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This paper is concerned with delayed generalized 2D discrete logistic systems of the form
xm+1,n = f (m,n,xm,n,xm,n+1,xm−σ ,n−τ), where σ and τ are positive integers, f : N

2
0×R3 →

R is a real function, which contains the logistic map as a special case, and m and n are
nonnegative integers, where N0 = {0,1, . . .} and R= (−∞,∞). Some sufficient conditions
for this system to be stable and exponentially stable are derived.

1. Introduction

In engineering applications, particularly in the fields of digital filtering, imaging, and spa-
tial dynamical systems, 2D discrete systems have been a subject of focus for investigation
(see, e.g., [1, 2, 3, 4, 5, 6] and the references cited therein). In this paper, we consider the
delayed generalized 2D discrete systems of the form

xm+1,n = f
(
m,n,xm,n,xm,n+1,xm−σ ,n−τ

)
, (1.1)

where σ and τ are positive integers, m and n are nonnegative integers, and f : N
2
0×R3 →

R is a real function containing the logistic map as a special case, where R = (−∞,∞),
R3 =R×R×R, N0 = {0,1, . . .}, and N

2
0 =N0×N0 = {(m,n) |m,n= 0,1, . . .}.

Obviously, if

f (m,n,x, y,z)≡ µm,nx(1− x)− am,ny, (1.2)

f (m,n,x, y,z)≡ µm,nx(1− z)− am,ny, (1.3)

f (m,n,x, y,z)≡ 1−µx2− ay, (1.4)

or

f (m,n,x, y,z)≡ bm,nx− am,ny− pm,nz, (1.5)
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then system (1.1) becomes, respectively,

xm+1,n + am,nxm,n+1 = µm,nxm,n
(
1− xm,n

)
, (1.6)

xm+1,n + am,nxm,n+1 = µm,nxm,n
(
1− xm−σ ,n−τ

)
, (1.7)

xm+1,n + axm,n+1 = 1−µ
(
xm,n

)2
, (1.8)

or

xm+1,n + am,nxm,n+1− bm,nxm,n + pm,nxm−σ ,n−τ = 0. (1.9)

Systems (1.6), (1.7), and (1.8) are regular 2D discrete logistic systems of different forms,
and particularly system (1.9) has been studied in the literature [2, 4, 5, 6].

If am,n = 0, µm,n = µ, and n = n0 is fixed, then system (1.6) becomes the 1D logistic
system

xm+1,n0 = µxm,n0

(
1− xm,n0

)
, (1.10)

where µ is a parameter. System (1.10) has been intensively investigated in the literature.
Hence, system (1.1) is quite general.

This paper is concerned with the stability of solutions of system (1.1), in which some
sufficient conditions for the stability and exponential stability of system (1.1) will be de-
rived.

Let Nt = {t, t + 1, t + 2, . . .} for any t ∈ Z, and Ω = N−σ ×N−τ\N1 ×N0. It is obvi-
ous that for any given function φ = {φm,n} defined on Ω, it is easy to construct by in-
duction a double sequence {xm,n} that equals the initial condition φ on Ω and satisfies
(1.1) on N1×N0. In fact, from (1.1), one can calculate successively a solution sequence:
x1,0,x1,1,x2,0,x1,2,x2,1,x3,0, . . . , by using the initial conditions, which is said to be a solution
of system (1.1) with the initial condition φ.

Definition 1.1. Let x∗ ∈R be a constant. If x∗ is a root of the equation

x− f (m,n,x,x,x)= 0 for any (m,n)∈N
2
0, (1.11)

then x∗ is said to be a fixed point or equilibrium point of system (1.1). The set of all fixed
points of system (1.1) is called a fixed plane or equilibrium plane of the system.

It is easy to see that x∗ = 0 is a fixed point of systems (1.6), (1.7), and (1.9), and

x∗ = (−(a+ 1)±
√

(a+ 1)2 + 4µ)/2µ are two fixed points of system (1.8).
Let x∗ be a fixed point of system (1.1), let φ = {φm,n} be a function defined on Ω, and

let

‖φ‖x∗ = sup
{∣∣φm,n− x∗

∣∣ : (m,n)∈Ω
}
. (1.12)

For any positive number δ > 0, let Sδ(x∗)= {φ : ‖φ‖x∗ < δ}.
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Definition 1.2. Let x∗ ∈ R be a fixed point of system (1.1). If, for any ε > 0, there exists
a positive constant δ > 0 such that for any given bounded function φ = {φm,n} defined
on Ω, φ ∈ Sδ(x∗) implies that the solution x = {xm,n} of system (1.1) with the initial
condition φ satisfies

∣∣xm,n− x∗
∣∣ < ε, ∀(m,n)∈N1×N0, (1.13)

then system (1.1) is said to be stable about the fixed point x∗.

Definition 1.3. Let x∗ ∈R be a fixed point of system (1.1). If there exist positive constants
M > 0 and ξ ∈ (0,1) such that for any given constant δ ∈ (0,M) and any given bounded
function φ = {φm,n} defined on Ω, φ ∈ Sδ(x∗) implies that the solution {xm,n} of system
(1.1) with the initial condition φ satisfies

∣∣xm,n− x∗
∣∣ <Mξm+n, (m,n)∈N1×N0, (1.14)

then system (1.1) is said to be DB-exponentially stable about the fixed point x∗, where D
means double variables and B means bounded initial condition.

Definition 1.4. Let x∗ ∈R be a fixed point of system (1.1). If there exist positive constants
M > 0 and ξ ∈ (0,1) such that for any given bounded number δ ∈ (0,M) and any given
bounded function φ = {φm,n} defined on Ω, φ ∈ Sδ(x∗) implies that the solution {xm,n}
of system (1.1) with the initial condition φ satisfies

∣∣xm,n− x∗
∣∣ <Mξm, (m,n)∈N1×N0, (1.15)

then system (1.1) is said to be SB-exponentially stable about the fixed point x∗, where S
means single variable and B means bounded initial condition.

Obviously, if system (1.1) is DB-exponentially stable, then it is SB-exponentially stable.

Definition 1.5. Let f (m,n,x, y,z) be a function defined on N
2
0×D and let (x0, y0,z0)∈D

be a fixed inner point, where D ⊂ R3. If, for any positive constant ε > 0, there exists a
constant δ > 0 such that for any |x− x0| < δ, |y− y0| < δ, and |z− z0| < δ,

∣∣ f (m,n,x, y,z)− f
(
m,n,x0, y0,z0

)∣∣ < ε for any (m,n)∈N
2
0, (1.16)

then f (m,n,x, y,z) is said to be uniformly continuous at the point (x0, y0,z0) (over m and
n). If the partial derivative functions f ′x (m,n,x, y,z), f ′y (m,n,x, y,z), and f ′z (m,n,x, y,z)
are all uniformly continuous at (x0, y0,z0), then f (m,n,x, y,z) is said to be uniformly
continuously differentiable at (x0, y0,z0).

Let D be an open subset of R3. If f (m,n,x, y,z) is uniformly continuous at any point
(x, y,z)∈D, then it is said to be uniformly continuous on D.

Obviously, if f (m,n,x, y,z) and g(m,n,x, y,z) are uniformly continuous at (x, y,z),
then a f (m,n,x, y,z), | f (m,n,x, y,z)|, f (m,n,x, y,z) + g(m,n,x, y,z) are also uniformly
continuous at (x, y,z) for any constant a∈R.
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2. Stability

Lemma 2.1. Let D ⊂ R3 be an open convex domain and (x0, y0,z0) ∈ D. Assume that the
function f (m,n,x, y,z) is continuously differentiable on D for any fixed m and n. Then for
any (x̃, ỹ, z̃) ∈ D and any (m,n) ∈ N

2
0, there exists a constant t0 = t(m,n, x̃, ỹ, z̃) ∈ (0,1)

such that

f (m,n, x̃, ỹ, z̃)− f
(
m,n,x0, y0,z0

)

= f ′x
(
m,n,x0 + t0

(
x̃− x0

)
, y0 + t0

(
ỹ− y0

)
,z0 + t0

(
z̃− z0

))(
x̃− x0

)

+ f ′y
(
m,n,x0 + t0

(
x̃− x0

)
, y0 + t0

(
ỹ− y0

)
,z0 + t0

(
z̃− z0

))(
ỹ− y0

)

+ f ′z
(
m,n,x0 + t0

(
x̃− x0

)
, y0 + t0

(
ỹ− y0

)
,z0 + t0

(
z̃− z0

))(
z̃− z0

)
.

(2.1)

Proof. Let g(t)= f (m,n,x0 + t(x̃− x0), y0 + t( ỹ− y0),z0 + t(z̃− z0)). Then, from the given
conditions, the function g(t) is continuously differentiable on [0,1]. Hence, from the
mean value theorem, there exists a constant t0 ∈ (0,1) such that g(1)− g(0)= g′(t0), that
is, Lemma 2.1 holds. The proof is completed. �

Theorem 2.2. Assume that x∗ is a fixed point of system (1.1), the function f (m,n,x, y,z) is
both continuously differentiable on R3 for any fixed (m,n)∈N

2
0 and uniformly continuously

differentiable at the point (x∗,x∗,x∗)∈R3, and there exists a constant r ∈ (0,1) such that
for any (m,n)∈N

2
0,

∣∣ f ′x
(
m,n,x∗,x∗,x∗

)∣∣+
∣∣ f ′y

(
m,n,x∗,x∗,x∗

)∣∣+
∣∣ f ′z

(
m,n,x∗,x∗,x∗

)∣∣≤ r. (2.2)

Then system (1.1) is stable.

Proof. Using relation (2.2) and since the function f (m,n,x, y,z) is uniformly continu-
ously differentiable at the point (x∗,x∗,x∗), there exists a positive number M > 0 such
that for any (m,n)∈N

2
0 and any (x, y,z)∈R3 satisfying |x− x∗| <M, |y− x∗| <M, and

|z− x∗| <M,

∣∣ f ′x (m,n,x, y,z)
∣∣+

∣∣ f ′y (m,n,x, y,z)
∣∣+

∣∣ f ′z (m,n,x, y,z)
∣∣≤ 1. (2.3)

In view of the given conditions and Lemma 2.1, for any m≥ 0 and n≥ 0, and any point
(x, y,z)∈R3 which satisfies |x− x∗| <M, |y− x∗| <M, and |z− x∗| <M, there exists a
constant t0 = t(m,n,x, y,z)∈ (0,1) such that

f (m,n,x, y,z)− f
(
m,n,x∗,x∗,x∗

)

= f ′x (m,n,λ,η,θ)
(
x− x∗

)
+ f ′y (m,n,λ,η,θ)

(
y− x∗

)

+ f ′z (m,n,λ,η,θ)
(
z− x∗

)
,

(2.4)

where λ= x∗ + t0(x− x∗), η = x∗ + t0(y− x∗), and θ = x∗ + t0(z− x∗). Obviously,

∣∣λ− x∗
∣∣≤ ∣∣x− x∗

∣∣,
∣∣η− x∗

∣∣≤ ∣∣y− x∗
∣∣,

∣∣θ− x∗
∣∣≤ ∣∣z− x∗

∣∣. (2.5)
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For any sufficiently small number ε > 0, without loss of generality, let ε <M and δ = ε,
and let φ = {φm,n} be a given bounded function defined on Ω which satisfies |φm,n− x∗| <
δ for all (m,n)∈Ω. Let the sequence {xm,n} be a solution of system (1.1) with the initial
condition φ. In view of (1.1) and the inequalities

∣∣x0,0− x∗
∣∣≤ δ <M,

∣∣x0,1− x∗
∣∣≤ δ <M,

∣∣x−σ ,−τ − x∗
∣∣≤ δ <M,

(2.6)

it follows from (2.3), (2.4), and Lemma 2.1 that there exists a constant

t0 = t
(
0,0,x0,0,x0,1,x−σ ,−τ

)∈ (0,1), (2.7)

such that
∣∣x1,0− x∗

∣∣= ∣∣ f (0,0,x0,0,x0,1,x−σ ,−τ
)− f

(
0,0,x∗,x∗,x∗

)∣∣

≤ ∣∣ f ′x
(
0,0,λ,η,θ

)∣∣∣∣x0,0− x∗
∣∣+

∣∣ f ′y
(
0,0,λ,η,θ

)∣∣∣∣x0,1− x∗
∣∣

+
∣∣ f ′z (0,0,λ,η,θ)

∣∣∣∣x−σ ,−τ − x∗
∣∣

≤ δ ≤ ε <M,

(2.8)

where λ = x∗ + t0(x0,0 − x∗), η = x∗ + t0(x0,1 − x∗), and θ = x∗ + t0(x−σ ,−τ − x∗). Simi-
larly, from (1.1), (2.3), and (2.4), one has

∣∣x1.1− x∗
∣∣= ∣∣ f (0,1,x0,1,x0,2,x−σ ,1−τ

)− f
(
0,1,x∗,x∗,x∗

)∣∣≤ ε <M. (2.9)

In general, for any integer n≥ 0, |x1,n− x∗| ≤ ε <M.
Assume that for a certain integer k ≥ 1,

|xi,n− x∗| ≤ ε <M for any i∈ {1,2, . . . ,k}, n≥ 0. (2.10)

Then, it follows from (1.1), (2.3), and (2.4) that there exists a constant

t0 = t
(
k,n,xk,n,xk,n+1,xk−σ ,n−τ

)∈ (0,1), (2.11)

such that
∣∣xk+1,n− x∗

∣∣= ∣∣ f (k,n,xk,n,xk,n+1,xk−σ ,n−τ
)− f

(
k,n,x∗,x∗,x∗

)∣∣

≤ ∣∣ f ′x
(
k,n,λ,η,θ

)∣∣∣∣xk,n− x∗
∣∣+

∣∣ f ′y (k,n,λ,η,θ)
∣∣∣∣xk,n+1− x∗

∣∣

+
∣∣ f ′z (k,n,λ,η,θ)

∣∣∣∣xk−σ ,n−τ − x∗
∣∣

≤ (∣∣ f ′x (k,n,λ,η,θ)
∣∣+

∣∣ f ′y (k,n,λ,η,θ)
∣∣+

∣∣ f ′z (k,n,λ,η,θ)
∣∣) · ε ≤ ε,

(2.12)

where λ = x∗ + t0(xk,n − x∗), η = x∗ + t0(xk,n+1 − x∗), and θ = x∗ + t0(xk−σ ,n−τ − x∗).
Hence, by induction, |xm,n − x∗| ≤ ε for any (m,n) ∈ N1 ×N0, that is, system (1.1) is
stable. The proof is completed. �

Similar to the above proof of Theorem 2.2, it is easy to obtain the following result.
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Theorem 2.3. Assume that x∗ is a fixed point of system (1.1), and the function f (m,n,x, y,
z) is continuously differentiable on R3 for any fixed m and n. Further, assume that there
exists an open subset D ⊂ R3 such that (x∗,x∗,x∗) ∈ D and, for any (m,n) ∈ N

2
0 and any

(x, y,z)∈D,

∣∣ f ′x (m,n,x, y,z)
∣∣+

∣∣ f ′y (m,n,x, y,z)
∣∣+

∣∣ f ′z (m,n,x, y,z)
∣∣≤ 1. (2.13)

Then system (1.1) is stable.

From Theorems 2.2 and 2.3, one obtains the following results.

Corollary 2.4. Assume that there exists a constant r ∈ (0,1) such that

∣∣µm,n
∣∣+

∣∣am,n
∣∣≤ r ∀m≥ 0, n≥ 0. (2.14)

Then systems (1.6) and (1.7) are both stable.
In fact, system (1.6) is a special case of system (1.1) when

f (m,n,x, y,z)≡ µm,nx(1− x)− am,ny. (2.15)

In view of (2.14), it is obvious that the function f (m,n,x, y,z) is both continuously differen-
tiable on R3 for any fixed (m,n)∈N

2
0 and uniformly continuously differentiable at the point

(0,0,0). Since x∗ = 0 is a fixed point of systems (1.6) and (1.7),

f ′x
(
m,n,x∗,x∗,x∗

)= µm,n, f ′y
(
m,n,x∗,x∗,x∗

)=−am,n,

f ′z
(
m,n,x∗,x∗,x∗

)= 0.
(2.16)

Hence (2.14) implies (2.2). By Theorem 2.2, systems (1.6) and (1.7) are both stable.

Corollary 2.5. System (1.8) has fixed points x∗ = (−(a+ 1)±
√

(a+ 1)2 + 4µ)/2µ. Assume
that there exists a constant r ∈ (0,1) such that

2
∣∣µ · x∗∣∣+ |a| ≤ r. (2.17)

Then system (1.8) is stable.

Corollary 2.6. Assume that

∣∣am,n
∣∣+

∣∣bm,n
∣∣+

∣∣pm,n
∣∣≤ 1 ∀m≥ 0, n≥ 0. (2.18)

Then system (1.9) is stable.

Define four subsets of N0×N0 as follows:

B1 =
{

(i, j) | 0≤ i≤ σ , 0≤ j < τ
}

, B2 =
{

(i, j) | 0≤ i≤ σ , j ≥ τ
}

,

B3 =
{

(i, j) | i > σ , 0≤ j < τ
}

, B4 =
{

(i, j) | i > σ , j ≥ τ
}
.

(2.19)

Obviously, B1 is a finite set, B2, B3, and B4 are infinite sets, B1, B2, B3, and B4 are mutually
disjoint, and N

2
0 = B1∪B2∪B3∪B4.
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Theorem 2.7. Assume that x∗ is a fixed point of system (1.1), the function f (m,n,x, y,z)
is both continuously differentiable on R3 for any (m,n) ∈ N

2
0 and uniformly continuously

differentiable at the point (x∗,x∗,x∗)∈R3, and there exists a constant r ∈ (0,1) such that
for any (m,n)∈ B3,

∣∣ f ′x
(
m,n,x∗,x∗,x∗

)∣∣+
∣∣ f ′y

(
m,n,x∗,x∗,x∗

)∣∣+ r−m
∣∣ f ′z

(
m,n,x∗,x∗,x∗

)∣∣≤ r, (2.20)

and for (m,n)∈ B1∪B2∪B4,

∣∣ f ′x
(
m,n,x∗,x∗,x∗

)∣∣+
∣∣ f ′y

(
m,n,x∗,x∗,x∗

)∣∣+ r−σ
∣∣ f ′z

(
m,n,x∗,x∗,x∗

)∣∣≤ r. (2.21)

Then, system (1.1) is SB-exponentially stable.

Proof. From the given conditions, there exist two positive constants, M > 0 and ξ ∈ (r,1),
such that (2.4) holds and, for any (m,n)∈ B3,

∣∣ f ′x (m,n,x, y,z)
∣∣+

∣∣ f ′y (m,n,x, y,z)
∣∣+ ξ−m

∣∣ f ′z (m,n,x, y,z)
∣∣≤ ξ, (2.22)

and for (m,n)∈ B1∪B2∪B4,

∣∣ f ′x (m,n,x, y,z)
∣∣+

∣∣ f ′y (m,n,x, y,z)
∣∣+ ξ−σ

∣∣ f ′z (m,n,x, y,z)
∣∣≤ ξ, (2.23)

for |x− x∗| <M, |y− x∗| <M, and |z− x∗| <M.
Let δ ∈ (0,M) be a given constant and let φ = {φm,n} be a given bounded function

defined on Ω which satisfies |φm,n− x∗| < δ for all (m,n)∈Ω. Let the sequence {xm,n} be
a solution of system (1.1) with the initial condition φ. In view of (1.1) and the following
inequalities:

∣∣x0,0− x∗
∣∣≤ δ <M,

∣∣x0,1− x∗
∣∣≤ δ <M,

∣∣x−σ ,−τ − x∗
∣∣≤ δ <M,

(2.24)

it follows from (2.4), (2.23), and Lemma 2.1 that there exists a constant

t0 = t
(
0,0,x0,0,x0,1,x−σ ,−τ

)∈ (0,1), (2.25)

such that

∣∣x1,0− x∗
∣∣= ∣∣ f (0,0,x0,0,x0,1,x−σ ,−τ

)− f
(
0,0,x∗,x∗,x∗

)∣∣

≤ ∣∣ f ′x
(
0,0,λ,η,θ

)∣∣∣∣x0,0− x∗
∣∣+

∣∣ f ′y (0,0,λ,η,θ)
∣∣∣∣x0,1− x∗

∣∣

+
∣∣ f ′z (0,0,λ,η,θ)

∣∣∣∣x−σ ,−τ − x∗
∣∣

≤Mξ,

(2.26)
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where λ = x∗ + t0(x0,0 − x∗), η = x∗ + t0(x0,1 − x∗), and θ = x∗ + t0(x−σ ,−τ − x∗). Simi-
larly, from (1.1), (2.4), and (2.23), one has

∣∣x1.1− x∗
∣∣= ∣∣ f (0,1,x0,1,x0,2,x−σ ,1−τ

)− f
(
0,1,x∗,x∗,x∗

)∣∣≤Mξ. (2.27)

In general, for any integer n≥ 0, |x1,n− x∗| ≤Mξ.
Assume that for a certain integer k ∈ {1, . . . ,σ},

∣∣xi,n− x∗
∣∣≤Mξi for any i∈ {1,2, . . . ,k}, n≥ 0. (2.28)

Then (k,n)∈ B1∪B2∪B4 and (k− σ ,n− τ)∈Ω. From (2.4) and (2.23), one obtains
∣∣xk+1,n− x∗

∣∣= ∣∣ f (k,n,xk,n,xk,n+1,xk−σ ,n−τ
)− f

(
k,n,x∗,x∗,x∗

)∣∣

≤ ∣∣ f ′x (k,n,λ,η,θ)
∣∣∣∣xk,n− x∗

∣∣+
∣∣ f ′y (k,n,λ,η,θ)

∣∣∣∣xk,n+1− x∗
∣∣

+
∣∣ f ′z (k,n,λ,η,θ)

∣∣∣∣xk−σ ,n−τ − x∗
∣∣

≤ ∣∣ f ′x (k,n,λ,η,θ)
∣∣ ·Mξk +

∣∣ f ′y (k,n,λ,η,θ)
∣∣ ·Mξk

+
∣∣ f ′z (k,n,λ,η,θ)

∣∣ ·M
≤Mξk+1.

(2.29)

By induction, |xm,n− x∗| ≤Mξm for any m∈ {1,2, . . . ,σ + 1} and n≥ 0.
Assume that for a certain integer k ≥ σ + 1,

∣∣xi,n− x∗
∣∣≤Mξi for any i∈ {1,2, . . . ,k}, n≥ 0. (2.30)

If n ∈ {0,1, . . . ,τ − 1}, then (k,n) ∈ B3 and (k − σ ,n− τ) ∈ Ω. Hence, from (1.1),
(2.4), (2.22), and Lemma 2.1, there exists a constant t0 = t(k,n,xk,n,xk,n+1,xk−σ ,n−τ) ∈
(0,1) such that

∣∣xk+1,n− x∗
∣∣≤ ∣∣ f ′x (k,n,λ,η,θ)

∣∣ ·Mξk +
∣∣ f ′y (k,n,λ,η,θ)

∣∣ ·Mξk

+
∣∣ f ′z (k,n,λ,η,θ)

∣∣ ·M
≤Mξk+1,

(2.31)

where λ= x∗ + t0(xk,n− x∗), η = x∗ + t0(xk,n+1− x∗), and θ = x∗ + t0(xk−σ ,n−τ − x∗).
If n ≥ τ, then (k,n) ∈ B1 ∪B2 ∪B4 and (k− σ ,n− τ) /∈Ω. Hence, from (2.4), (2.23),

and the assumption, one has

∣∣xk+1,n− x∗
∣∣≤ ∣∣ f ′x (k,n,λ,η,θ)

∣∣ ·Mξk +
∣∣ f ′y (k,n,λ,η,θ)

∣∣ ·Mξk

+
∣∣ f ′z (k,n,λ,η,θ)

∣∣ ·Mξk−σ

≤Mξk+1.

(2.32)

By induction, |xm,n − x∗| ≤Mξm for any (m,n) ∈ N1 ×N0, that is, system (1.1) is SB-
exponentially stable. The proof is completed. �

From Theorem 2.7, it is easy to obtain the following corollaries.
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Corollary 2.8. Assume that there exists a constant r ∈ (0,1) such that

∣∣µm,n
∣∣+

∣∣am,n
∣∣≤ r ∀m≥ 0, n≥ 0. (2.33)

Then systems (1.6) and (1.7) are both SB-exponentially stable.

Corollary 2.9. System (1.8) has fixed points x∗ = (−(a+ 1)±
√

(a+ 1)2 + 4µ)/2µ. Assume
that there exists a constant r ∈ (0,1) such that

2
∣∣µ · x∗∣∣+ |a| ≤ r. (2.34)

Then system (1.8) is SB-exponentially stable.

Corollary 2.10. Assume that there exists a constant r ∈ (0,1) such that for (m,n)∈ B3,

∣∣am,n
∣∣+

∣∣bm,n
∣∣+ r−m

∣∣pm,n
∣∣≤ r, (2.35)

and for (m,n)∈ B1∪B2∪B4,

∣∣am,n
∣∣+

∣∣bm,n
∣∣+ r−σ

∣∣pm,n
∣∣≤ r. (2.36)

Then system (1.9) is SB-exponentially stable.

Let

D1 =
{

(m,n) : 1≤m≤ σ , 0≤ n < τ
}

, D2 =
{

(m,n) : m> σ , 0≤ n < τ
}

,

D3 =
{

(m,n) : 1≤m≤ σ , n≥ τ
}

, D4 =
{

(m,n) : m> σ , n≥ τ
}
.

(2.37)

Obviously, D1, D2, D3, and D4 are mutually disjoint, and N1×N0 =D1∪D2∪D3∪D4.

Theorem 2.11. Assume that x∗ is a fixed point of system (1.1), and f (m,n,x, y,z) is both
continuously differentiable on R3 for any (m,n)∈N

2
0 and uniformly continuously differen-

tiable at (x∗,x∗,x∗)∈R3. Further, assume that there exist a constant r ∈ (0,1) and an open
subset D ⊂R3 with (x∗,x∗,x∗)∈D such that for any (x, y,z)∈D and any n≥ 0,

∣∣ f ′x (0,n,x, y,z)
∣∣+

∣∣ f ′y (0,n,x, y,z)
∣∣+

∣∣ f ′z (0,n,x, y,z)
∣∣≤ rn+1, (2.38)

and for all (m,n)∈D1∪D2∪D3,

∣∣ f ′x
(
m,n,x∗,x∗,x∗

)∣∣+ r
∣∣ f ′y

(
m,n,x∗,x∗,x∗

)∣∣+ r−m−n
∣∣ f ′z

(
m,n,x∗,x∗,x∗

)∣∣≤ r,
(2.39)

and for (m,n)∈D4,

∣∣ f ′x
(
m,n,x∗,x∗,x∗

)∣∣+ r
∣∣ f ′y

(
m,n,x∗,x∗,x∗

)|+ r−σ−τ
∣∣ f ′z

(
m,n,x∗,x∗,x∗

)∣∣≤ r.
(2.40)

Then, system (1.1) is DB-exponentially stable.
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Proof. From the given conditions and from (2.38), (2.39), and (2.40), there exist positive
constants M > 0 and ξ ∈ (r,1) such that (2.4) holds and, for all n≥ 0,

∣∣ f ′x (0,n,x, y,z)
∣∣+

∣∣ f ′y (0,n,x, y,z)
∣∣+

∣∣ f ′z (0,n,x, y,z)
∣∣≤ ξn+1, (2.41)

and for all (m,n)∈D1∪D2∪D3,

∣∣ f ′x (m,n,x, y,z)
∣∣+ ξ

∣∣ f ′y (m,n,x, y,z)
∣∣+ ξ−m−n

∣∣ f ′z (m,n,x, y,z)
∣∣≤ ξ, (2.42)

and for all (m,n)∈D4,

∣∣ f ′x (m,n,x, y,z)
∣∣+ ξ

∣∣ f ′y (m,n,x, y,z)
∣∣+ ξ−σ−τ

∣∣ f ′z (m,n,x, y,z)
∣∣≤ ξ, (2.43)

for |x− x∗| <M, |y− x∗| <M, and |z− x∗| <M.
Let δ ∈ (0,M) be a constant and let φ = {φm,n} be a given bounded function defined on

Ω which satisfies |φm,n− x∗| < δ for all (m,n)∈Ω. Let the sequence {xm,n} be a solution
of system (1.1) with the initial condition φ. In view of (1.1) and the inequalities

∣∣x0,n− x∗
∣∣≤ δ <M,

∣∣x0,n+1− x∗
∣∣≤ δ <M,

∣∣x−σ ,n−τ − x∗
∣∣≤ δ <M,

(2.44)

it follows from (2.4) and (2.41) that there exists a constant t0,n = t(0,n,x0,n,x0,n+1,x−σ ,n−τ)
∈ (0,1) such that for any n∈N0,

∣∣x1,n− x∗
∣∣= ∣∣ f (0,n,x0,n,x0,n+1,x−σ ,n−τ

)− f
(
0,n,x∗,x∗,x∗

)∣∣

≤ ∣∣ f ′x
(
0,n,λ0,n,η0,n,θ0,n

)∣∣∣∣x0,n− x∗
∣∣

+
∣∣ f ′y

(
0,n,λ0,n,η0,n,θ0,n

)∣∣∣∣x0,n+1− x∗
∣∣

+
∣∣ f ′z

(
0,n,λ0,n,η0,n,θ0,n

)∣∣∣∣x−σ ,n−τ − x∗
∣∣

≤Mξn+1,

(2.45)

where

λ0,n = x∗ + t0,n
(
x0,n− x∗

)
, η0,n = x∗ + t0,n

(
x0,n+1− x∗

)
,

θ0,n = x∗ + t0,n
(
x−σ ,n−τ − x∗

)
.

(2.46)

Assume that for some m∈ {1,2, . . . ,σ},

∣∣xi, j − x∗
∣∣≤Mξi+ j , ∀1≤ i≤m and all j ∈N0. (2.47)
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Then, for all n≥ 0, one has (m− σ ,n− τ)∈Ω and (m,n)∈D1∪D2∪D3. Hence, it fol-
lows from (2.4) and (2.42) that there exists a constant tm,n = t(m,n,xm,n,xm,n+1,xm−σ ,n−τ)
∈ (0,1) such that

∣∣xm+1,n− x∗
∣∣= ∣∣ f (m,n,xm,n,xm,n+1,xm−σ ,n−τ

)− f
(
m,n,x∗,x∗,x∗

)∣∣

≤ ∣∣ f ′x
(
m,n,λm,n,ηm,n,θm,n

)∣∣∣∣xm,n− x∗
∣∣

+
∣∣ f ′y

(
m,n,λm,n,ηm,n,θm,n

)∣∣∣∣xm,n+1− x∗
∣∣

+
∣∣ f ′z

(
m,n,λm,n,ηm,n,θm,n

)∣∣∣∣xm−σ ,n−τ − x∗
∣∣

≤ {∣∣ f ′x
(
m,n,λm,n,ηm,n,θm,n

)∣∣+ ξ
∣∣ f ′y

(
m,n,λm,n,ηm,n,θm,n

)∣∣

+ ξ−m−n
∣∣ f ′z

(
m,n,λm,n,ηm,n,θm,n

)∣∣}×Mξm+n

≤Mξm+n+1,

(2.48)

where

λm,n = x∗ + tm,n
(
xm,n− x∗

)
, ηm,n = x∗ + tm,n

(
xm,n+1− x∗

)
,

θm,n = x∗ + tm,n
(
xm−σ ,n−τ − x∗

)
.

(2.49)

By induction, |xm,n− x∗| ≤Mξm+n for all m∈ {1,2, . . . ,σ + 1} and all n≥ 0.
Assume that for some m≥ σ + 1,

∣∣xi,n− x∗
∣∣≤Mξi+n, ∀1≤ i≤m and all n∈N0. (2.50)

Then, if n ∈ {0,1, . . . ,τ − 1}, then (m,n) ∈ D1 ∪D2 ∪D3 and (m− σ ,n− τ) ∈ Ω. From
(2.4) and (2.42), one has

∣∣xm+1,n− x∗
∣∣≤ ∣∣ f ′x

(
m,n,λm,n,ηm,n,θm,n

)∣∣∣∣xm,n− x∗
∣∣

+
∣∣ f ′y

(
m,n,λm,n,ηm,n,θm,n

)∣∣∣∣xm,n+1− x∗
∣∣

+
∣∣ f ′z

(
m,n,λm,n,ηm,n,θm,n

)∣∣∣∣xm−σ ,n−τ − x∗
∣∣

≤ {∣∣ f ′x
(
m,n,λm,n,ηm,n,θm,n

)∣∣+ ξ
∣∣ f ′y

(
m,n,λm,n,ηm,n,θm,n

)∣∣

+ ξ−m−n
∣∣ f ′z

(
m,n,λm,n,ηm,n,θm,n

)∣∣}×Mξm+n

≤Mξm+n+1.

(2.51)

If n ≥ τ, then (m,n) ∈ D4 and (m− σ ,n− τ) ∈ N1 ×N0. From (2.4), (2.43), and the as-
sumption,

∣∣xm+1,n− x∗
∣∣≤ {∣∣ f ′x (m,n,λm,n,ηm,n,θm,n

)∣∣+ ξ
∣∣ f ′y

(
m,n,λm,n,ηm,n,θm,n

)∣∣

+ ξ−σ−τ
∣∣ f ′x

(
m,n,λm,n,ηm,n,θm,n

)∣∣}×Mξm+n

≤Mξm+n+1.

(2.52)

By induction, |xm,n− x∗| ≤Mξm+n for any (m,n)∈N1×N0, that is, system (1.1) is DB-
exponentially stable. The proof is completed. �

From Theorem 2.11, it is easy to obtain the following corollaries.
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Corollary 2.12. Assume that there exist two constants r ∈ (0,1) and C ∈ (0,1) such that
∣∣µ0,n

∣∣+
∣∣a0,n

∣∣≤ Crn+1, ∀n≥ 0,
∣∣µm,n

∣∣+ r
∣∣am,n

∣∣≤ r, for any (m,n)∈N1×N0.
(2.53)

Then, systems (1.6) and (1.7) are both DB-exponentially stable.

Corollary 2.13. Assume that there exists a constant r ∈ (0,1) such that
∣∣a0,n

∣∣+
∣∣b0,n

∣∣+
∣∣p0,n

∣∣≤ rn+1, for any n≥ 0,

r
∣∣am,n

∣∣+
∣∣bm,n

∣∣+ r−m−n
∣∣pm,n

∣∣≤ r, for any (m,n)∈D1∪D2∪D3,

r
∣∣am,n

∣∣+
∣∣bm,n

∣∣+ r−σ−τ
∣∣pm,n

∣∣≤ r, for any (m,n)∈D4.

(2.54)

Then, system (1.9) is DB-exponentially stable.
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