of (3.19), (3.47), (3.58), and (3.59),
there exists a µ0 ∈ {1,2, . . .} such that for j = 1,2, . . . ,m,

zr(κnµ0 +2φ+κ−s j )+τ ≤ C+
B
(
mτ + δ

)
Lτ − ε =mτ + δ (3.60)

and so from (3.19), (3.47), (3.48), (3.58), (3.59), and (3.60), we get

yr(κnµ0 +2φ+κ)+τ ≥ B+
C
(
Lτ − ε

)
mτ + δ

= Lτ − ε > lτ . (3.61)

Using (3.19), (3.47), (3.48), (3.58), (3.59), and (3.61) and working inductively, we can
easily prove that

yr(κnµ0 +2φ+κω)+τ ≥ Lτ − ε > lτ , ω = 2,3, . . . , (3.62)

which is a contradiction since liminfn→∞ yκrn+τ = lτ . Therefore, since τ is an arbitrary
number such that τ ∈ {0,1, . . . ,κr− 1}, relations (3.45) are satisfied.

Moreover, from (3.19) and (3.47), we have that

lim
n→∞zκnr+i = ξi, i= 0,1, . . . ,κr− 1. (3.63)

This completes the proof of the lemma. �

In the next proposition, we study the periodicity of the positive solutions of (1.1).

Proposition 3.7. Consider (1.1), where k,m ∈ {1,2, . . .}, A,ci,dj , i ∈ {1,2, . . . ,k}, j ∈
{1,2, . . . ,m}, are positive fuzzy numbers, and pi, i ∈ {1,2, . . . ,k}, qj , j ∈ {1,2, . . . ,m}, are
positive integers. If (3.10) holds and r is a common divisor of the integers pi + 1, qj + 1,
i= 1,2, . . . ,k, j = 1,2, . . . ,m, then (1.1) has periodic solutions of prime period r. Moreover, if
ri, i= 1,2, . . . ,k, (resp., s j , j = 1,2, . . . ,m)—ri, s j are defined in (3.36)—are even (resp., odd)
integers, then (1.1) has periodic solutions of prime period 2r.
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Proof. From (3.10), we have that A, ci, i = 1,2, . . . ,k, dj , j = 1,2, . . . ,m, are positive real
numbers such that (3.12) and (3.13) hold. We consider functions Li,a,Ri,a, i = −π,−π +
1,. . .,0, such that for λ= 0,1, . . . ,φ− 1, θ = 1,2, . . . ,r, and a∈ (0,1],

L−rφ+rλ+θ,a = L−r+θ,a, R−rφ+rλ+θ,a = R−r+θ,a, (3.64)

the functions Lw,a, w = −r + 1,−r + 2, . . . ,0, are increasing, left continuous, and for all
w =−r + 1,−r + 2, . . . ,0, we have

A+ ε < Lw,a < 2A, Rw,a = ALw,a

Lw,a−A
, (3.65)

where ε is a positive number such that ε < A. Using (3.65) and since the functions Lw,a,
w =−r + 1,−r + 2, . . . ,0, are increasing, if a1,a2 ∈ (0,1], a1 ≤ a2, we get

ALw,a1Lw,a2 −A2Lw,a1 ≥ALw,a1Lw,a2 −A2Lw,a2 (3.66)

which implies that Rw,a, w = −r + 1,−r + 2, . . . ,0, are decreasing functions. Moreover,
from (3.65), we get

Lw,a ≤ Rw,a, A+ ε ≤ Lw,a,Rw,a ≤ 2A2

ε
, (3.67)

and so from [18, Theorem 2.1],
(
Lw,a,Rw,a

)
, w =−r + 1,−r + 2, . . . ,0, determine the fuzzy

numbers xw, w = −r + 1,−r + 2, . . . ,0, such that [xw]a = [Lw,a,Rw,a], w = −r + 1,−r +
2, . . . ,0. Let xn be a positive solution of (1.1) which satisfies (2.14) and let the initial values
be positive fuzzy numbers such that (3.4) hold and the functions Li,a,Ri,a, i = −π,−π +
1, . . . ,0, a ∈ (0,1], are defined in (3.64), (3.65); Li,a, i = −π,−π + 1, . . . ,0, a ∈ (0,1], are
increasing and left continuous. Then from [16, Proposition 2], we have that for any a∈
(0,1], the system given by (3.7), (3.12), and (3.13) has periodic solutions of prime period
r, which means that there exists solution

(
Ln,a,Rn,a

)
, a∈ (0,1], of the system such that

Ln+r,a = Ln,a, Rn+r,a = Rn,a, a∈ (0,1]. (3.68)

Therefore, from (2.22) and (3.68), we have that (1.1) has periodic solutions of prime
period r.

Now, suppose that ri, i = 1,2, . . . ,k, (resp., si, j = 1,2, . . . ,m) are even (resp., odd) in-
tegers. We consider the functions Li,a,Ri,a, i = −π,−π + 1, . . . ,0, such that analogous re-
lations (3.37), (3.38), and (3.43) hold, Lw,a, w = −r + 1, . . . ,0, are increasing, left con-
tinuous functions, and the first relation of (3.65) holds. Arguing as above, the solution
xn of (1.1) with initial values xi, i = −π,−π + 1, . . . ,0, satisfying (3.4), where Li,a,Ri,a,
i=−π,−π + 1, . . . ,0, are defined above, is a periodic solution of prime period 2r. �

In the following proposition, we study the convergence of the positive solutions of
(1.1).
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Proposition 3.8. Consider (1.1), where k,m ∈ {1,2, . . .}, A,ci,dj , i ∈ {1,2, . . . ,k}, j ∈
{1,2, . . . ,m}, are positive fuzzy numbers, and pi, i ∈ {1,2, . . . ,k}, qj , j ∈ {1,2, . . . ,m}, are
positive integers. Then the following statements are true.

(i) If (3.11), holds, then (1.1) has a unique positive equilibrium x and every positive
solution of (1.1) nearly converges to the unique positive equilibrium x with respect to D as
n→∞ and converges to x with respect to D1 as n→∞.

(ii) If (3.10) is satisfied and r is the greatest common divisor of the integers pi + 1, qj + 1,
i = 1,2, . . . ,k, j = 1,2, . . . ,m, such that (3.36) holds, then every positive solution of (1.1)
nearly converges to a period κr solution of (1.1) with respect to D as n→∞ and converges to
a period κr solution of (1.1) with respect to D1 as n→∞; κ is defined in (3.44).

Proof. (i) Let xn be a positive solution of (1.1) which satisfies (2.14). Since (3.7) and (3.11)
hold, we can apply [16, Proposition 4] and we have that for any a∈ (0,1], there exist the
limn→∞Ln,a, limn→∞Rn,a, and

lim
n→∞Ln,a = La, lim

n→∞Rn,a = Ra, a∈ (0,1], (3.69)

where

La = Al,aAr,a−CaDa

Ar,a−Ca
, Ra = Al,aAr,a−CaDa

Al,a−Da
,

Ca =
∑k

i=1 ci,l,a∑m
j=1dj,r,a

, Da =
∑k

i=1 ci,r,a∑m
j=1dj,l,a

.

(3.70)

In addition, from (3.3) and (3.70), we get

La ≥ B2−Z2

C−W
= λ, Ra ≤ C2−W2

B−Z
= µ, (3.71)

where B,C (resp., Z,W) are defined in (3.3) (resp., (3.5)). Then from (3.69), (3.71), and
arguing as in [13, 14, 15], we can easily prove that La,Ra determine a fuzzy number x such
that [x]a = [La,Ra]. Finally, using (3.70), we take that x is the unique positive equilibrium
of (1.1). Using relations (3.11), (3.69), and arguing as in [15, Proposition 2], we can prove
that every positive solution of (1.1) nearly converges to the unique positive equilibrium x
with respect to D as n→∞ and converges to x with respect to D1 as n→∞.

(ii) Suppose that (3.10) holds. Let xn be a positive solution of (1.1) such that (2.14)
holds. Since (Ln,a,Rn,a) is a positive solution of the system which is defined by (3.7),
(3.12), and (3.13), from Lemma 3.6, we have that

lim
n→∞Lκnr+l,a = εl,a, lim

n→∞Rκnr+l,a = ξl,a, a∈ (0,1], l = 0,1, . . . ,κr− 1, (3.72)

where κ is defined in (3.44). Using (3.72) and arguing as in [15, Proposition 2], we can
prove that every positive solution of (1.1) nearly converges to a period κr solution of (1.1)
with respect to D as n→∞ and converges to a period κr solution of (1.1) with respect to
D1 as n→∞. Thus, the proof of the proposition is completed. �

From Propositions 3.2–3.8, it is obvious that (1.1) exhibits the trichotomy character
described concentratively by the following proposition.
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Proposition 3.9. Consider the fuzzy difference equation (1.1), where k,m∈ {1,2, . . .}, and
A,ci,dj , i ∈ {1,2, . . . ,k}, j ∈ {1,2, . . . ,m}, are positive fuzzy numbers. Then (1.1) possesses
the following trichotomy.

(i) If relation (3.1) is satisfied, then (1.1) has unbounded solutions.
(ii) If (3.10) holds and r is the greatest common divisor of the integers pi + 1, qj + 1,

i = 1,2, . . . ,k, j = 1,2, . . . ,m, such that (3.36) holds, then every positive solution of (1.1)
nearly converges to a period κr solution of (1.1) with respect to D as n→∞ and converges to
a period κr solution of (1.1) with respect to D1 as n→∞.

(iii) If (3.11) holds, then every positive solution of (1.1) nearly converges to the unique
positive equilibrium x with respect to D as n→∞ and converges to x with respect to D1 as
n→∞.

In the next proposition, we study the asymptotic stability of the unique positive equi-
librium of (1.1).

Proposition 3.10. Consider the fuzzy difference equation (1.1), where k,m ∈ {1,2, . . .},
A,ci,dj , i∈ {1,2, . . . ,k}, j ∈ {1,2, . . . ,m}, are positive fuzzy numbers, and pi, i∈{1,2, . . . ,k},
qj , j ∈ {1,2, . . . ,m}, are positive integers such that (3.11) holds. Suppose that there exists a
positive number θ such that

θ < B, Z <
2B+C− θ−√(C− θ)2 + 4BC

2
, (3.73)

where B,C are defined in (3.3) and Z is defined in (3.5). Then the unique positive equilib-
rium x of (1.1) is nearly asymptotically stable.

Proof. Since (3.11) holds, from Proposition 3.8, equation (1.1) has a unique positive
equilibrium x which satisfies (2.15).

Let ε be a positive real number. Since (3.18) holds, we can define the positive real
number δ as follows:

δ < min{ε,λ,θ,B−Z}. (3.74)

Let xn be a positive solution of (1.1) such that

D(x−i,x)≤ δ ≤ ε, i= 0,1, . . . ,π. (3.75)

From (3.75), we have

∣∣L−i,a−La
∣∣≤ δ,

∣∣R−i,a−Ra

∣∣≤ δ, i= 0,1, . . . ,π, a∈ (0,1]. (3.76)

In addition, from (3.3), (3.7), (3.74), and (3.76) and since (La,Ra) satisfies (3.7), we get

L1,a−La = Al,a +

∑k
i=1 ci,l,aL−pi,a∑m
j=1dj,r,aR−qj ,a

−La ≤ Al,a +

∑k
i=1 ci,l,a(La + δ)∑m
j=1dj,r,a(Ra− δ)

−La

= δ
Ca−Al,a +La

Ra− δ
≤ δ

Ra− (B−Z)
Ra− δ

.

(3.77)
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From (3.74) and (3.77), it is obvious that

∣∣L1,a−La
∣∣ < δ < ε. (3.78)

Moreover, arguing as above, we can easily prove that

R1,a−Ra ≤ δ
Da−Ar,a +Ra

La− δ
. (3.79)

We claim that

θ < La−Ra +Ar,a−Da, a∈ (0,1]. (3.80)

We fix an a∈ (0,1] and we concider the function

g(h)= Al,aAr,a−Dah

Ar,a−h
− Al,aAr,a−Dah

Al,a−Da
+Ar,a−Da, (3.81)

where h is a nonnegative real variable. Moreover, we consider the function

f (x, y,z)= x2− (2x+ y)z+ z2

x− z
− θ, (3.82)

where B ≤ x ≤ y ≤ C and W ≤ z ≤ Z, B,C (resp., W ,Z) are defined in (3.3) (resp., (3.5)).
Using (3.82), we can easily prove that the function f is increasing (resp., decreasing)
(resp., decreasing) with respect to x (resp., y) (resp., z) for all y,z (resp., x,z) (resp., x, y)
and so from (3.73),

f (x, y,z) > f (B,C,Z)= B2− (2B+C)Z +Z2

B−Z
− θ > 0. (3.83)

Therefore, from (3.3), (3.81), (3.82), and (3.83), we have

g(0)= f
(
Al,a,Ar,a,Da

)
+ θ > θ. (3.84)

In addition, from (3.81), we can prove that g is an increasing function with respect to h
and so we have g(0) < g(Ca), a∈ (0,1]. Therefore, from (3.70), (3.81), and (3.84), relation
(3.80) is true. Hence, from (3.74), (3.79), and (3.80), we get

∣∣R1,a−Ra

∣∣ < δ < ε. (3.85)

From (3.7), (3.76), (3.78), and (3.85) and working inductively, we can easily prove that

∣∣Ln,a−La
∣∣≤ ε,

∣∣Rn,a−Ra

∣∣≤ ε, a∈ (0,1], n= 0,1, . . . , (3.86)
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and so

D
(
xn,x

)≤ ε, n≥ 0. (3.87)

Therefore, the positive equilibrium x is stable. Moreover, from Proposition 3.8, we have
that every positive solution of (1.1) nearly tends to x with respect to D as n→∞. So, x is
nearly asymptotically stable. So, the proof of the proposition is completed. �

Finally, we study the oscillatory behavior of the positive solutions of the fuzzy differ-
ence equation

xn+1 = A+

∑k
s=0 c2s+1xn−2s−1∑k
s=0d2s+2xn−2s

, (3.88)

where k is a positive integer, and A, c2s+1, d2s+2, s ∈ {0,1, . . . ,k}, are positive fuzzy num-
bers. Obviously, (3.88) is a special case of (1.1).

In what follows, we need to study the oscillatory behavior of the positive solutions of
the system of ordinary difference equations

yn+1 = B+

∑k
s=0 a2s+1yn−2s−1∑k
s=0 b2s+2zn−2s

,

zn+1 = C+

∑k
s=0 e2s+1zn−2s−1∑k
s=0h2s+2yn−2s

,

n= 0,1, . . . , (3.89)

where k is a positive integer, B,C,a2s+1,b2s+2,e2s+1,h2s+2, s∈ {0,1, . . . ,k}, are positive real
constants, and the initial values yj , zj , j =−2k− 1,−2k, . . . ,0, are positive real numbers.

Let (yn, zn) be a positive solution of (3.89). We say that the solution (yn, zn) oscillates
about (y, z), y,z ∈R+, if for every n0 ∈N, there exist s, m∈N, s, m≥ n0, such that

(
ys− y

)(
ym− y

)≤ 0,
(
zs− z

)(
zm− z

)≤ 0,(
ys− y

)(
zs− z

)≥ 0,
(
ym− y

)(
zm− z

)≥ 0.
(3.90)

Lemma 3.11. Consider system (3.89), where k is a positive integer, B, C, a2s+1, b2s+2, e2s+1,
h2s+2, s ∈ {0,1, . . . ,k}, are positive real constants, and the initial values yj , zj , j = −2k−
1,−2k, . . . ,0, are positive real numbers. A positive solution

(
yn,zn

)
of system (3.89) oscillates

about the unique positive equilibrium
(
x̄, ȳ

)
of system (3.89) if either the relations

Λ≥max
{
Λ1,s,Λ2,s

}
, ∆≥max

{
∆1,s,∆2,s

}
, s= 0,1, . . . ,k, (3.91)

or the relations

Λ≤min{Λ1,s,Λ2,s
}

, ∆≤min{∆1,s,∆2,s
}

, s= 0,1, . . . ,k, (3.92)
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hold, where for s= 0,1, . . . ,k,

Λ=
∑k

s=0 e2s+1z−2s−1∑k
s=0h2s+2y−2s

, ∆=
∑k

s=0 a2s+1y−2s−1∑k
s=0 b2s+2z−2s

,

∆1,s= 1
a2s+1

[
µ
ȳ

z̄

( s∑
j=0

b2 j+2z̄+
k∑

j=s+1

b2 j+2z−2 j+2+2s

)
−
(s−1∑

j=0

a2 j+1 ȳ+
k∑

j=s+1

a2 j+1y−2 j+1+2s

)]
−B,

∆2,s = 1
h2s+2

[
ȳ

λz̄

(s−1∑
j=0

e2 j+1z̄+
k∑
j=s
e2 j+1z−2 j+2s

)
−
(s−1∑

j=0

h2 j+2 ȳ +
k∑

j=s+1

h2 j+2y−2 j+1+2s

)]
−B,

Λ1,s= 1
e2s+1

[
λ
z̄

ȳ

( s∑
j=0

h2 j+2 ȳ+
k∑

j=s+1

h2 j+2y−2 j+2+2s

)
−
( s−1∑

j=0

e2 j+1z̄+
k∑

j=s+1

e2 j+1z−2 j+1+2s

)]
−C,

Λ2,s= 1
b2s+2

[
z̄

µȳ

( s−1∑
j=0

a2 j+1 ȳ+
k∑
j=s

a2 j+1y−2 j+2s

)
−
( s−1∑

j=0

b2 j+2z̄+
k∑

j=s+1

b2 j+2z−2 j+1+2s

)]
−C,

λ=
∑k

s=0 e2s+1∑k
s=0h2s+2

, µ=
∑k

s=0 a2s+1∑k
s=0 b2s+2

.

(3.93)

Proof. Suppose that (3.91) hold. We prove that for ρ= 0,1, . . . ,k,

y2ρ+1 ≥ ȳ, z2ρ+1 ≥ z̄, y2ρ+2 ≤ ȳ, z2ρ+2 ≤ z̄. (3.94)

From (3.89) and (3.91), we have

y1 = B+

∑k
s=0 a2s+1y−2s−1∑k
s=0 b2s+2z−2s

= B+∆≥ B+∆1,k = ȳ,

z1 = C+Λ≥ C+Λ1,k = z̄.

(3.95)

Since from (3.91), Λ≥Λ2,0 and ∆≥ ∆2,0, then from (3.89), we have

y2 = B+

∑k
s=0 a2s+1y−2s

b2z1 +
∑k

s=1 b2s+2z1−2s

≤ B+
(C+Λ)b2 +

∑k
s=1 b2s+2z1−2s

b2z1 +
∑k

s=1 b2s+2z1−2s

µȳ

z̄
= B+

µȳ

z̄
= ȳ,

z2 ≤ C+
λz̄

ȳ
= z̄.

(3.96)

Using (3.89), (3.91), (3.95), and (3.96), relations ∆ ≥ ∆1,ρ−1, Λ ≥ Λ1,ρ−1 (resp., ∆ ≥
∆2,ρ, Λ≥Λ2,ρ), ρ = 1,2, . . . ,k, and working inductively, we can easily prove (3.94) for ρ =
1,2, . . . ,k:

y2ρ+1 ≥ ȳ, z2ρ+1 ≥ z̄
(
resp., y2ρ+2 ≤ ȳ, z2ρ+2 ≤ z̄

)
. (3.97)
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Therefore, (3.94) hold for ρ = 0,1, . . . ,k. Then since (3.94) hold for ρ = 0,1, . . . ,k, using
(3.89) and working inductively, we can easily prove that(3.94) hold for any ρ = k + 1,k +
2, . . . , and so if (3.91) hold, the proof of the lemma is completed. �

Similarly, if (3.92) are satisfied, then we can easily prove that

y2ρ+1 ≤ ȳ, z2ρ+1 ≤ z̄, y2ρ+2 ≥ ȳ, z2ρ+2 ≥ z̄, ρ = 0,1, . . . . (3.98)

This completes the proof of the lemma.
Using Lemma 3.11 and arguing as in [13, Proposition 2.4], we can easily prove the

following proposition which concerns the oscillatory behavior of the positive solutions of
the fuzzy difference equation (3.88).

Proposition 3.12. Consider (3.88), where k is a positive integer, and A, c2s+1, d2s+2, s∈ {0,
1, . . . ,k}, are positive fuzzy numbers. Then a positive solution xn of (3.88) satisfying (2.14)
oscillates about the positive equilibrium x, which satisfies (2.15) if, for any s= 0,1, . . . ,k and
a∈ (0,1], either the relations

Λ̄a ≥max
{
Λ̄1,s,a,Λ̄2,s,a

}
, ∆̄a ≥max

{
∆̄1,s,a, ∆̄2,s,a

}
(3.99)

or the relations

Λ̄a ≤min
{
Λ̄1,s,a,Λ̄2,s,a

}
, ∆̄a ≤min

{
∆̄1,s,a, ∆̄2,s,a

}
(3.100)

hold, where Λ̄a, ∆̄a, Λ̄1,s,a,Λ̄2,s,a, ∆̄1,s,a, ∆̄2,s,a are defined for the analogous system (3.7) in the
same way as Λ, ∆, Λ1,s,Λ2,s, ∆1,s,∆2,s were defined in Lemma 3.11 for system (3.89).

Using Proposition 3.12, we take the following corollary.

Corollary 3.13. Consider (3.88), where k is a positive integer, and A, c2s+1, d2s+2, s ∈
{0,1, . . . ,k}, are positive fuzzy numbers. Then a positive solution xn of (3.88) satisfying (2.14)
oscillates about the positive equilibrium x, which satisfies (2.15) if, for any p = 0,1, . . . ,k and
a∈ (0,1], either the relations

L−2k−1+2p,a ≥ La, R−2k−1+2p,a ≥ Ra,

L−2k+2p,a ≤ La, R−2k+2p,a ≤ Ra
(3.101)

or the relations

L−2k−1+2p,a ≤ La, R−2k−1+2p,a ≤ Ra,

L−2k+2p,a ≥ La, R−2k+2p,a ≥ Ra
(3.102)

hold.
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[11] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order
with Applications, Mathematics and its Applications, vol. 256, Kluwer Academic Publishers
Group, Dordrecht, 1993.

[12] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, CRC Press, Florida, 1997.
[13] G. Papaschinopoulos and B. K. Papadopoulos, On the fuzzy difference equation xn+1 = A+B/xn,

Soft Comput. 6 (2002), 436–440.
[14] , On the fuzzy difference equation xn+1 = A + xn/xn−m, Fuzzy Sets and Systems 129

(2002), no. 1, 73–81.
[15] G. Papaschinopoulos and G. Stefanidou, Boundedness and asymptotic behavior of the solutions

of a fuzzy difference equation, Fuzzy Sets and Systems 140 (2003), no. 3, 523–539.
[16] , Trichotomy of a system of two difference equations, J. Math. Anal. Appl. 289 (2004),

no. 1, 216–230.
[17] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (1983),

no. 2, 552–558.
[18] C. Wu and B. Zhang, Embedding problem of noncompact fuzzy number space E∼ (I), Fuzzy Sets

and Systems 105 (1999), no. 1, 165–169.

G. Stefanidou: Department of Electrical and Computer Engineering, Democritus University of
Thrace, 67100 Xanthi, Greece

E-mail address: tfele@yahoo.gr

G. Papaschinopoulos: Department of Electrical and Computer Engineering, Democritus Univer-
sity of Thrace, 67100 Xanthi, Greece

E-mail address: gpapas@ee.duth.gr

mailto:tfele@yahoo.gr
mailto:gpapas@ee.duth.gr

	
	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgment
	References

