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We study the existence and global stability of positive periodic solutions of a periodic
discrete predator-prey system with delay and Holling type III functional response. By us-
ing the continuation theorem of coincidence degree theory and the method of Lyapunov
functional, some sufficient conditions are obtained.

1. Introduction

Many realistic problems could be solved on the basis of constructing suitable mathemat-
ical models, but it is obvious that a perfect model cannot be achieved because even if we
could put all possible factors in a model, the model could never predict ecological catas-
trophes or mother nature caprice. Therefore, the best we can do is to look for analyzable
models that describe as well as possible the reality on populations. From a mathematical
point of view, the art of good modelling relies on the following: (i) a sound understanding
and appreciation of the biological problem; (ii) a realistic mathematical representation of
the important biological phenomena; (iii) finding useful solutions, preferably quantita-
tive; (iv) a biological interpretation of the mathematical results in terms of insights and
predictions.

Usually a mathematical model could be described by two types of systems: a contin-
uous system or a discrete one. When the size of the population is rarely small or the
population has nonoverlapping generations, we may prefer the discrete models. Among
all the mathematical models, the predator-prey systems play a fundamental and crucial
role (for more details, we refer to [3, 6]). In general, a predator-prey system may have the
form

x′ = rx
(

1− x

K

)
−ϕ(x)y,

y′ = y
(
µϕ(x)−D

)
,

(1.1)

where ϕ(x) is the functional response function. Massive work has been done on this issue.
We refer to the monographs [4, 10, 18, 20] for general delayed biological systems and to
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[2, 8, 9, 11, 21, 24] for investigation on predator-prey systems. Here, ϕ(x) may be differ-
ent response functions: standard type II and type III response functions (Holling [12]),
Ivlev’s functional response (Ivlev [17]), and Rosenzweig functional response (Rosenzweig
[22]). Systems with Holling-type functional response have been investigated by many au-
thors, see, for example, Hsu and Huang [13], Rosenzweig and MacArthur [22, 23]. They
studied the stability of the equilibria, existence of Hopf bifurcation, limit cycles, homo-
clinic loops, and even catastrophe.

On the other hand, in view of the periodic variation of the environment (e.g., food
supplies, mating habits, seasonal affects of weather, etc.), it would be of interest to study
the global existence and global stability of positive solutions for periodic systems [18].
Recently, some excellent existence results have been obtained by using the coincidence
degree method (see, e.g., [5, 14, 15, 16, 19, 27]).

Motivated by the above considerations, we will consider the discrete predator-prey
system with Holling type III functional response. The corresponding continuous system
which has been investigated in our previous articles [25, 26] with discrete delays takes the
form

N ′
1(t)=N1(t)

[
b1(t)− a1(t)N1

(
t− τ1

)]− α1(t)N2
1 (t)N2(t− σ)

1 +mN2
1 (t)

,

N ′
2(t)=N2(t)

[
− b2(t)− a2(t)N2(t) +

α2(t)N2
1

(
t− τ2

)
1 +mN2

1

(
t− τ2

)
]

,

(1.2)

where N1(t) and N2(t) represent the densities of the prey population and predator popu-
lation at time t, respectively; m, τ1, τ2, and σ are nonnegative constants; a1(t), b1(t), α1(t),
a2(t), b2(t), and α2(t) are all continuous functions; b1(t) stands for prey intrinsic growth
rate, b2(t) stands for the death rate of the predator, m stands for half capturing satura-
tion; the function N1(t)[b1(t)− a1(t)N1(t− τ1)] represents the specific growth rate of the
prey in the absence of predator; and N2

1 (t)/(1 +mN2
1 (t)) denotes the predator response

function, which reflects the capture ability of the predator.
We assume that the average growth rates in (1.2) change at regular intervals of time,

then we can incorporate this aspect in (1.2) and obtain the following modified system:

1
N1(t)

dN1(t)
dt

= [b1
(
[t]
)− a1

(
[t]
)
N1
(
[t]− [τ1

])]− α1
(
[t]
)
N1
(
[t]
)
N2
(
[t]− [σ]

)
1 +mN2

1

(
[t]
) ,

1
N2(t)

dN2(t)
dt

=−b2
(
[t]
)− a2

(
[t]
)
N2
(
[t]
)

+
α2
(
[t]
)
N2

1

(
[t]− [τ2

])
1 +mN2

1

(
[t]− [τ2

]) , t �= 0,1,2, . . . ,

(1.3)

where [t] denotes the integer part of t, t ∈ (0,+∞). By a solution of (1.3) we mean a
function N = (N1,N2)T , which is defined for t ∈ (0,+∞), and possesses the following
properties:

(1) N is continuous on [0,+∞);
(2) the derivatives dN1(t)/dt, dN2(t)/dt exist at each point t ∈ [0,+∞) with the pos-

sible exception of the points t ∈ {0,1,2, . . .}, where left-sided derivatives exist;
(3) the equations in (1.3) are satisfied on each interval [k,k+ 1) with k = 0,1,2, . . . .
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On any interval of the form [k,k + 1), k = 0,1,2, . . . , we can integrate (1.3) and obtain
for k ≤ t < k+ 1, k = 0,1,2, . . . ,

N1(t)=N1(k)exp

{[
b1(k)− a1(k)N1

(
k− [τ1

])− α1(k)N1(k)N2
(
k− [σ]

)
1 +mN2

1 (k)

]
(t− k)

}
,

N2(t)=N2(k)exp

{[
− b2(k)− a2(k)N2(k) +

α2(k)N2
1

(
k− [τ2

])
1 +mN2

1

(
k− [τ2

])
]

(t− k)

}
.

(1.4)

Let t→ k+ 1; we obtain from (1.4) that

N1(k+ 1)=N1(k)exp

{
b1(k)− a1(k)N1

(
k− [τ1

])− α1(k)N1(k)N2
(
k− [σ]

)
1 +mN2

1 (k)

}
,

N2(k+ 1)=N2(k)exp

{
− b2(k)− a2(k)N2(k) +

α2(k)N2
1

(
k− [τ2

])
1 +mN2

1

(
k− [τ2

])
}

,

(1.5)

which is a discrete time analogue of system (1.2), where N1(t), N2(t) are the densities of
the prey population and predator population at time t.

Let Z, Z+, R, R+, and R2 denote the sets of all integers, nonnegative integers, real
numbers, nonnegative real numbers, and two-dimensional Euclidean vector space, re-
spectively. Throughout this paper, we always assume that bi : Z→ R and ai,αi : Z→ R+

(i= 1,2) are periodic functions such that

bi(k+ω)= bi(k), ai(k+ω)= ai(k), αi(k+ω)= αi(k), i= 1,2, (1.6)

for any k ∈ Z and bi > 0 (i= 1,2), where ω is a positive integer and bi is defined as below.
For convenience, we denote

Iω = {0,1, . . . ,ω− 1}, g = 1
ω

ω−1∑
k=0

g(k), G= 1
ω

ω−1∑
k=0

∣∣g(k)
∣∣, (1.7)

where {g(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.
The exponential form of (1.5) assures that for any initial condition N(0) > 0, N(k) re-

mains positive. In the rest of this paper, for biological reasons, we only consider solutions
N(k) with

Ni(−k)≥ 0, k = 1,2, . . . ,max
{[
τ1
]
,
[
τ2
]
, [σ]

}
, Ni(0) > 0, i= 1,2. (1.8)
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2. Existence of positive periodic solution

In order to obtain the existence of positive periodic solution of (1.5), for the reader’s
convenience, we will summarize in the following a few concepts and results from [7] that
will be basic for this section.

LetX , Z be normed vector spaces, L : DomL⊂ X → Z a linear mapping, andN : X → Z

a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dimKerL= CodimImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index
zero, there exist continuous projections P : X → X and Q : Z→ Z such that ImP = KerL,
ImL= KerQ = Im(I −Q). It follows that L|DomL∩KerP : (I −P)X → ImL is invertible.
We denote the inverse of the map L by KP . If Ω is an open bounded subset of X , the
mapping N will be called L-compact on Ω if QN(Ω) is bounded and KP(I −Q)N : Ω→ X
is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→
KerL.

In the proof of our main theorem, we will use the following result from Gaines and
Mawhin [7].

Lemma 2.1 (continuation theorem). Let L be a Fredholm mapping of index zero and let N
be L-compact on Ω. Suppose that

(a) for each λ∈ (0,1), every solution x of Lx = λNx satisfies x /∈ ∂Ω;
(b) QNx �= 0 for each x ∈ ∂Ω∩KerL and

deg{JQN ,Ω∩KerL,0} �= 0. (2.1)

Then the operator equation Lx =Nx has at least one solution lying in DomL∩Ω.

Now we state two lemmas which are useful to prove the main theorem for the existence
of a positive ω-periodic solution.

Lemma 2.2 (see [5]). Let g : Z→ R be a function satisfying g(k +ω) = g(k), k ∈ Z. Then
for any fixed k1,k2 ∈ Iω and k ∈ Z,

g(k)≤ g
(
k1
)

+
ω−1∑
k=0

∣∣g(k+ 1)− g(k)
∣∣,

g(k)≥ g
(
k2
)− ω−1∑

k=0

∣∣g(k+ 1)− g(k)
∣∣.

(2.2)

Lemma 2.3. If (h1) (α2 −mb2)−1/2(b2)1/2 < b1/a1 ≤ 27/m2 and (h2) α2 > mb2 hold, then
the system of algebraic equations

b1− a1u1−α1
u1u2

1 +mu2
1
= 0,

b2 + a2u2−α2
u2

1

1 +mu2
1
= 0

(2.3)

has a unique solution (u∗1 ,u∗2 )T ∈R2 with u∗i > 0, i= 1,2.
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Proof. Consider the functions

f
(
u1
)=

(
1 +mu2

1

)(
b1− a1u1

)
α1u1

, u1 > 0,

g
(
u1
)= −b2 +

(
α2−mb2

)
u2

1

a2
(
1 +mu2

1

) , u1 > 0.

(2.4)

It is easy to see that

f ′
(
u1
)= 1

α1

(
−b1

u2
1

+mb1− 2ma1u1

)
,

f ′′
(
u1
)= 1

α1

(
2b1

u3
1
− 2ma1

)
.

(2.5)

From (h1) we know that

f ′
(
u1
)≤ 0. (2.6)

Notice that

f (0)= +∞, f (+∞)=−∞,

g(0)= −b2

a2
< 0, g(+∞)=

(
α2−mb2

)
a2
(
1 +mu2

1

) ,
(2.7)

and in view of (h2), we have

g′
(
u1
)
> 0 for u1 > 0. (2.8)

From the above discussion we may conclude that the curve f (u1) = g(u1) has only a
unique zero point. It follows that the algebraic equations (2.3) have a unique solution.
The proof is complete. �

Define

l2 =
{
y = y(k) : y(k)∈R

2, k ∈ Z
}
. (2.9)

For θ = (θ1,θ2)T ∈ R2, define |θ| = max{θ1,θ2}. Let lω ⊂ l2 denote the subspace of all
ω-periodic sequences equipped with the norm

‖y‖ =max
k∈Iω

∣∣y(k)
∣∣, (2.10)
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that is,

lω = {y = y(k) : y(k+ω)= y(k), y(k)∈R
2, k ∈ Z

}
. (2.11)

It is not difficult to show that lω is a finite-dimensional Banach space.
Set

lω0 =
{
y = y(k)∈ lω :

ω−1∑
k=0

y(k)= 0

}
,

lωc =
{
y = y(k)∈ lω : y(k)= h∈R

2, k ∈ Z
}
.

(2.12)

Then it follows that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0 ⊕ lωc , dim lωc = 2. (2.13)

Now we state our main result of this section.

Theorem 2.4. Assume that (h1), (h3) 2
√
mb1 > α1 exp{H21}, and (h4)

exp
{

2H12
}

1 +mexp
{

2H12
}α2 > b2 (2.14)

hold, where

H21 = ln

{
α2−mb2

ma2

}
+
(
B2 + b2

)
ω,

H12 = ln

{
2
√
mb1−α1 exp

{
H21

}
2
√
ma1

}
− (B1 + b1

)
ω.

(2.15)

Then (1.5) has at least one positive ω-periodic solution.

Proof. Make the change of variables

N1(t)= exp
{
x1(t)

}
, N2(t)= exp

{
x2(t)

}
; (2.16)
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then (1.5) can be reformulated as

x1(k+ 1)− x1(k)= b1(k)− a1(k)exp
{
x1
(
k− [τ1

])}

− α1(k)exp
{
x1(k) + x2

(
k− [σ]

)}
1 +mexp

{
2x1(k)

} ,

x2(k+ 1)− x2(k)=−b2(k)− a2(k)exp
{
x2(k)

}

+
α2(k)exp

{
2x1

(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])} .

(2.17)

Define

X = Y = lω, (Lx)(k)= x(k+ 1)− x(k),

(Nx)(k)=



b1(k)− a1(k)exp

{
x1
(
k− [τ1

])}− α1(k)exp
{
x1(k) + x2

(
k− [σ]

)}
1 +mexp

{
2x1(k)

}
−b2(k)− a2(k)exp

{
x2(k)

}
+
α2(k)exp

{
2x1

(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])}




≡
[�1(k)
�2(k)

]

(2.18)

for any x ∈ X and k ∈ Z. It is easy to see that L is a bounded linear operator,

KerL= lωc , ImL= lω0 ,

dimKerL= 2= codimImL;
(2.19)

then it follows that L is a Fredholm mapping of index zero.
Set

Px = 1
ω

ω−1∑
k=0

x(s), x ∈ X ,

Qz = 1
ω

ω−1∑
k=0

z(s), z ∈ Y ,

(2.20)

and P, Q are continuous projectors such that

ImP = KerL, KerQ = ImL= Im(I −Q). (2.21)

Furthermore, the generalized inverse to L,

KP : ImL−→ KerP∩DomL, (2.22)
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exists and can be read as

KP(z)=
k−1∑
s=0

z(s)− 1
ω

ω−1∑
s=0

(ω− s)z(s). (2.23)

Thus,

QNx =




1
ω

ω−1∑
k=0

[
b1(k)− a1(k)exp

{
x1
(
k− [τ1

])}

−α1(k)exp
{
x1(k) + x2

(
k− [σ]

)}
1 +mexp

{
2x1(k)

}
]

1
ω

ω−1∑
k=0

[
− b2(k)− a2(k)exp

{
x2(k)

}
+
α2(k)exp

{
2x1

(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])}
]




,

KP(I −Q)Nx =




1
ω

ω−1∑
s=0

�1(s)

1
ω

ω−1∑
s=0

�2(s)


−




1
ω

ω−1∑
s=0

(ω− s)�1(s)

1
ω

ω−1∑
s=0

(ω− s)�2(s)




−




(
k− ω+ 1

2

)
1
ω

ω−1∑
s=0

�1(s)

(
k− ω+ 1

2

)
1
ω

ω−1∑
s=0

�2(s)


 .

(2.24)

Obviously, QN and KP(I − Q)N are continuous. It is not difficult to show that

KP(I −Q)N(Ω) is compact for any open bounded set Ω ⊂ X by using the Arzelà-Ascoli
theorem. Moreover, QN(Ω) is clearly bounded. Thus, N is L-compact on Ω with any
open bounded set Ω⊂ X .

Now we reach the position to search for an appropriate open bounded set Ω for the
application of the continuation theorem. Corresponding to the operator equation Lx =
λNx, λ∈ (0,1),

x1(k+ 1)−x1(k)=λ

[
b1(k)− a1(k)exp

{
x1
(
k−[τ1

])}− α1(k)exp
{
x1(k) + x2

(
k− [σ]

)}
1 +mexp

{
2x1(k)

}
]

,

x2(k+ 1)− x2(k)= λ

[
− b2(k)− a2(k)exp

{
x2(k)

}
+
α2(k)exp

{
2x1

(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])}
]
.

(2.25)
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Assume that x(t)∈ X is an ω-periodic solution of (2.25) for a certain λ∈ (0,1). Sum-
ming on both sides of (2.25) from 0 to ω− 1 with respect to k, we obtain

ω−1∑
k=0

[
x1(k+ 1)− x1(k)

]

= λ
ω−1∑
k=0

[
b1(k)− a1(k)exp

{
x1
(
k− [τ1

])}− α1(k)exp
{
x1(k) + x2

(
k− [σ]

)}
1 +mexp

{
2x1(k)

}
]

,

ω−1∑
k=0

[
x2(k+ 1)− x2(k)

]

= λ
ω−1∑
k=0

[
− b2(k)− a2(k)exp

{
x2(k)

}
+
α2(k)exp

{
2x1

(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])}
]
.

(2.26)

Notice that

ω−1∑
k=0

[
x1(k+ 1)− x1(k)

]= ω−1∑
k=0

[
x2(k+ 1)− x2(k)

]= 0. (2.27)

Thus

b1ω =
ω−1∑
k=0

[
a1(k)exp

{
x1
(
k− [τ1

])}
+
α1(k)exp

{
x1(k) + x2

(
k− [σ]

)}
1 +mexp

{
2x1(k)

}
]

, (2.28)

b2ω =
ω−1∑
k=0

[
− a2(k)exp

{
x2(k)

}
+
α2(k)exp

{
2x1

(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])}
]
. (2.29)

From (2.25), (2.28), and (2.29), we obtain

ω−1∑
k=0

∣∣x1(k+ 1)− x1(k)
∣∣

≤
ω−1∑
k=0

[∣∣b1(k)
∣∣+ a1(k)exp

{
x1
(
k− [τ1

])}
+
α1(k)exp

{
x1(k) + x2

(
k− [σ]

)}
1 +mexp

{
2x1(k)

}
]

= (B1 + b1
)
ω,

(2.30)

ω−1∑
k=0

∣∣x2(k+ 1)− x2(k)
∣∣

≤
ω−1∑
k=0

∣∣b2(k)
∣∣+

ω−1∑
k=0

[
− a2(k)exp

{
x2(k)

}
+
α2(k)exp

{
2x1

(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])}
]

= (B2 + b2
)
ω.

(2.31)
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Note that x(t)= (x1(t),x2(t))T ∈ X ; then there exist ξi,ηi ∈ Iω (i= 1,2) such that

xi
(
ξi
)=min

k∈Iω
xi(k), xi

(
ηi
)=max

k∈Iω
xi(k), i= 1,2. (2.32)

In view of (2.29), we get

b2 + a2 exp
{
x2
(
ξ2
)}≤ α2

exp
{

2x1
(
k− [τ2

])}
1 +mexp

{
2x1

(
k− [τ2

])} ≤ α2

m
, (2.33)

thus

x2
(
ξ2
)≤ ln

{
α2/m− b2

a2

}
. (2.34)

Therefore, by Lemma 2.2, we obtain

x2(k)≤ x2
(
ξ2
)

+
ω−1∑
k=0

∣∣x2(s+ 1)− x2(s)
∣∣

≤ ln

{
α2/m− b2

a2

}
+
(
B2 + b2

)
ω =H21.

(2.35)

From (2.28), we know that

a1ωexp
{
x1
(
ξ1
)}≤ ω−1∑

k=0

[
a1(k)exp

{
x1
(
k− [τ1

])}]≤ b1ω, (2.36)

so we get

x1
(
ξ1
)≤ ln

{
b1

a1

}
. (2.37)

Combine (2.37) with (2.30); also, in view of Lemma 2.2, we conclude that

x1(k)≤ x1
(
ξ1
)

+
ω−1∑
k=0

∣∣x1(s+ 1)− x1(s)
∣∣≤ ln

{
b1

a1

}
+
(
B1 + b1

)
ω :=H11. (2.38)

Formulas (2.35) and (2.28) imply that

b1ω ≤
ω−1∑
k=0

[
a1(k)exp

{
x1
(
η1
)}

+
α1(k)exp

{
x1(k)

}
exp

{
H21

}
1 +mexp

{
2x1(k)

}
]

≤ a1ωexp
{
x1
(
η1
)}

+
α1ωexp

{
H21

}
2
√
m

.

(2.39)

Direct calculation yields

x1
(
η1
)≥ ln

{
2
√
mb1−α1 exp

{
H21

}
2
√
ma1

}
, (2.40)
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thus, by Lemma 2.2,

x1(k)≥ x1
(
η1
)− ω−1∑

k=0

∣∣x1(s+ 1)− x1(s)
∣∣

≥ ln

{
2
√
mb1−α1 exp

{
H21

}
2
√
ma1

}
− (B1 + b1

)
ω =H12.

(2.41)

From (2.29), (2.41), and the monotonicity of the function

exp{2u}
1 +mexp{2u} (m> 0), (2.42)

we have

b2ω+ a2ωexp
{
x2
(
η2
)}≥ ω−1∑

k=0

α2(k)exp
{

2x1
(
ξ1
)}

1 +mexp
{

2x1
(
ξ1
)} ≥ exp

{
2H12

}
1 +mexp

{
2H12

}α2ω; (2.43)

this means that

x2
(
η2
)≥ ln

{(
exp

{
2H12

}
/
(
1 +mexp

{
2H12

}))
α2− b2

a2

}
. (2.44)

From (2.44), (2.31), and Lemma 2.2, we know that

x2(k)≥ x2
(
η2
)− ω−1∑

k=0

∣∣x2(s+ 1)− x2(s)
∣∣

≥ ln

{(
exp

{
2H12

}
/
(
1 +mexp

{
2H12

}))
α2− b2

a2

}
− (B2 + b2

)
ω :=H22.

(2.45)

Inequalities (2.38) and (2.41) imply that

∣∣x1(k)
∣∣≤max

{∣∣H11
∣∣,
∣∣H12

∣∣} :=H1. (2.46)

On the other hand, (2.35) and (2.45) lead to

∣∣x2(k)
∣∣≤max

{∣∣H21
∣∣,
∣∣H22

∣∣} :=H2. (2.47)

Obviously, H1 and H2 are independent of the choice of λ. Under the assumptions in
Theorem 2.4, by Lemma 2.3, we can easily know that the algebraic equations

b1− a1u1−α1
u1u2

1 +mu2
1
= 0,

b2 + a2u2−α2
u2

1

1 +mu2
1
= 0

(2.48)

have a unique solution (u∗1 ,u∗2 ) T with u∗i > 0 (i= 1,2).
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Let H =H1 +H2 +H3, where H3 > 0 is large enough such that

∥∥∥( ln
{
u∗1
}

, ln
{
u∗2
})T∥∥∥=max

{∣∣ ln
{
u∗1
}∣∣,

∣∣ ln
{
u∗2
}∣∣} <H3, (2.49)

and define

Ω=
{
x(t)= (x1(t),x2(t)

)T ∈ X : ‖x‖ <H
}
. (2.50)

It is easy to see that Ω satisfies Lemma 2.1(a). When x ∈ ∂Ω∩KerL = ∂Ω∩R2, x is a
constant vector in R2 with ‖x‖ =H . Then

QNx =



b1− a1 exp

{
x1
}−α1

exp
{
x1 + x2

}
1 +mexp

{
2x1

}
−b2− a2 exp

{
x2
}

+α2
exp

{
2x1

}
1 +mexp

{
2x1

}


 �= 0. (2.51)

Since ImP = KerL, J can be chosen as the identity mapping. In view of the assumptions
in Theorem 2.4, direct calculation yields

deg
{
JQN ,Ω∩KerL,0

} �= 0. (2.52)

By now, we have proved that Ω satisfies all the conditions in Lemma 2.1. Hence (2.17)
has at least one solution (x∗1 (t),x∗2 (t))T in DomL∩Ω. Set N∗

1 (t)= exp{x∗1 (t)}, N∗
2 (t)=

exp{x∗2 (t)}; then N∗(t)= (N∗
1 (t),N∗

2 (t))T is a positive ω-periodic solution of (1.5). This
completes the proof. �

3. Global asymptotic stability

The purpose of this section is to present sufficient conditions for the global asymptotic
stability of system (1.5) when the delays are all zero. The method we use here is to con-
struct a suitable Lyapunov function.

Theorem 3.1. Assume that (h1), (h2), and (h3) hold and, furthermore, suppose that there
exist positive numbers ν, c1, and c2 such that

c1a1(k) +
c1α1(k)exp

{
H22

}
1 +mexp

{
2H11

} − c1α1(k)exp
{
H21

}
4

− c2α2(k)√
m
(
1 +mexp

{
2H12

}) ≥ ν, (3.1)

c2a2(k)− c1
α1(k)
2
√
m
≥ ν, (3.2)

a2(k)exp
{
H21

}≤ 1, (3.3)

a1(k)exp
{
H11

}
+

α1(k)exp
{
H21

}
2
√
m
(
1 +mexp

{
2H12

}) − mα1(k)exp
{

3H12 +H22
}

(
1 +mexp

{
2H11

})2 ≤ 1. (3.4)

Then the positive solution of system (1.5) is globally asymptotically stable.
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Proof. Let {N∗
i (k)} (i= 1,2) be a positive solution of system (1.5). Introduce the change

of variables

u1(k)=N1(k)−N∗
1 (k), u2(k)=N2(k)−N∗

2 (k). (3.5)

Then, from system (1.5), we can obtain

u1(k+ 1)=N1(k)exp

{
b1(k)− a1(k)N1(k)− α1(k)N1(k)N2(k)

1 +mN2
1 (k)

}

−N∗
1 (k)exp

{
b1(k)− a1(k)N∗

1 (k)− α1(k)N∗
1 (k)N∗

2 (k)
1 +mN∗2

1 (k)

}

=
[
N1(k)exp

{
−a1(k)u1(k)−α1(k)

[
N1(k)N2(k)
1 +mN2

1 (k)
−N∗

1 (k)N∗
2 (k)

1+mN∗2
1 (k)

]}
−N∗

1 (k)

]

× exp

{
b1(k)− a1(k)N∗

1 (k)− α1(k)N∗
1 (k)N∗

2 (k)
1 +mN∗2

1 (k)

}

=
{[

1− a1(k)N∗
1 (k)− α1(k)N∗

1 (k)N∗
2 (k)

(
1−mN∗2

1 (k)
)

(
1 +mN∗2

1 (k)
)2

]
u1(k)
N∗

1 (k)

− α1(k)N∗
1 (k)

1 +mN∗2
1 (k)

u2(k) + f1

}
N∗

1 (k+ 1),

u2(k+ 1)=N2(k)exp

{
− b2(k)− a2(k)N2(k) +

α2(k)N2
1 (k)

1 +mN2
1 (k)

}

−N∗
2 (k)exp

{
− b2(k)− a2(k)N∗

2 (k) +
α2(k)N∗2

1 (k)
1 +mN∗2

1 (k)

}

=
[
N2(k)exp

{
− a2(k)u2(k) +

α2(k)N2
1 (k)

1 +mN2
1 (k)

− α2(k)N∗2
1 (k)

1 +mN∗2
1 (k)

}
−N∗

2 (k)

]

× exp

{
− b2(k)− a2(k)N∗

2 (k) +
α2(k)N∗2

1 (k)
1 +mN∗2

1 (k)

}

=
[(

1− a2(k)N∗
2 (k)

) u2(k)
N∗

2 (k)
+

2α2(k)N∗
1 (k)(

1 +mN∗2
1 (k)

)2 u1(k) + f2

]

×N∗
2 (k+ 1),

(3.6)

where | fi|/‖u‖ converges, uniformly with respect to k ∈N , to zero as ‖u‖→ 0.
Define a function V by

V
(
u(k)

)= c1

∣∣∣∣ u1(k)
N∗

1 (k)

∣∣∣∣+ c2

∣∣∣∣ u2(k)
N∗

2 (k)

∣∣∣∣, (3.7)
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where c1, c2 are positive constants given in (3.1). Calculating the difference of V along the
solution of the system, we obtain

∆V = c1

(∣∣∣∣ u1(k+ 1)
N∗

1 (k+ 1)

∣∣∣∣−
∣∣∣∣ u1(k)
N∗

1 (k)

∣∣∣∣
)

+ c2

(∣∣∣∣ u2(k+ 1)
N∗

2 (k+ 1)

∣∣∣∣−
∣∣∣∣ u2(k)
N∗

2 (k)

∣∣∣∣
)

≤−
{
c1a1(k) +

c1α1(k)N∗
2 (k)

(
1−mN∗2

1 (k)
)

(
1 +mN∗2

1 (k)
)2

}∣∣u1(k)
∣∣

+ c1
α1(k)N∗

1 (k)
1 +mN∗2

1 (k)

∣∣u2(k)
∣∣− c2a2(k)

∣∣u2(k)
∣∣

+ c2
2α2(k)N∗

1 (k)(
1 +mN∗2

1 (k)
)2

∣∣u1(k)
∣∣+

2∑
i=1

ci
∣∣ fi∣∣

=−
{
c1a1(k) +

c1α1(k)N∗
2 (k)

(
1−mN∗2

1 (k)
)

(
1 +mN∗2

1 (k)
)2 − c2

2α2(k)N∗
1 (k)(

1 +mN∗2
1 (k)

)2

}∣∣u1(k)
∣∣

−
{
c2a2(k)− c1

α1(k)N∗
1 (k)

1 +mN∗2
1 (k)

}∣∣u2(k)
∣∣+

2∑
i=1

ci
∣∣ fi∣∣

≤−
{
c1a1(k) +

c1α1(k)exp
{
H22

}
1 +mexp

{
2H11

} − c1α1(k)exp
{
H21

}
4

− c2α2(k)√
m
(
1 +mexp

{
2H12

})
}∣∣u1(k)

∣∣

−
{
c2a2(k)− c1

α1(k)
2
√
m

}∣∣u2(k)
∣∣+

2∑
i=1

ci
∣∣ fi∣∣.

(3.8)

Since | fi|/‖u‖ converges uniformly to zero as ‖u‖ → 0, it follows from conditions (3.1)
and (3.2) that there is a positive σ such that if k is sufficiently large and ‖u‖ < σ , then

∆V ≤−ν

2

{∣∣u1(k)
∣∣+

∣∣u2(k)
∣∣} <−ν

4
‖u‖. (3.9)

This means that the trivial solution of (3.6) is uniformly asymptotically stable, and so is
the solution N∗(k)= (N∗

1 (k),N∗
2 (k)) of (1.5).

Notice that

max
{
p(x),q(x)

}=
(∣∣p(x)− q(x)

∣∣+ p(x) + q(x)
)

2
≤ ∣∣p(x)

∣∣+
∣∣q(x)

∣∣. (3.10)

Define

Φ(x)= 2x
min

{
exp

{
H12

}
, exp

{
H22

}} ,

Ψ(x)= x

max
{

exp
{
H11

}
, exp

{
H21

}} . (3.11)
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Then

Ψ
(‖u‖)≤V

(
u(k)

)≤Φ
(‖u‖). (3.12)

From the Lyapunov asymptotic stability theorem [1], also in view of the positive defi-
nition of V and (3.9), we obtain that the trivial solution of (3.6) is globally asymptoti-
cally stable. By the medium of (3.5), we reach the conclusion that the solution N∗(k)=
(N∗

1 (k),N∗
2 (k)) of (1.5) is globally asymptotically stable. The proof is complete. �
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