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Nonnegative and compartmental dynamical system models are widespread in biological,
physiological, and pharmacological sciences. Since the state variables of these systems are
typically masses or concentrations of a physical process, it is of interest to determine
necessary and sufficient conditions under which the system states possess monotonic
solutions. In this paper, we present necessary and sufficient conditions for identifying
discrete-time nonnegative and compartmental dynamical systems that only admit mono-
tonic solutions.

1. Introduction

Nonnegative dynamical systems are of paramount importance in analyzing dynamical
systems involving dynamic states whose values are nonnegative [2, 9, 16, 17]. An impor-
tant subclass of nonnegative systems is compartmental systems [1, 4, 6, 8, 11, 12, 13, 14,
15, 18]. These systems involve dynamical models derived from mass and energy balance
considerations of macroscopic subsystems or compartments which exchange material via
intercompartmental flow laws. The range of applications of nonnegative and compart-
mental systems is widespread in models of biological and physiological processes such
as metabolic pathways, tracer kinetics, pharmacokinetics, pharmacodynamics, and epi-
demic dynamics.

Since the state variables of nonnegative and compartmental dynamical systems typi-
cally represent masses and concentrations of a physical process, it is of interest to deter-
mine necessary and sufficient conditions under which the system states possess mono-
tonic solutions. This is especially relevant in the specific field of pharmacokinetics [7, 19]
wherein drug concentrations should monotonically decline after discontinuation of drug
administration. In a recent paper [5], necessary and sufficient conditions were developed
for identifying continuous-time nonnegative and compartmental dynamical systems that
only admit nonoscillatory and monotonic solutions. In this paper, we present analogous
results for discrete-time nonnegative and compartmental systems.
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The contents of the paper are as follows. In Section 2, we establish definitions and no-
tation, and review some basic results on nonnegative dynamical systems. In Section 3,
we introduce the notion of monotonicity of solutions of nonnegative dynamical systems.
Furthermore, we provide necessary and sufficient conditions for monotonicity for lin-
ear nonnegative dynamical systems. In Section 4, we generalize the results of Section 3
to nonlinear nonnegative dynamical systems. In addition, we provide sufficient condi-
tions that guarantee the absence of limit cycles in nonlinear compartmental systems.
In Section 5, we use the results of Section 3 to characterize the class of all linear, three-
dimensional compartmental systems that exhibit monotonic solutions. Finally, we draw
conclusions in Section 6.

2. Notation and mathematical preliminaries

In this section, we introduce notation, several definitions, and some key results concern-
ing discrete-time, linear nonnegative dynamical systems [2, 3, 10] that are necessary for
developing the main results of this paper. Specifically, for x ∈Rn, we write x ≥≥ 0 (resp.,
x�0) to indicate that every component of x is nonnegative (resp., positive). In this case,
we say that x is nonnegative or positive, respectively. Likewise, A ∈ Rn×m is nonnegative
or positive if every entry of A is nonnegative or positive, respectively, which is written
as A ≥≥ 0 or A� 0, respectively. (In this paper, it is important to distinguish between
a square nonnegative (resp., positive) matrix and a nonnegative-definite (resp., positive-
definite) matrix.) Let R

n
+ and Rn

+ denote the nonnegative and positive orthants of Rn; that
is, if x ∈ Rn, then x ∈ R

n
+ and x ∈ Rn

+ are equivalent, respectively, to x ≥≥ 0 and x� 0.
Finally, let N denote the set of nonnegative integers. The following definition introduces
the notion of a nonnegative function.

Definition 2.1. A real function u : N→ Rm is a nonnegative (resp., positive) function if
u(k)≥≥ 0 (resp., u(k)� 0), k ∈N.

In the first part of this paper, we consider discrete-time, linear nonnegative dynamical
systems of the form

x(k+ 1)=Ax(k) +Bu(k), x(0)= x0, k ∈N, (2.1)

where x ∈ Rn, u∈ Rm, A∈ Rn×n, and B ∈ Rn×m. The following definition and proposi-
tion are needed for the main results of this paper.

Definition 2.2. The linear dynamical system given by (2.1) is nonnegative if for every
x(0)∈R

n
+ and u(k)≥≥ 0, k ∈N, the solution x(k), k ∈N, to (2.1) is nonnegative.

Proposition 2.3 [10]. The linear dynamical system given by (2.1) is nonnegative if and
only if A∈Rn×n is nonnegative and B ∈Rn×m is nonnegative.

Next, we consider a subclass of nonnegative systems; namely, compartmental systems.

Definition 2.4. Let A ∈ Rn×n. A is a compartmental matrix if A is nonnegative and∑n
k=1A(k, j) ≤ 1, j = 1,2, . . . ,n.
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If A is a compartmental matrix and u(k) ≡ 0, then the nonnegative system (2.1) is
called an inflow-closed compartmental system [10, 11, 12]. Recall that an inflow-closed
compartmental system possesses a dissipation property and hence is Lyapunov-stable
since the total mass in the system given by the sum of all components of the state x(k),
k ∈N, is nonincreasing along the forward trajectories of (2.1). In particular, with V(x)=
eTx, where e = [1,1, . . . ,1]T, it follows that

∆V
(
x(k)

)= eT(A− I)x(k)=
n∑
j=1

[ n∑
i=1

A(i, j)− 1

]
xj ≤ 0, x ∈R

n
+. (2.2)

Hence, all solutions of inflow-closed linear compartmental systems are bounded. Of
course, if detA �= 0, where detA denotes the determinant of A, then A is asymptotically
stable. For details of the above facts, see [10].

3. Monotonicity of linear nonnegative dynamical systems

In this section, we present our main results for discrete-time, linear nonnegative dynam-
ical systems. Specifically, we consider monotonicity of solutions of dynamical systems of
the form given by (2.1). First, however, the following definition is needed.

Definition 3.1. Consider the discrete-time, linear nonnegative dynamical system (2.1),
where x0 ∈ �0 ⊆ R

n
+, A is nonnegative, B is nonnegative, u(k), k ∈ N, is nonnegative,

and �0 denotes a set of feasible initial conditions contained in R
n
+. Let n̂≤ n, {k1,k2, . . . ,

kn̂} ⊆ {1,2, . . . ,n}, and x̂(k) � [xk1 (k), . . . ,xkn̂(k)]T. The discrete-time, linear nonnegative
dynamical system (2.1) is partially monotonic with respect to x̂ if there exists a matrix
Q ∈ Rn×n such that Q = diag[q1, . . . ,qn], qi = 0, i �∈ {k1, . . . ,kn̂}, qi = ±1, i ∈ {k1, . . . ,kn̂},
and for every x0 ∈ �0, Qx(k2) ≤≤ Qx(k1), 0 ≤ k1 ≤ k2, where x(k), k ∈ N, denotes the
solution to (2.1). The discrete-time, linear nonnegative dynamical system (2.1) is mono-
tonic if there exists a matrix Q ∈Rn×n such that Q = diag[q1, . . . ,qn], qi =±1, i= 1, . . . ,n,
and for every x0 ∈�0, Qx(k2)≤≤Qx(k1), 0≤ k1 ≤ k2.

Next, we present a sufficient condition for monotonicity of a discrete-time, linear non-
negative dynamical system.

Theorem 3.2. Consider the discrete-time, linear nonnegative dynamical system given by
(2.1), where x0 ∈R

n
+, A∈Rn×n is nonnegative, B ∈Rn×m is nonnegative, and u(k), k ∈N,

is nonnegative. Let n̂ ≤ n, {k1,k2, . . . ,kn̂} ⊆ {1,2, . . . ,n}, and x̂(k) � [xk1 (k), . . . ,xkn̂(k)]T.
Assume there exists a matrix Q∈Rn×n such that Q=diag[q1, . . . ,qn], qi = 0, i �∈ {k1, . . . ,kn̂},
qi =±1, i∈ {k1, . . . ,kn̂}, QA≤≤Q, and QB ≤≤ 0. Then the discrete-time, linear nonnega-
tive dynamical system (2.1) is partially monotonic with respect to x̂.

Proof. It follows from (2.1) that

Qx(k+ 1)=QAx(k) +QBu(k), x(0)= x0, k ∈N, (3.1)
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which implies that

Qx
(
k2
)=Qx

(
k1
)

+
k2−1∑
k=k1

[
Q(A− I)x(k) +QBu(k)

]
. (3.2)

Next, since A and B are nonnegative and u(k), k ∈ N, is nonnegative, it follows from
Proposition 2.3 that x(k) ≥≥ 0, k ∈ N. Hence, since −Q(A− I) and −QB are nonnega-
tive, it follows that Q(A− I)x(k) ≤≤ 0 and QBu(k) ≤≤ 0, k ∈ N, which implies that for
every x0 ∈R

n
+, Qx(k2)≤≤Qx(k1), 0≤ k1 ≤ k2. �

Corollary 3.3. Consider the discrete-time, linear nonnegative dynamical system given by
(2.1), where x0 ∈R

n
+, A∈Rn×n is nonnegative, B ∈Rn×m is nonnegative, and u(k), k ∈N,

is nonnegative. Assume there exists a matrix Q ∈Rn×n such that Q = diag[q1, . . . ,qn], qi =
±1, i= 1, . . . ,n, and QA≤≤Q and QB ≤≤ 0 are nonnegative. Then the discrete-time, linear
nonnegative dynamical system given by (2.1) is monotonic.

Proof. The proof is a direct consequence of Theorem 3.2 with n̂ = n and {k1, . . . ,kn̂} =
{1, . . . ,n}. �

Next, we present partial converses of Theorem 3.2 and Corollary 3.3 in the case where
u(k)≡ 0.

Theorem 3.4. Consider the discrete-time, linear nonnegative dynamical system given by
(2.1), where x0 ∈ R

n
+, A ∈ Rn×n is nonnegative, and u(k) ≡ 0. Let n̂ ≤ n, {k1,k2, . . . ,kn̂} ⊆

{1,2, . . . ,n}, and x̂(k) � [xk1 (k), . . . ,xkn̂(k)]T. The discrete-time, linear nonnegative dynam-
ical system (2.1) is partially monotonic with respect to x̂ if and only if there exists a matrix
Q ∈ Rn×n such that Q = diag[q1, . . . ,qn], qi = 0, i �∈ {k1, . . . ,kn̂}, qi = ±1, i ∈ {k1, . . . ,kn̂},
and QA≤≤Q.

Proof. Sufficiency follows from Theorem 3.2 with u(k) ≡ 0. To show necessity, assume
that the discrete-time, linear dynamical system given by (2.1), with u(k)≡ 0, is partially
monotonic with respect to x̂. In this case, it follows from (2.1) that

Qx(k+ 1)=QAx(k), x(0)= x0, k ∈N, (3.3)

which further implies that

Qx
(
k2
)=Qx

(
k1
)

+
k2−1∑
k=k1

[
Q(A− I)Akx0

]
. (3.4)

Now, suppose, ad absurdum, there exist I , J ∈ {1,2, . . . ,n} such that M(I ,J) > 0, where M �
QA−Q. Next, let x0 ∈R

n
+ be such that x0J > 0 and x0i = 0, i �= J , and define v(k) � Akx0

so that v(0)= x0, v(k)≥≥ 0, k ∈N, and vJ(0) > 0. Thus, it follows that

[
Qx(1)

]
J =

[
Qx0

]
J +
[
Mv(0)

]
J =

[
Qx0

]
J +M(I ,J)vJ(0) >

[
Qx0

]
J , (3.5)

which is a contradiction. Hence, QA≤≤Q. �
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Corollary 3.5. Consider the discrete-time, linear nonnegative dynamical system given by
(2.1), where x0 ∈ R

n
+, A ∈ Rn×n is nonnegative, and u(k) ≡ 0. The linear nonnegative dy-

namical system (2.1) is monotonic if and only if there exists a matrix Q ∈ Rn×n such that
Q = diag[q1, . . . ,qn], qi =±1, i= 1,2, . . . ,n, and QA≤≤Q.

Proof. The proof is a direct consequence of Theorem 3.4 with n̂ = n and {k1, . . . ,kn̂} =
{1, . . . ,n}. �

Finally, we present a sufficient condition for weighted monotonicity for a discrete-time,
linear nonnegative dynamical system.

Proposition 3.6. Consider the discrete-time, linear dynamical system given by (2.1), where
A is nonnegative, u(k) ≡ 0, x0 ∈�0 � {x0 ∈ Rn : S(A− I)x0 ≤≤ 0}, where S∈ Rn×n is an
invertible matrix. If SAS−1 is nonnegative, then for every x0 ∈ �0, Sx(k2) ≤≤ Sx(k1), 0 ≤
k1 ≤ k2.

Proof. Let y(k) � −S(A− I)x(k) and note that y(0) = −S(A− I)x0 ∈ R
n
+. Hence, it fol-

lows from (2.1) that

y(k+ 1)=−S(A− I)x(k+ 1)=−S(A− I)Ax(k)=−SAS−1S(A− I)x(k)= SAS−1y(k).
(3.6)

Next, since SAS−1 is nonnegative, it follows that y(k) ∈ R
n
+, k ∈ N. Now, the result fol-

lows immediately by noting that y(k) = −S(A− I)x(k) � 0, k ∈ N, and hence S(A−
I)x(k) ≤≤ 0, k ∈ N, or, equivalently, Sx(k + 1) ≤≤ Sx(k), k ∈ N, which implies that
Sx(k2)≤≤ Sx(k1), 0≤ k1 ≤ k2. �

4. Monotonicity of nonlinear nonnegative dynamical systems

In this section, we extend the results of Section 3 to nonlinear nonnegative dynamical
systems. Specifically, we consider discrete-time, nonlinear dynamical systems � of the
form

x(k+ 1)= f
(
x(k)

)
+G

(
x(k)

)
u(k), x(0)= x0, k ∈N, (4.1)

where x(k) ∈ �, � is an open subset of Rn with 0 ∈ �, u(k) ∈ Rm, f : � → Rn, and
G : �→Rn×m. We assume that f (·) and G(·) are continuous in � and f (xe)= xe, xe ∈�.
For the nonlinear dynamical system � given by (4.1), the definitions of monotonicity and
partial monotonicity hold with (2.1) replaced by (4.1). The following definition general-
izes the notion of nonnegativity to vector fields.

Definition 4.1 [10]. Let f = [ f1, . . . , fn]T : �→ Rn, where � is an open subset of Rn that
contains Rn. Then f is nonnegative if fi(x)≥ 0, for all i= 1, . . . ,n and x ∈R

n
+.

Note that if f (x) = Ax, where A ∈ Rn×n, then f is nonnegative if and only if A is
nonnegative. The following proposition is required for the main theorem of this section.
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Proposition 4.2 [10]. Consider the discrete-time, nonlinear dynamical system � given by
(4.1). If f : �→Rn is nonnegative and G(x)≥≥ 0, x ∈R

n
+, then � is nonnegative.

Next, we present a sufficient condition for monotonicity of a nonlinear nonnegative
dynamical system.

Theorem 4.3. Consider the discrete-time, nonlinear nonnegative dynamical system � given
by (4.1), where x0 ∈R

n
+, f : �→Rn is nonnegative, G(x)≥≥ 0, x ∈R

n
+, and u(k), k ∈N, is

nonnegative. Let n̂ ≤ n, {k1,k2, . . . ,kn̂} ⊆ {1,2, . . . ,n}, and x̂(k) � [xk1 (k), . . . ,xkn̂(k)]T. As-
sume there exists a matrix Q∈Rn×n such that Q=diag[q1, . . . ,qn], qi = 0, i �∈ {k1, . . . ,kn̂},
qi = ±1, i ∈ {k1, . . . ,kn̂}, Q f (x) ≤≤ Qx, x ∈ R

n
+, and QG(x) ≤≤ 0, x ∈ R

n
+. Then

the discrete-time, nonlinear nonnegative dynamical system � is partially monotonic with
respect to x̂.

Proof. The proof is similar to the proof of Theorem 3.2 with Proposition 4.2 invoked in
place of Proposition 2.3, and hence is omitted. �

Corollary 4.4. Consider the discrete-time, nonlinear nonnegative dynamical system �
given by (4.1), where x0 ∈ R

n
+, f : �→ Rn is nonnegative, G(x) ≥≥ 0, x ∈ R

n
+, and u(k),

k ∈N, is nonnegative. Assume there exists a matrixQ ∈Rn×n such thatQ= diag[q1, . . . ,qn],
qi =±1, i= 1, . . . ,n, Q f (x)≤≤Qx, x ∈ R

n
+, and QG(x)≤≤ 0, x ∈ R

n
+. Then the discrete-

time, nonlinear nonnegative dynamical system � is monotonic.

Proof. The proof is a direct consequence of Theorem 4.3 with n̂ = n and {k1, . . . ,kn̂} =
{1, . . . ,n}. �

Next, we present necessary and sufficient conditions for partial monotonicity and
monotonicity for (4.1) in the case where u(k)≡ 0.

Theorem 4.5. Consider the discrete-time, nonlinear nonnegative dynamical system � given
by (4.1), where x0 ∈ R

n
+, f : �→ Rn is nonnegative, and u(k) ≡ 0. Let n̂ ≤ n, {k1,k2, . . . ,

kn̂} ⊆ {1,2, . . . ,n}, and x̂(k) � [xk1 (k), . . . ,xkn̂(k)]T. The discrete-time, nonlinear nonneg-
ative dynamical system � is partially monotonic with respect to x̂ if and only if there ex-
ists a matrix Q ∈ Rn×n such that Q = diag[q1, . . . ,qn], qi = 0, i �∈ {k1, . . . ,kn̂}, qi = ±1,
i∈ {k1, . . . ,kn̂}, and Q f (x)≤≤Qx, x ∈R

n
+.

Proof. Sufficiency follows from Theorem 4.3 with u(k) ≡ 0. To show necessity, assume
that the nonlinear dynamical system given by (4.1), with u(k)≡ 0, is partially monotonic
with respect to x̂. In this case, it follows from (4.1) that

Qx(k+ 1)=Q f
(
x(k)

)
, x(0)= x0, k ∈N, (4.2)

which implies that for every k ∈N,

Qx
(
k2
)=Qx

(
k1
)

+
k2−1∑
k=k1

[
Q f
(
x(k)

)−Qx(k)
]
. (4.3)
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Now, suppose, ad absurdum, there exist J ∈ {1,2, . . . ,n} and x0 ∈R
n
+ such that [Q f (x0)]J >

[Qx0]J . Hence,

[
Qx(1)

]
J =

[
Qx0

]
J +
[
Q f
(
x0
)−Qx0

]
J >
[
Qx0

]
J , (4.4)

which is a contradiction. Hence, Q f (x)≤≤Qx, x ∈R
n
+. �

Corollary 4.6. Consider the discrete-time, nonlinear nonnegative dynamical system �
given by (4.1), where x0 ∈R

n
+, f : �→Rn is nonnegative, and u(k)≡ 0. The discrete-time,

nonlinear nonnegative dynamical system � is monotonic if and only if there exists a matrix
Q ∈Rn×n such that Q = diag[q1, . . . ,qn], qi =±1, i= 1, . . . ,n, and Q f (x)≤≤Qx, x ∈R

n
+.

Proof. The proof is a direct consequence of Theorem 4.5 with n̂ = n and {k1, . . . ,kn̂} =
{1, . . . ,n}. �

Corollary 4.6 provides some interesting ramifications with regard to the absence of
limit cycles of inflow-closed nonlinear compartmental systems. To see this, consider the
inflow-closed (u(k) ≡ 0) compartmental system (4.1), where f (x) = [ f1(x), . . . , fn(x)] is
such that

fi(x)= xi− aii(x) +
n∑

j=1, i �= j

[
ai j(x)− aji(x)

]
(4.5)

and where the instantaneous rates of compartmental material losses aii(·), i = 1, . . . ,n,
and intercompartmental material flows ai j(·), i �= j, i, j = 1, . . . ,n, are such that ai j(x)≥ 0,

x ∈R
n
+, i, j = 1, . . . ,n. Since all mass flows as well as compartment sizes are nonnegative, it

follows that for all i= 1, . . . ,n, fi(x)≥ 0 for all x ∈R
n
+. Hence, f is nonnegative. As in the

linear case, inflow-closed nonlinear compartmental systems are Lyapunov-stable since
the total mass in the system given by the sum of all components of the state x(k), k ∈N,
is nonincreasing along the forward trajectories of (4.1). In particular, taking V(x)= eTx
and assuming ai j(0)= 0, i, j = 1, . . . ,n, it follows that

∆V(x)=
n∑
i=1

∆xi =−
n∑
i=1

aii(x) +
n∑
i=1

n∑
j=1, i �= j

[
ai j(x)− aji(x)

]=− n∑
i=1

aii(x)≤ 0, x ∈R
n
+,

(4.6)

which shows that the zero solution x(k) ≡ 0 of the inflow-closed nonlinear compart-
mental system (4.1) is Lyapunov-stable and for every x0 ∈ R

n
+, the solution to (4.1) is

bounded.
In light of the above, it is of interest to determine sufficient conditions under which

masses/concentrations for nonlinear compartmental systems are Lyapunov-stable and
convergent, guaranteeing the absence of limit-cycling behavior. The following result is
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a direct consequence of Corollary 4.6 and provides sufficient conditions for the absence
of limit cycles in nonlinear compartmental systems.

Theorem 4.7. Consider the nonlinear nonnegative dynamical system � given by (4.1) with
u(k) ≡ 0 and f (x) = [ f1(x), . . . , fn(x)] such that (4.5) holds. If there exists a matrix Q ∈
Rn×n such that Q = diag[q1, . . . ,qn], qi =±1, i= 1, . . . ,n, and Q f (x)≤≤Qx, x ∈R

n
+, then

for every x0 ∈R
n
+, limk→∞ x(k) exists.

Proof. Let V(x) = eTx, x ∈ R
n
+. Now, it follows from (4.6) that ∆V(x(k)) ≤ 0, k ∈ N,

where x(k), k ∈N, denotes the solution of �, which implies that V(x(k))≤V(x0)= eTx0,
k ∈N, and hence for every x0 ∈R

n
+, the solution x(k), k ∈N, of � is bounded. Hence, for

every i∈ {1, . . . ,n}, xi(k), k ∈N, is bounded. Furthermore, it follows from Corollary 4.6
that xi(k), k ∈ N, is monotonic. Now, since xi(·), i ∈ {1, . . . ,n}, is bounded and mono-
tonic, it follows that limk→∞ xi(k), i= 1, . . . ,n, exists. Hence, limk→∞ x(k) exists. �

5. A Taxonomy of three-dimensional monotonic compartmental systems

In this section, we use the results of Section 3 to provide a taxonomy of linear three-
dimensional, inflow-closed compartmental dynamical systems that exhibit monotonic
solutions. A similar classification can be obtained for nonlinear and higher-order com-
partmental systems, but we do not do so here for simplicity of exposition. To character-
ize the class of all three-dimensional monotonic compartmental systems, let � � {Q ∈
R3×3 : Q = diag[q1,q2,q3], qi =±1, i= 1,2,3}. Furthermore, let A∈R3×3 be a compart-
mental matrix and let x1(k), x2(k), and x3(k), k ∈ N, denote compartmental masses for
compartments 1, 2, and 3, respectively. Note that there are exactly eight matrices in the
set �. Now, it follows from Corollary 3.5 that if QA≤≤Q, Q ∈ �, then the correspond-
ing compartmental dynamical system is monotonic. Hence, for every Q ∈ �, we seek all
compartmental matrices A∈R3×3 such that qiA(i,i) ≤ qi, i= 1,2,3, and qiA(i, j) ≤ 0, i �= j,
i, j = 1,2,3.

First, we consider the case where Q = diag[1,1,1]. In this case, qiA(i,i) ≤ qi, i = 1,2,3,
and qiA(i, j) ≤ 0, i �= j, i, j = 1,2,3, if and only if A(1,2) = A(1,3) = A(2,1) = A(3,1) = A(3,2) =
A(2,3) = 0. This corresponds to a trivial (decoupled) case since there are no intercompart-
mental flows between the three compartments (see Figure 5.1(a)). Next, let Q = diag[1,
−1,−1] and note that qiA(i,i) ≤ qi, i= 1,2,3, and qiA(i, j) ≤ 0, i �= j, i, j = 1,2,3, if and only
if A(2,2) = A(3,3) = 1 and A(1,2) = A(1,3) = A(2,3) = A(3,2) = 0. Figure 5.1(b) shows the com-
partmental structure for this case. Finally, let Q = diag[−1,1,1]. In this case, qiA(i,i) ≤ qi,
i = 1,2,3, and qiA(i, j) ≤ 0, i �= j, i, j = 1,2,3, if and only if A(1,1) = 1 and A(2,1) = A(3,1) =
A(3,2) = A(2,3) = 0. Figure 5.1(c) shows the corresponding compartmental structure.

It is important to note that in the case where Q = diag[−1,−1,−1], there does not ex-
ist a compartmental matrix satisfying QA≤≤Q except for the identity matrix. This case
would correspond to a compartmental dynamical system where all three states are mono-
tonically increasing. Hence, the compartmental system would be unstable, contradicting
the fact that all compartmental systems are Lyapunov-stable. Finally, the remaining four
cases corresponding to Q = diag[−1,1,−1], Q = diag[−1,−1,1], Q = diag[1,−1,1], and
Q = diag[1,1,−1] are dual to the cases where Q = diag[1,−1,−1] and Q = diag[−1,1,1],
and hence are not presented.
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Compartment 1
x1(k)

a11x1(k)

a22x2(k) a33x3(k)
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x2(k)

Compartment 3
x3(k)

(a)

Compartment 1
x1(k)

a11x1(k)

x2(k) x3(k)

a21x1(k) a31x1(k)
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x2(k)
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x3(k)

(b)
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x1(k)

a22x2(k) a33x3(k)

a12x2(k) a13x3(k)

Compartment 2
x2(k)
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x3(k)

(c)

Figure 5.1. Three-dimensional monotonic compartmental systems.
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6. Conclusion

Nonnegative and compartmental models are widely used to capture system dynamics in-
volving the interchange of mass and energy between homogeneous subsystems. In this
paper, necessary and sufficient conditions were given, under which linear and nonlinear
discrete-time nonnegative and compartmental systems are guaranteed to possess mono-
tonic solutions. Furthermore, sufficient conditions that guarantee the absence of limit
cycles in nonlinear discrete-time compartmental systems were also provided.
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