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This paper presents a well-posedness result for an initial-boundary value problem with
only integral conditions over the spatial domain for a one-dimensional quasilinear wave
equation. The solution and some of its properties are obtained by means of a suitable
application of the Rothe time-discretization method.

1. Introduction

Recently, the study of initial-boundary value problems for hyperbolic equations with
boundary integral conditions has received considerable attention. This kind of condi-
tions has many important applications. For instance, they appear in the case where a
direct measurement quantity is impossible; however, their mean values are known.

In this paper, we deal with a class of quasilinear hyperbolic equations (T is a positive
constant):

v d*v ov
81‘2 _axz —f(x,t,V,g), (X,t)E(O,l)X[O,T], (11)
subject to the initial conditions
ov
v(x,0) = vo(x), E(x,o) =r(x), 0<x<1, (1.2)

and the boundary integral conditions

1
J v(x,t)dx = E(t), 0<t<T,
! (1.3)
JO xv(x,t)dx = G(t), 0<t<T,
where f, vy, v1, E, and G are sufficiently regular given functions.
Problems of this type were first introduced in [3], in which the first author proved the
well-posedness of certain linear hyperbolic equations with integral condition(s). Later,

Copyright © 2004 Hindawi Publishing Corporation

Advances in Difference Equations 2004:3 (2004) 211-235

2000 Mathematics Subject Classification: 35L05, 35D05, 35B45, 35B30
URL: http://dx.doi.org/10.1155/S1687183904401071


http://dx.doi.org/10.1155/S1687183904401071

212 On a quasilinear wave equation with integral conditions

similar problems have been studied in [1, 4, 5, 6, 7, 8, 16, 24, 25] by using the energetic
method, the Schauder fixed point theorem, Galerkin method, and the theory of charac-
teristics. We refer the reader to [2, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 23, 26] for other
types of equations with integral conditions.

Differently to these works, in the present paper, we employ the Rothe time-discre-
tization method to construct the solution. This method is a convenient tool for both the
theoretical and numerical analyses of the stated problem. Indeed, in addition to giving the
first step towards a fully discrete approximation scheme, it provides a constructive proof
of the existence of a unique solution. We remark that the application of Rothe method to
this nonlocal problem is made possible thanks to the use of the so-called Bouziani space,
first introduced by the first author, see, for instance, [4, 6, 20].

Introducing a new unknown function u(x,t) = v(x,t) — r(x,t), where

r(x,t) = 6(2G(t) — E(t))x — 2(3G(t) — 2E(t)), (1.4)

problem (1.1)—(1.3) with inhomogeneous integral conditions (1.3) can be equivalently
reduced to the problem of finding a function u satisfying

u  u ou
ﬁ_ﬁ_f(x)t’u)§>a (X,t)E(O,l)XI, (1'5)
u(50) = Uy, 2400) = Uilx), 0<x<1, (1.6)
1
J wxdx =0, tel, (1.7)
0
1
J xu(x,t)dx=0, tel, (1.8)
0
where
I:=10,T],
f<xtu %) '—f<xtu+r 8_u+ﬁ)_&
o)\ or  ot) o’

Up(x) := vo(x) — r(x,0), (1.9)

Ui(3) = 1) — 20 (3,0).

Hence, instead of looking for v, we simply look for u. The solution of problem (1.1)—(1.3)
will be directly obtained by the relation v = u +r.

The paper is divided as follows. In Section 2, we present notations, definitions, as-
sumptions, and some auxiliary results. Moreover, the concept of the required solution is
stated, as well as the main result of the paper. Section 3 is devoted to the construction
of approximate solutions of problem (1.5)—(1.8) by solving the corresponding linearized
time-discretized problems, while in Section 4, some a priori estimates for the approxima-
tions are derived. We end the paper by Section 5 where we prove the convergence of the
method and the well-posedness of the investigated problem.
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2. Preliminaries, notation, and main result

Let H2(0,1) be the (real) second-order Sobolev space on (0,1) with norm || - [|2(0,1) and
let (+,-) and || - || be the usual inner product and the corresponding norm, respectively,
in L2(0,1). The nature of the boundary conditions (1.7) and (1.8) suggests introducing
the following space:

Vs 5L¢eL2(o,1); Ll $(x)dx = J01x¢(x)dx=0}, (2.1)

which is clearly a Hilbert space for (-, -).

Our analysis requires the use of the so-called Bouziani space B3(0,1) (see, e.g., [4, 5])
defined as the completion of the space Cy(0, 1) of real continuous functions with compact
support in (0,1), for the inner product

1
(u,v)py = J Jeu - Ivdx (2.2)
0

and the associated norm

vIlgy = ~/(vsv)pls (2.3)

where 3,v := [; v(§)d¢ for every fixed x € (0,1). We recall that, for every v € L2(0, 1), the
inequality

1
2 2
Ivilg < EIIVII (2.4)

holds, implying the continuity of the embedding L?(0,1) = B(0,1).

Moreover, we will work in the standard functional spaces of the types C(I,X),
C%(1,X), L*(I,X), and L*(I,X), where X is a Banach space, the main properties of which
can be found in [19].

For a given function w(x, t), the notation w(t) is automatically used for the same func-
tion considered as an abstract function of the variable t € I into some functional space

n (0,1). Strong or weak convergence is denoted by — or —, respectively.

The Gronwall lemma in the following continuous and discrete forms will be very use-

ful to us thereafter.

LemMa 2.1. (i) Let x(t) > 0, and let h(t), y(t) be real integrable functions on the interval

[a,b]. If

y(t) < h(b) + th(r) y(r)dr, Vtelabl, (2.5)

then

t t
() < (D) + J h(1)x(r) exp (J x(s)ds) dr, Viclab]. (2.6)
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In particular, if x(1) = C is a constant and h(t) is nondecreasing, then
y(t) <h(t)eC9,  Vte [a,b). (2.7)

(ii) Let {a;} be a sequence of real nonnegative numbers satisfying

ai<a+bh) ar, Vi=1,.., (2.8)
k=1

where a, b, and h are positive constants with h < 1/b. Then

a b(i— l)h) )
i < = .
a; < 1_bhexp( —oh ) Vi=1,2, (2.9)
Proof. The proof is the same as that of [18, Lemma 1.3.19]. O

Throughout the paper, we will make the following assumptions:

(Hy) f(t,w,p) € L*(0,1) for each (t,w,p) € I XV X V and the following Lipschitz
condition:

£ (tw,p) = £ w' p Iy <I(1E= 1+ Iw—w'llgy + Ip = p'llgy) (2.10)

is satisfied for all t,¢" € I and all w,w’, p, p” € V, for some positive constant /;
(H2) UO: Ul S H2(0> 1))
(Hs) the compatibility condition Uy, U; € V, that is, concretely,

1 1
J Uy (x)dix = J xUy(x)dx = 0, (2.11)
0

0

Jl U, (x)dx = Jlel (x)dx = 0. (2.12)
0

0

We look for a weak solution in the following sense.

Definition 2.2. A weak solution of problem (1.5)—(1.8) means a function u: I — L*(0,1)
such that

(i) ue CON L, V);
(i) u has (a.e. in I) strong derivatives du/dt € L*(I,V) n C*!(I,B3(0,1)) and
d*u/dt* € L=(I1,B3(0,1));
(iii) u(0) = Uy in V and (du/dt)(0) = U, in B}(0,1);
(iv) the identity

(%(t%(b)y +(u(t),¢) = (f(t,u(t), %(t)),(ﬁ)% (2.13)

2

holds forall ¢ € V and a.e. t € I.
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Note that since u € C®(I, V) and du/dt € C%!(I,B1(0,1)), condition (iii) makes sense,
whereas assumption (H;), together with (i) and the fact that du/dt € L*(I,V) and
d*u/dt* € L= (I,B3(0,1)), implies that (2.13) is well defined. On the other hand, the ful-
fillment of the integral conditions (1.7) and (1.8) is included in the fact that u(t) € V, for
allte 1.

The main result of the present paper reads as follows.

THEOREM 2.3. Under assumptions (H,), (H,), and (Hs), problem (1.5)—(1.8) admits a
unique weak solution u, in the sense of Definition 2.2, that depends continuously upon the
data f, Uy, and U,. Moreover, the following convergence statements hold:

. . 1
u" —u inC(I,V), with convergence order O(—),

nl/z
5¢ﬁ%iw@wm» 214
d " du . 2 1
aé‘u ﬁ mnlL (I;Bz(o)l))’

as n— oo, where the sequences {u"}, and {Su"}, are defined in (3.18) and (3.19), respectively.

3. Construction of an approximate solution

Let n be an arbitrary positive integer, and let {t; }’;:1 be the uniform partition of I, t; = jh,
with h, = T/n. Successively, for j = 1,...,n, we solve the linear stationary boundary value
problem

— . . 2.
Uj 2u]_1 tujo B d Uj

w2 e = x€0D), (3.1)
ﬂme=m (3.2)
ﬂxm@ﬂx=& (3.3)
where
fi= f<tj’“j—1’W1h;’le)) (3.4)
starting from
u_1(x) = Up(x) = h, Ui (x), uo(x) = Up(x), x€(0,1). (3.5)

LEmMMA 3.1. For each n € N* and each j = 1,...,n, problem (3.1);—(3.3); admits a unique
solution uj € H*(0,1).

Proof. We use induction on j. For this, suppose that u;_; and u;_, are already known
and that they belong to H(0,1), then f; € L*(0,1). From the classical theory of linear
ordinary differential equations with constant coefficients, the general solution of (3.1);
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which can be written in the form

dzuj B i _ —2uj_1 tuj B

N e A Ji
is given by

uj(x) = kl(x)coshhin + ks (x)sinh hi x e (0,1),

where k; and k; are two functions of x satisfying the linear algebraic system

dk, x  dky X
Ix (x) cosh I + Ix (x)sinh o 0,
dk; ..o x  dky X
Ix (x)sinh I + Ix (x) cosh o huF;(x),
with
—2U;i 1 +ui,
Fj = ]TJ - f}

Since the determinant of (3.8) is

A= coshzi — sinh® X 1,

hy, hy,
then
X
0 sinh —
4 () - Mo\, Fy () sinh 5,
dx h,Fj(x) cosh W hn
X
cosh — 0
dky (x) = };” = h,F;(x) cosh i,
dx sinh = By (%) h
that is,
Ky (x) = —hy J F;(&)sinh hid»: a,
0 n

k() = by J:Fj(f) coshhidfmz,

with A, and A, two arbitrary real constants. Inserting (3.12) into (3.7), we get

x=¢

hy

X X
— +Aysinh —.

dé+ A cosh " I

(%) = hy J:Fj(f)sinh

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Obviously, the function u; will be a solution to problem (3.1);—(3.3); if and only if the
pair (A1,A,) is selected in such a manner that conditions (3.2); and (3.3); hold, that is,

/\1J coshh dx+A2J smh;dx——h J J Fi( smh ™ fdrfdx,

/hf xcoshfdx+/\2)[ xsinhidx= —th J
0 hn 0 hn 0Jo

(3.14)

-&
dédx.
hn fdx
An easy computation shows that (A;,1,) is the solution of the linear algebraic system

M sinhh +)L2<cosh ) J J F; E)smh Edfdx,

/\l(sinhh —h, cosh +h )+)Lz(cosh —h, s1nhh ) (3.15)

J J xFj( s1nh 5dé’ dx,

whose determinant is

D(hy,) = 2h, — 2h, cosh L + sinh L
hy, hy,
(3.16)

1 . 1
(cosh % —2h, sinh %>

2h,

Note that D(h,) does not vanish for any h, > 0, indeed equation D(h,) = 0 is equivalent
to the equation cosh(1/2h,,) — 2h,, sinh(1/2h,) = 0, that is, to the equation tanh(1/2h,) =
1/2h,, which clearly has no solution. Therefore, for all h, > 0, system (3.15) admits a
unique solution (A;,1,) € R?, which means that problem (3.1) j—(3.3) is uniquely solv-
able, and it is obvious that u; € H*(0,1) since F; € L*(0,1). O

Now, we introduce the notations

uj —uj,l

81/!]'22 > jZO,...,}’l,
hy
2 6”] B 6”]‘71 uj— 21/{]'71 tujo (317)
(Sllj = h = h2 N J:l)“.’n,
n n

and construct the Rothe function u" : I — H?(0,1) N V by setting

u'(t) =uj +0u;(t—tjio1), te[ti-nti], j=1,...,n, (3.18)
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and the following auxiliary functions:

u"(t) =5uj,1+52uj(t—tj,1), te [l’jfl,tj],jZ 1,...,n, (3.19)
. fort ti_,til, i=1,...,m,
a = orte ot j g (3.20)
Uy forte[—-h,0],
—"n 6 i f t t > —1
sy < 0% forte (G-nyl j (3.21)
U forte|-h,0].

We expect that the limit u := lim,,_ . 4" exists in a suitable sense, and that is the desired
weak solution to our problem (1.5)—(1.8). The demonstration of this fact requires some
a priori estimates whose derivation is the subject of the following section.

4. A priori estimates for the approximations

In what follows, ¢ denote generic positive constants which are not necessarily the same at
any two places.

LeMMA 4.1. There exist ¢ > 0 and ny € N* such that

||u]|| <6 (4-1)
[[6uj|| <, (4.2)
1821 <, (43)

forall j=1,...,nand all n > ny.

Proof. To derive these estimates, we need to write problem (3.1);—(3.3); in a weak for-
mulation.

Let ¢ be an arbitrary function from the space V defined in (2.1). One can easily find
that

[ -pgerde - 929, wxe o), (4.4
where
329:=5.(9e0) = [ dt [ gman (45)
This implies that
3= [ - o9 = [ p@rae [ egoaE=o (46)

Next, we multiply, forall j =1,...,n, (3.1)j by Sﬁgb and integrate over (0, 1) to get

1 ldz . 1
L 82u; (x) 32 dx — L () 92pdx = JO Fi(0)2pdx. (4.7)
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Here, we used the notations (3.17). Performing some standard integrations by parts for
each term in (4.7) and invoking (4.6), we obtain

1 1 d
J 82uj(x)5§¢dxzj E(Sx((szuj))ﬁ‘i(pdx
0

0
x=1
=9,(8%u;)3%¢| - Jl 9.(8%u;) I pdx
x=0 0
= —(52”1"?5)32"
1 d2y; du; x=1 U du;
L o Tgdr = S0l - JO U )3 dx
_ 1 duj
__ JO L3 pdx ws)
x=1 1
= (x)Tx +J () (x)dx
x=0 0
= (uj,9),
1 5 B 1 d 5 d
L Fi(x0) 92 dx = L 2 (3.) B2
x=1
5,592 - Jl 5, f; 9 dx
x=0 0
= _(fj’¢)32'>
so that (4.7) becomes finally
(82u]~,¢)35 +(u,¢) = (fj’ﬁb)B;’ VeV, Vj=1,..,n (4.9)

Now, for i = 2,..., j, we take the difference of the relations (4.9); — (4.9);_;, tested with
¢ = 6%u; = (8u; — dui—1)/h, which belongs to V in view of (3.2); — (3.3);, (3.2)i-1 —
(3.3);_1, and (H3). We have
(52141' — 8214,'71,621/{,')321 + (51«1,’,614,‘ — 61/1,;1) = (ﬁ - f,;l,(szui)B%, (4.10)
then, using the identity
2(v,v=w) = IvII2 = lwll*+ llv — wl? (4.11)

and its analog for (-, -) B)» it follows that

1107wy — 11071 [y +110%ws = 8wy [I5y + ||l

) . i (4.12)
—[[8uia|[” + [[0u;i = Suia||” = 2(fi = fim1, 8% ui)

hence, omitting the third and last terms in the left-hand side, we get

1102l [y + 110uill” < 116%ui 1[Iy + 18w [|* + 21| i = i1l 1020l 51 (4.13)
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We sum up these inequalities and obtain

j
11625115 + 118w [* < 1162wl + [180ar |17 + 2D 11 fi = fioal 52 1167w [y (4.14)
i=2

hence, thanks to the Cauchy inequality
2ab < %a2+£b2, Va,beR, Ve e RY, (4.15)

we can write, for € = h,,,
2. 112 2 22 2 1 d 2 4 212
1102w + 10w ||” < [16% ][y + [ 8uar| +h—2||ﬁ—ﬁ—1||321+hn2||5 uil[p. (4.16)
ni=p i=2

To majorize 37, || fi — fi-1 ||§5, we remark that

||fz —ﬁ>1||§;21 = ||f(ti)ui—1)6ui—l) _f(ti—laui—za(sui—z)”g%

2
<P (hy+ ||ty — o [y +10us-1 — Sui 2| 1)

, (4.17)
= lzhﬁ(l +{|Ouima| | + ||62u,<,1||3%)
<3PR(1+|0uina [y + 1107wy )s i=200)

Summing up for i = 2,..., j, we may arrive at
/ 2 J 2 2
S = fiollyy <3BG - k243282 Y (1811 +116%ui-1| 5 ) (4.18)
i=2 i=2
or
J 2 o 2 2
S Ifi= fiallpy <32G — DR +3282 Y ([16%uillp + |[6wil |5, )- (4.19)
i=2 i=1

To estimate ||6%u; ”125; + [|8uy ||%, we test the relation (4.9); with ¢ = 6%u; = (Su; — dug)/hy,
= (0uy — Uy)/h, which is an element of V owing to (3.2);—(3.3); and assumption (Hs).
We have

||62u1||§; + <%,61/l1 — U1> = (fl,SZuI)Bé (420)

or

||62u1||23% + (8141,8141 - Ul) = (f1,82u1)321 - (U0,62u1). (4.21)
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But
2 ! d 2
(Uo,6%uy) = L Uo(x)a(ﬂxé uy)dx
x=1 1
= U030 | - [ 357
x=0 0 dx
1
—L %(x)ﬁxézuldx,
and since
d*u dU, du,
v (dxzo) a dxo( *) = d—xo(o)’ vxe O,

we get, due to (4.6),

(U, 8%u1) J ( )s 8u; ddU0(0)5282u1
J ( )S 8uydx
- d 2 >B§’

in light of which (4.21) becomes

2U,
162013, + (81,01 — Uy) = (ﬁ 0 52 )Bl.

dx?’
Therefore,
2 1 2 1 2 1 d*u,
||52u1||35+5||5“1|| —§||U1|| +5||5u1 uill’ <||fi+ e B%||82u1||321,
hence,
2 2 d*Up 2
2/16%u [ + 18w | < |[Un | + 2| /i + I ||5 ur|ps
U
<llull*+| i+ 535 . +||52u1||12321
2

U, ||°
<||U1||2+z[||fl||;+\ ol |l

2
>
B}

from which it follows that

d*u,
dx?

6% + ol < i+ 2|+

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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where ¢; := max,;|| f (¢, U, U1)||123; < oo in virtue of (H;). Substituting (4.19) and (4.28)
in (4.16), this gives

||62u,-|<;1+||au,-||2<||U1||2+z[c1+ U }312(]1)
j-1
+3h, Y ||52”z‘||12321+||5ui||fa;)+hnz||52”i||12;21
i=1 i=2
<||U1||2+z[c1+ U }312(]_1)
j i (4.29)
+38hy . (110%ui][5y + 18wl [*) + i > (116%uill5y + [162:]|*)
i=1 i=1
A +z[cl+Hd2 1}312(]-—1)1%
+ (32 +1) hnz<||82u,||321+||8ui||2);
i=1
consequently,
2 2
116212+ 10112 < |02+ 2 “*Hd GDlI” | 1 3pT
2 de B}
i (4.30)
+ (B3P + D)k Y. (1102wl +ll6uil”),  ¥j=1,..n.
i=1
By the discrete Gronwall lemma, we conclude that
1005 + 1|8w; |
2 2 2 4.31]
IeAlE +z[q+||d Uo/dx ||Bl]+3zT PG D1 G+ (4.31)

<
= - (32+1)h,

forall j = 1,...,n, provided that h, < 1/(3I> + 1). But, since h,, is intended to tend towards
zero, we can, without loss of generality, consider that h, < 1/2(3> + 1) with h, < T of
course. In this case, inequality (4.31) implies, for all j = 1,...,#, that

d*U,
5%l + o < 20 42 e+ | 42

2
} +3l2T}e2(3lz+”T (4.32)
B}

if1/2(312+1) < T, and

10 +2[er + |2 Un/da| [, | + 32T

(312+1)T/2(1-(32+1)T) 4.33
1-GE+1)T ¢ (433)

[10%u; 51 +[[0u;]|” <
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otherwise. Estimates (4.2) and (4.3) then follow with

{HUJ|+2[q+'d[%
\

-

] + 312T}e<312+1>T, ifT >

d 2
ci= = | ||lu][* +2[ 1 +[|d>Un/da?| [y | + 32T
B eBP+DT2(1-(BP+1)T)
\ 1-(B2+1)T ’
ifT< ——,
2GR )

223

2(32+1)°

(4.34)

for all n > ng, where ny is any positive integer such that T/ny < 1/2(31 + 1), that is, ny >

2T (32 +1).
Finally, from the identity

j
uj = Uo+h,,28u,», Vji=1,...,n,
i=1
we deduce in light of what precedes that
J
el < 11Uol [ + b 3. |[80sl | < N[ Uoll + jhaca,
i=1
hence

lujl| <[[Uol[+ Ter:=¢, Vj=1,.n,

which finishes the proof.
As a consequence of Lemma 4.1, we have the following corollary.

COROLLARY 4.2. There exist ¢ > 0 such that the estimates

_ d
@l <e  l[@ll<e o) <
[a"(t) —u* ()| < chuy, [ () =" (t = ha) || < chy,
1o @) <ce, |3 @) < 'damu <
8u"(t) = du™ ()| < cha, Su™(t) = 8u" (t = hy) || < ch,
|| B, B;
‘814”—@ < ch,
L2(I,B})

hold for allt € I and n > ny.

(4.35)

(4.36)

(4.37)

(4.38)
(4.39)

(4.40)
(4.41)

(4.42)



224  On a quasilinear wave equation with integral conditions

Proof. Obviously, estimates (4.38); and (4.38); are a direct consequence of (4.1), while
estimates (4.40); and (4.40), follow immediately from (4.2). On the other hand, since

du"( _ (Suj, Vte(tj,l,tj],lgjgn,
dt B 6141, t=0,

Sui(ti—t), Vte(ti_,ti], 1<i<n,
ﬁ”(t)—u”(t)=<| uj(t = 1) tntih 1<j<n (4.43)
0, t=0,
Sui(t—ti_y), Vte (ti_,t:i],1<ji<n,
u”(t)—ﬁ”(t—hn)=<| uj (= tj-1) (t-1t] 1< <n
0, t=0,
we derive
t)H < max [|8ujl,
||u”(t)—u”(t)|| hy, m]ax ||6ujl, (4.44)

N < .
||u (t)—u (t hy || \hnlrélja—gn||6u]||:

from which estimates (4.38)3 and (4.39) follow, thanks to (4.2). Similarly, from the iden-
tities
4 sne) - {8%:]-, Vie (tint], 1<j<n,

—ou"
dt 52u1, t= 0,

Suj(ti—t), Vte(tint], 1<j<n,

Su'(t) - Sun(t) = {0 o

(4.45)
— Oui(t—ti1), Vte(ti_ti], 1<j<n,
Su(t) — 8ul (£ hy) = | 0 Wit~ 10) ol 1<j<n
0, t=0,
Su du" =2 <iji<
u (t) - dt (t) - u](t_t])7 Vte (tj—btj]) 1\] S
we deduce the remaining estimates (4.40)s3, (4.41), and (4.42) in view of (4.3). a
5. Convergence and existence result
We define, for all n > ny, the abstract function T(n) :IX VXV —1%0,1) by
Fl(tw,p) = f(tpwp), Vte (ti1,t], j=1,...,n. (5.1)

Then the variational equations (4.9); may be written anew as

(& ow t>¢>) (@ (0,9) = (F (67 (= h),0u" (t= 1)) §) gy (52)

forall¢ € Vandall t € (0,T].
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Before we pass to the limit n — oo in the approximation scheme (5.2)", we must estab-
lish some convergence assertions.

TaEOREM 5.1. There exists a function u € C*'(I, V) with du/dt € L*(I,V)nC*' (I, B}(0,1))
and d*u/dt* € L°(I,B3(0,1)) such that

(1) u" - uin C(1,V);
(i) w"(t) — u(t) in V forallt € I;
(iii) Su" — du/dt in C(I,B(0,1));
(iv) Su' — du/dt in V forallt € I;
(v) du/dt — du/dt in L*(I,V);
(vi) (d/dt)du™ — d*u/dt* in L*(1,B3(0,1)).

Moreover, the error estimate

du

(?u—dt

< ch? (5.3)

" = ullegv) + !
C(1,B)

takes place for all n > ny.

Proof. The key point to the proof is to show that {u"}, and {du"}, are Cauchy se-
quences in the Banach spaces C(I,V) and C(I,B}(0,1)), respectively. For this, we con-
sider the Rothe functions (3.18) u” and u™ corresponding to the step lengths h, = T/n
and h,, = T/m, respectively, with m >n > n,. Putting ¢ = En’m(t) = M”(t) - Em(t) in
the difference (5.2)"—(5.2)™, we get, for all t € (0, T1],

(& 0w - aumu))ﬁ”’m(t))B% + (@ (1)~ (0),0u"" (1) = (" = 706" (1),
(5.4)
where the abbreviation
o= (6a" (t—ha),0u’ (t—hy)) (5.5)
has been used. Observing that
' —u" = (" - u")+ (" —u") + (W™ —u™),
d;:(t) _5d"(), Vie(0,T), (56
we can write
(@) —a"(1),6u"" (1) = (@) - u"(t) + (u"(£) - @"(t)),0u" (1))
# (w0 w0, 5 (0 - w(0)) o
= (@ (1) — u"(8) + (™ (1) = @"(£)), 8u"" (1)) '
Ly ), forae tel

2dt
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Analogously, we have

(2w - ()86 (1))

2

= (dimu"(t) —dum (1)), (8u" () — du" (1)) + (Su™ (¢) —W(t»)

B;

( nE) — Sy (t)),au"(t)—aum(t)) (5.8)

B;

- (%wu"(t) - 0w (0), (8" (1) - 8w (1) + (8w (1) - 3" (1)

B

1d " mi |2
+E$H6u (t) = du"(t)|[p, foraetel

Substituting (5.7) and (5.8) in (5.4) and rearranging, we obtain

(6 = ()| + 2L flow ) - s o)

2dt|| 2dt

(di ' (0), (00 (1) ~ 5" (1) + (5" () ~ 8 (1) (5.9)

B,

+ ((u'(t) = @(6)) + (@"(t) — (), 8u"" () + (" = ", 86" (1)) ;.

Estimating the first two terms in the right-hand side, we write

B,

(45 (0w 0) — 8um(0), (0w (1) ~ B 1) + (Bu" (1) - 6w (1))
i@um(t)

S (H%‘W(” ] | B%> (5.10)

x (16w () = 8u" (1) 5y + 166" (1) = du (1) 1)
<c(hy+hn)

in view of (4.40); and (4.41);. Similarly,

(" (6) =7 (1)) + (@"(£) — u™ (1)), 6u"" (£))
< (|Jur) —a" @) +|[@" () — w®]) (18u”" @B + |5 (1)]]) (5.11)
<c(hy+hy)

in view of (4.39); and (4.40),. It remains to dominate the last term in the right-hand side
in (5.9). For any ¢ fixed in (0, T], there exist two integers k and i corresponding to the
subdivision of I into n and m subintervals, respectively, such that t € (t,_1,t] N (ti-1, t].
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Consequently, owing to assumption (H;), it follows that
17" = 7" llsy
= 1" (" (£ = 1), 80" (¢ = hy)) = F (" (¢ = ), 6u” (£ = ) ||
< te—to [ (= ha) =7 (t = h) || gy + 1[8u" (¢ = ) = 50" (£ = 1) |51
Iy By + [T (£ = ) = " (8)] [y + [ (8) = ™ ()] gy + [ (8) = 7" (£ = B[
+ 186" (t = hu) — 80 (1) |y + 10w (£) — 3™ ()] gy + |0 () — ud” (£ — hm)(||321),)
5.12

then, according to (4.39); and (4.41),, we have

1F" = 7" gy < et ) +1([[u(8) = w(0)] [y + 10w (5) = Su™ ()] [y ).  (5.13)
On the other hand, due to (4.41);, we estimate

166" ()]
< 118" (1) = Su(B)] |y +1[8u™(£) = 6w ()] gy + [|6wn(8) = 8" Dy (5.14)
< c(hy+hy) +|[6u"(t) = Su™ (1)) |-

From (5.13) and (5.14), we conclude, thanks to (4.40); and (4.38), that

n

—f0u"" (1)) gy
<IF = F g l8u"" 0l
<y +h) + c(ha+ ) || 0u () = 8u™ (1) |,
¢+ o) ([ (8) = ()] [y + ][00 (£) = 6u™ ()| )
1l () — ()| gy 1807 () = Sum ()], + | (8) — Su™ (D)3,
< e+ h) + c(y + o) (60 (1)] 5y + || 0w (B)] 1)
(B + hon) ([ (0] gy + |7 (0] 5y + 1100 (D) |y + (|80 (0)] 1)

+ é (Il (£) = ()| [y + 180" (£) = Su™ ()5 ) + 118" (1) — 8™ (1) |33

(f

(5.15)

here, the elementary inequality ab < (1/2)(a? + b?) has been used. Hence,

(?n B ?m)@n,m(t))lg21

(5.16)
< c(hy+hm)” +c(hy+hy) + %Hu"(t) —u" (1) 5 + %ZH(Su"(t) = 8u" (1) [
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Combining (5.9), (5.10), (5.11), and (5.16), we obtain for a.e. t € I,

Doy~ O + Jowr ) - sun o)y

< clhnt )+ c(y + ) + 1| (2) = " ()] + 31|87 () = Su™ (1) |55- >
Integrating over (0,t) with consideration to the fact that
u"(0) = u"(0) = Uy,
8u"(0) = 8u™(0) = U, (5.18)
we have
[ (2) = w O+ [|u" (1) = 8u™ (1) I
<l + e+ +1 [ w0 - @lfdr (510

t
+3ZJ |[ou" (1) - 8um(7)||éldT, vtel,
0 2
or, by Gronwall’s lemma,

[l (£) = u" ()| + 16w (£) — 8™ (1) |5y < (c (B + han)” + c(Bu+ h) )T, VEEL
(5.20)

Hence, taking the upper bound with respect to ¢t € I in the left-hand side of this last
inequality, we obtain

" = " [& g + 180" = 8u™|[&r 51y < (B + han)” + € (B + ) ) €T, (5.21)

from which we deduce that both {u"}, and {du"}, are Cauchy sequences in the Banach
spaces C(I, V) and C(I,B3(0,1)), respectively. Accordingly, there exist two functions u €
C(1,V)and w € C(I,B1(0,1)) such that

u"—u inC(,V), (5.22)
Su" — w in C(I,B}(0,1)). (5.23)

Now, on the basis of estimations (4.38), (4.38)3, (4.39); and the convergence result
(5.22), [18, Lemma 1.3.15] enables us to state the following assertions:

(i) u e COU(I,V);

(ii) u is strongly differentiable a.e. in I and du/dt € L®(I,V);

(iii) w*(t) — u(t) in V for all t € I;

(iv) du"/dt — du/dt in L*(1, V).
On the other hand, in light of estimations (4.40),, (4.40)3, the convergence statement
(5.23), and the continuous embedding V — B1(0,1), [18, Lemma 1.3.15] is also valid

— — — —
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for the functions du" and the corresponding step functions du', yielding the following
statements:
(v) we C*(1,B3(0,1));
(vi) w is strongly differentiable a.e. in I and dw/dt € L°(I,B3(0,1));
(vii) Su" () — w(t) in V forall t € I;
(viii) (d/dt)8u™ — dw/dt in L*>(I,B}(0,1)).

We show that w coincides with du/dt. For all v € L2(I,B(0,1)), we have

du du’ du"  du
(814 ——,V) = (Su”——,v) +<———,v>
dt 12(1,B) dt 12(1,B) dt dt 12(I,B))

5.24
<l du sy + (2 88.) (5:24)
X - 2 - T3
dt gy "FE A T de) o
or, due to (4.42) and the convergence property (iv) stated above,
du du®  du
Sur — —,v) < chullvll +( —,v) 0 (5.25)
( dt LZ(I,B ) L IBZ) dt dt LZ(I,B%)
as n — o0; hence
n du . 2 1
ou" — — in L*(I,B5(0,1)), (5.26)

dt

which, together with (5.23), yields w = du/dt and consequently dw/dt = d*u/d¢*. Finally,
letting m — co in (5.21), taking into account that h, < h,, < 1/2, we obtain the desired
error estimate. So, the proof is complete. O

Now, we are ready to state an existence result.

TareoreM 5.2. The limit function u from Theorem 5.1 is the unique weak solution to prob-
lem (1.5)—(1.8) in the sense of Definition 2.2.

Proof

Existence. We have to show that the limit function u satisfies all the conditions (i), (ii),
(iii), (iv) of Definition 2.2. Obviously, in light of the properties of the function u listed
in Theorem 5.1, the first two conditions of Definition 2.2 are already seen. On the other
hand, since " — u in C(I, V) and §u" — du/dt in C(I,B}(0,1)) as n — o and, by con-
struction, u"(0) = Uy and du"(0) = Uy, it follows that u(0) = Uy and (du/dt)(0) =
hold in V and B} (0, 1), respectively, so the initial conditions (1.6) are also fulfilled, that is,
Definition 2.2(iii) takes place. It remains to see that the integral identity (2.13) is obeyed
by u. For this, we consider the following relation:

(Su(£) - Ui,y + L (@(1), ) dr
(527)

:J()t(? (1,7 (1 — hy),0u" (T—hn)),(p)andT, VoeV,Vtel,
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which results from (5.2)" by integration between 0 and € I, noting that §u"(0) = U,.
First, by virtue of Theorem 5.1(iii), we have

(3u"(5) = U, ¢) gy — (%(t) - U1,¢)Bl, VeV, Vel (5.28)

2

Next, according to estimate (4.38),, the expression |(#"(7),¢)| is uniformly bounded with
respect to both n and 7, so the Lebesgue theorem of dominated convergence may be
applied to the convergence statement (ii) from Theorem 5.1, yielding

Jt(a"(r),@dr . Jt(u('r),qﬁ)d'r, VéevV, Vel (5.29)
0 n—=o jo

To investigate the behavior of the right-hand side of (5.27) as n — oo, we first observe that
forall T € (tj_1,t;], 1 < j < n, we have

B

_ —n d
= Hf(fj,u"(f —hn),0u (7 -hy)) - f(T,u(T), d—?(ﬂ)' (5.30)
B}
_ =N du
<If =] +][@ (r = ) - u(@)]ly +‘ S (r-h) - L] |,
B}
owing to assumption (H;). However, from estimates (4.39), and (5.3), we derive
[ (7 = hy) — (@) < |[@" (7 = hn) = w"(2)| |y + |6 (7) = u(7)]| )
s (5.31)
<clh,+h/*), Vrel
similarly, from estimates (4.41), and (5.3), we get
Su' (t—hy) — @(T) <|[6u” (1 = hy) = 8u™(7)|| 1 + |00 (7) — @(T)
dt "l : dt "l (5.32)
<c(h,+hY?), Vrel
Therefore, for all T € (0, T], it holds that
HT”(T,E”(T—hn),@n(r—hn)) —f(T,M(T),%(T)) <c(h, +hY?), (5.33)
B}
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from which we deduce that

7“(1,7‘(17}1”),@"(1711”)) af(‘r,u(‘r),%(r)) in B(0,1), Vr € (0,T].

(5.34)
But, inasmuch as
F (@@ (v —h),0u" (T —hy)) = f(t,u5-1,0u-1), Vre (tint], 1<j<n,
(5.35)
it follows that
17" (28" (7 = ), 80" (7 = )
< lrg]agn||f(tj’uj—b5“j—1)||3;
< max [1f (5 j-1,0050) = £ (15,0,0) g + max [1£(6,0,0)[yy >3
<t max (luglly + 181 lg) s Ve € 0.7,
where ¢; := max;j<n [l f(£,0,0) g1 < 0. Accordingly,
||7H(T,ﬁ”(r —h,),0u (t—hy)) ||B% <¢, V7eE(0,T], (5.37)
in view of estimates (4.1) and (4.2). This shows that
|(F" (22" (z = 1), 80" (1 = ha) ), §) (5.38)

is uniformly bounded with respect to both n and 7; hence, applying the Lebesgue theorem
to the convergence statement (5.34), we get

t - . — ¢ du
JO (f (T,Ll (‘[—hn),(su (T—hn)),gb)ledT’:;o . (f(T,u(T))E(T)>)¢)B£dT:
(5.39)

forall ¢ € V and all t € I. Finally, performing a limit process n — co in (5.27), taking into
account (5.28), (5.29), and (5.39), we find out that

(%(f) B U1’¢)B% + ﬂ (u(r),¢)dr
_ [ T,u(T),@(T) , dr, V¢eV,Vtel 240
Io <f< At ) ‘p)le ¢

But the function du/dt : I — B3(0,1) is strongly differentiable for a.e. t € I, hence, differ-
entiating the just obtained equality with respect to ¢, we get the desired identity (2.13).
Thus, u weakly solves problem (1.5)—(1.8).
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A~ ~

Uniqueness. Let 1 and U be two weak solutions of (1.5)—(1.8). From (2.13), foru=u—1u
and ¢ = (du/dt)(t), we obtain

=2, —(t) u(t), (1)
(£20.880), (0850
:(f(tu() (t)) f(t,ﬁ(t),j—?(t)),%(t))lg, ac.tel '

So, with consideration to the fact that (du/dt)(0) = u(0) = 0, integration from 0 to t
yields, in a standard way,

A, + Jhucore
<[]l (min. G@) - £ (ri, )| [|%o L
<tf) | ol + [, [[54co], én o
<lj0t[||u(T)||B%+' %(T) BJ dr, viel,
due to assumption (H; ), whence
||u(t)||2+‘ <4zj [Hu P +‘ (7) ]df, viel, (5.43)

implying, by Gronwall’s lemma, that u(¢) =0, V¢ € I, that is, & = 1, which achieves the
proof. O

We terminate the paper by a result of continuous dependence of the solution « upon
data. Concretely, we have the following theorem.

THEOREM 5.3. Let u and u* be the weak solutions of problem (1.5)—(1.8), corresponding
to (Uo, Uy, f) and (Ug, U, f*), respectively. Assume that (Uy, U, f) and (Ug,UT, f*)
satisfy assumptions (H, ), (Ha), and (Hs), then the inequality

2

)— (t)

o) - 0P+ | G 0 - 2

<(||Uo—u:||2+||ul—ur||; (5.44)

t
‘J
0

takes place for all t € I.

2
du dT) e
B,

f(r,u(r), E(T)) - f* (T,u*(T), %(ﬂ)
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Proof. Subtracting (2.13) for u and u* and putting ¢ = (du/dt)(t) — (du*/dt)(t) in the
resulting relation, we get

2
(d u(t) —u*(t)), d u(t)—u*(t))) +(u(t)—u*(t),£

o 2 i} & —uw )

:<f<t u(t), d ) f*(t u™(t), dL(t)) jt( (t)_u*(t)))B;’ ae tel,
(5.45)

whence

2dtHdt u* (1)) +§gllut)—u OIlE

o) o) |

— (u(t) —u* (1))

, aetel
B}

(5.46)

Then, integrating over (0,), we have

2

t) —u*(t))

Ha(u( B%+||u(t)—u*(t)||2

< 0o = US| +11U1 = Ui Iy

oo 20) -0 ), -
<||U0—U6"||2+1|U1—Ufk||35
’ du
+J0 f(T u(r), 2z ) f*(ru )
2
+j0t %(u(‘r)—u*(r)) dn, viel,
2 (5.47)
consequently,
2
SN
o) = w0+ | 5 a6 - 0|
sﬂ%—%nﬂwrum;
¢ * 2 (5.48)
ot 20) - )

2

+|u(r) - u*(‘r)||2]dr,
B}

u(t) —u*(1))

t
+ J [ L (

0
for all t € I. Finally, applying the Gronwall lemma, we get inequality (5.44) which repre-
sents the continuous dependence of the solution on data. O
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