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We study a family of three-point nonlocal boundary value problems (BVPs) for an nth-
order linear forward difference equation. In particular, we obtain a maximum principle
and determine sign properties of a corresponding Green function. Of interest, we show
that the methods used for two-point disconjugacy or right-disfocality results apply to this
family of three-point BVPs.

1. Introduction

The disconjugacy theory for forward difference equations was developed by Hartman
[15] in a landmark paper which has generated so much activity in the study of differ-
ence equations. Sturm theory for a second-order finite difference equation goes back to
Fort [12], which also serves as an excellent reference for the calculus of finite differences.
Hartman considers the nth-order linear finite difference equation

Pu(m)=
n∑
j=0

αj(m)u(m+ j)= 0, (1.1)

αnα0 �= 0, m ∈ I = {a,a+ 1,a+ 2, . . .}. To illustrate the analogy of (1.1) to an nth-order
ordinary differential equation, introduce the finite difference operator ∆ by

∆u(m)= u(m+ 1)−u(m), ∆0u(m)≡ u(m),

∆i+1u(m)= ∆
(
∆iu
)
(m), i≥ 1.

(1.2)

Clearly, P can be algebraically expressed as an nth-order finite difference operator.
Let m1, b denote two positive integers such that n− 2 ≤m1 < b. In this paper, we as-

sume that a= 0 for simplicity, and we consider a family of three-point boundary condi-
tions of the form

u(0)= 0, . . . ,u(n− 2)= 0, u
(
m1
)= u(b). (1.3)
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Clearly, the boundary conditions (1.3) are equivalent to the boundary conditions

∆iu(0)= 0, i= 0, . . . ,n− 2, u
(
m1
)= u(b). (1.4)

There is a current flurry to study nonlocal boundary conditions of the type described
by (1.3). In certain sectors of the literature, such boundary conditions are referred to
as multipoint boundary conditions. Study was initiated by Il’in and Moiseev [16, 17].
These initial works were motivated by earlier work on nonlocal linear elliptic boundary
value problems (BVPs) (see, e.g., [3, 4]). Gupta and coauthors have worked extensively on
such problems; see, for example, [13, 14]. Lomtatidze [18] has produced early significant
work. We point out that Bobisud [5] has recently developed a nontrivial application of
such problems to heat transfer. For the rest of the paper, we will use the term nonlocal
boundary conditions, initiated by Il’in and Moiseev [16, 17].

We motivate this paper by first considering the equation

Pu(m)= ∆nu(m)= 0, m= 0, . . . ,b−n. (1.5)

In this preliminary discussion, we employ the natural family of polynomials, m(k) =
m(m− 1)···(m− k+ 1) so that ∆m(k) = km(k−1).

A Green function, G(m1,m,s) for the BVP (1.5), (1.3) exists for (m1,m,s) ∈ {n−
2, . . . ,b− 1}×{0, . . . ,b}×{0, . . . ,b−n}. It can be constructed directly and has the form

G
(
m1;m,s

)=




a
(
m1;s

)
m(n−1)

(n− 1)!
, 0≤m≤ s≤ b−n,

a
(
m1;s

)
m(n−1) +

(
m− (s+ 1)

)(n−1)

(n− 1)!
, 0≤ s+ 1≤m≤ b,

(1.6)

where

a
(
m1;s

)=−
(
b− (s+ 1)

)(n−1)

b(n−1)−m(n−1)
1

, m1 ≤ s,

a
(
m1;s

)=−
(
b− (s+ 1)

)(n−1)− (m1− (s+ 1)
)(n−1)

b(n−1)−m(n−1)
1

, s+ 1≤m1.

(1.7)

Associated with the BVP (1.5), (1.3) are two extreme cases. At m1 = n− 2, we have the
boundary conditions

u(0)= 0, . . . ,u(n− 2)= 0, u(n− 2)= u(b), (1.8)

which are equivalent to the two-point conjugate conditions [15]

u(0)= 0, . . . ,u(n− 2)= 0, u(b)= 0. (1.9)

At m1 = b− 1, we have the boundary conditions

u(0)= 0, . . . ,u(n− 2)= 0, u(b− 1)= u(b), (1.10)
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which are equivalent to the two-point “in between conditions” [9]

u(0)= 0, . . . ,u(n− 2)= 0, ∆u(b− 1)= 0. (1.11)

The following inequalities have been previously obtained [10, 15]:

0 > G(n− 2;m,s) > G(b− 1;m,s), (1.12)

(m,s)∈ {n− 1, . . . ,b}×{0, . . . ,b−n}.
The following theorem is obtained directly from the representation (1.6) of G(m1;

m,s).

Theorem 1.1. G(m1;m,s) is decreasing as a function of m1; that is,

0≥G
(
m1;m,s

)
> G

(
m1 + 1;m,s

)
, (1.13)

(m1,m,s) ∈ {n− 2, . . . ,b− 2}× {n− 1, . . . ,b}× {0, . . . ,b− n}. The first inequality is strict,
except in the conjugate case, m1 = n− 2, at m= b.

The purpose of this paper is to obtain Theorem 1.1 for a more general finite difference
equation, Pu(m)= 0. Note that even for the specific BVP (1.5), (1.3), the calculations to
show that G is decreasing in m1 are tedious. The method exhibited in the next section
allows one to bypass the tedious calculations. We will need to assume a condition that
implies disconjugacy. We will then argue that similar results are obtained if the nonlocal
boundary condition has the form

∆ ju
(
m1
)= ∆ ju(b− j), j ∈ {0, . . . ,n− 1}. (1.14)

The similar results will be valid if we assume that Pu(m)= 0 is right-disfocal [2].

2. A general disconjugate equation

Hartman [15] defined the disconjugacy of (1.1) on I = {0, . . . ,b}. First recall the
definition of a generalized zero [15]. m= 0 is a generalized zero of u if u(0)= 0. m> 0 is
a generalized zero of u if u(m) = 0, or there exists an integer k ≥ 1 such that m− k ≥ 0,
u(m− k + 1) = ··· = u(m− 1) = 0, and (−1)ku(m− k)u(m) > 0. Then (1.1) is discon-
jugate on I if u is a solution of (1.1) on I and that u has at least n generalized zeros on
I implies that u ≡ 0 on I . A condition related to and stronger than disconjugacy is that
of right-disfocality [1, 8]; (1.1) is right-disfocal on I if u is a solution of (1.1) on I and
that ∆ ju has a generalized zero at s j , 0 ≤ s0 ≤ s1 ≤ ··· ≤ sn−1 ≤ b− n + 1, implies that
u ≡ 0 on I . For this particular paper, a concept of right (n− 1; j) disfocality would be
appropriate; (1.1) is right (n− 1; j) disfocal on I if u is a solution of (1.1) on I and that
u has at least n− 1 generalized zeros at s0, . . . ,sn−2, ∆ ju has a generalized zero at sn−1,
max{s0, . . . ,sn−2} ≤ sn−1 ≤ b− j, imply that u≡ 0 on I .

Hartman [15] showed the equivalence of disconjugacy and a Frobenius factorization
in the discrete case; in particular, Pu= 0 is disconjugate on {0, . . . ,b} if and only if there
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exist positive functions vi defined on {0, . . . ,b− i+ 1} such that

Pu(m)=
(

1
vn+1

)
∆
((

1
vn

)
∆
(
···∆

((
1
v2

)
∆
(
u

v1

))
···

))
(m), (2.1)

m∈ {0, . . . ,b−n}. Define quasidifferences

P0u(m)=
(
u

v1

)
(m),

Pju(m)=
(

1
vj+1

)
∆
((

1
vj

)
∆
(
···∆

((
1
v2

)
∆
(
u

v1

))
···

))
(m)

=
(

1
vj+1

)
∆
(
Pj−1u

)
(m),

(2.2)

m∈ {0, . . . ,b− j}, j = 0, . . . ,n. We will now consider a family of nonlocal boundary con-
ditions of the form

Pju(0)= 0, j = 0, . . . ,n− 2, P0u
(
m1
)= P0u(b). (2.3)

We will remind the reader of a version of Rolle’s theorem.

Lemma 2.1. Let u be a sequence of reals defined on a set of integers. If Pju has generalized
zeros at µ1 and µ2, where µ1 < µ2, then Pj+1u has a generalized zero in {µ1, . . . ,µ2− 1}.
Proof. Hartman [15] proved that vj+2Pj+1u has a generalized zero in the set {µ1, . . . ,µ2−
1}. The lemma follows since vj+2 is positive. �

Theorem 2.2. Assume that Pu= 0 is right (n− 1;1) disfocal on {0, . . . ,b}. Then there exists
a uniquely determined Green function G(m1;m,s) for the BVPs (1.1), (2.3).

Proof. Let v denote the solution of the initial value problem (IVP) (1.1), satisfying initial
conditions

Pjv(0)= 0, j = 0, . . . ,n− 2, Pn−1v(0)= 1. (2.4)

Let χ(m,s) denote the Cauchy function for (1.1); that is, χ, as a function of m, is the
solution of the IVP (1.1), with the initial conditions

χ(s+ 1 + j,s)= 0, j = 0, . . . ,n− 2, χ(s+ 1 +n− 1,s)= 1. (2.5)

Set

G
(
m1;m,s

)=


a
(
m1;s

)
v(m), 0≤m≤ s≤ b−n,

a
(
m1;s

)
v(m) + χ(m,s), 0≤ s+ 1≤m≤ b.

(2.6)
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ForceG to satisfy the nonlocal condition P0(m1)u(m1)= P0(b)u(b); in particular, solve
algebraically for a(m1;s) to obtain

a
(
m1;s

)= −P0χ(b,s)

P0v(b)−P0v
(
m1
) , m1 ≤ s,

a
(
m1;s

)= P0χ
(
m1,s

)−P0χ(b,s)

P0v(b)−P0v
(
m1
) , s+ 1≤m1.

(2.7)

Note that the right (n− 1;1) disfocality implies that P0v(b)− P0v(m1) is nonzero; in
particular, a(m1;s) is well defined. Straightforward calculations show that

b−n∑
s=0

G
(
m1;m,s

)
f (s) (2.8)

is the unique solution of a nonhomogeneous BVP of the form Pu(m) = f (m), m ∈
{0, . . . ,b−n}, satisfying the boundary conditions (2.3). �

Theorem 2.3. Assume that Pu= 0 is right (n− 1;1) disfocal on {0, . . . ,b}. Then

G
(
m1;m,s

)≤ 0, (2.9)

(m1,m,s) ∈ {n− 2, . . . ,b− 1}× {n− 1, . . . ,b}× {0, . . . ,b− n}. The inequality is strict, ex-
cept in the conjugate case, m1 = n− 2, at m= b.

Remark 2.4. We consider a specific set of nonlocal boundary conditions in this paper to
illustrate that theory and methods from disconjugacy theory apply to families of nonlocal
BVPs. Because of the specific nonlocal boundary conditions, it is the case that P1u has a
generalized zero in {m1, . . . ,b− 1}. Hence, the argument we produce below is precisely
the general argument for the conjugate boundary conditions given in [6, Section 8.8],
after Rolle’s theorem has been applied one time.

Proof. It is known that (2.9) is valid in the extreme cases, m1 = n− 2 [15] and m1 = b− 1
[10]. Let m1 ∈ {n− 1, . . . ,b− 2} be fixed. We first show that G is of fixed sign for

(m,s)∈ {n− 1, . . . ,b}×{0, . . . ,b−n}. (2.10)

Let s∈ {0, . . . ,b−n} be fixed. By construction, G, as a function of m, satisfies the bound-
ary conditions (2.3).

Assume for the sake of contradiction that G has an additional generalized zero at m0

for some m0 ∈ {n− 1, . . . ,b}. Then P0G takes on an additional generalized zero at m0

since v1 is of strict sign. Perform a count on the number of generalized zeros of each PjG.
(Since m1 and s are fixed, PjG is a function of m. We suppress the argument for simplicity
of notation.)
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Note, from the boundary conditions, that P1G has a generalized zero at n− 3. The
first point of the argument is to argue that P1G has two more generalized zeros in {n−
2, . . . ,b− 1}. First assume that m0 ≤m1. Apply Rolle’s theorem, Lemma 2.1. Then P1G
has two more generalized zeros, m11 < m12, where m11 ∈ {n− 2, . . . ,m0 − 1} and m12 ∈
{m1, . . . ,b− 1}. Second, assume that m1 <m0. With this assumption, P0G(m1) �= 0. Apply
Rolle’s theorem to see that P1G has a generalized zero atm11 ∈ {n− 2, . . . ,m0− 1}. Ifm11 <
m1, then Rolle’s theorem can be applied to the nonlocal conditions to obtain a second
generalized zero m12 ∈ {m1, . . . ,b− 1}. So, we come to the last subcase, m1 ≤m11. Assume
without loss of generality that m0 is the smallest generalized zero of P0G to the right of
m1. Then P0G(m1)P0G(m0) ≤ 0. This implies that P0G(m0)P1G(m0 − 1) ≥ 0. These two
inequalities imply that P1G has a generalized zero in {m0, . . . ,b− 1}. If not, then ∆P0G
has a fixed sign on {m0, . . . ,b− 1}, which agrees with the sign of P1G at m0− 1. Recall the
identity

P0G(b)= P0G
(
m0
)

+
b−1∑
µ=m0

∆P0G(µ). (2.11)

In particular, P0G(m1) and P0G(b) have opposite signs which contradicts the nonlocal
boundary conditions. Thus, there exists m ∈ {m0, . . . ,b − 1} such that P1G(m0 −
1)P1G(m)≤ 0. In particular, there exists m12 ∈ {m0, . . . ,b− 1} such that P1G has a gener-
alized zero at m12.

To summarize the purpose of the preceding paragraphs, we have shown that P1G has
at least three generalized zeros on {n− 3, . . . ,b− 1}. It now easily follows by induction
and repeated applications of Lemma 2.1 and the boundary conditions that for each j =
0, . . . ,n− 2 PjG has at least 3 generalized zeros, one at n− ( j + 2) and other two satisfying
n− ( j + 1)≤mj1 <mj2 ≤ b− j.

Since Pn−2G has at least three generalized zeros, Pn−2G has at least two generalized
zeros counting multiplicities for m≤ s or for s+ 1≤m. Either case will provide a contra-
diction.

Assume that Pn−2G has at least two generalized zeros counting multiplicities for m≤ s.
Then Pn−1G has at least one generalized zero for m≤ s. By construction, PnG≡ 0 for t ≤ s;
thus, vnPn−1G is of constant sign and has a generalized zero; in particular, Pn−1G≡ 0 for
m ≤ s. Continue inductively and argue that PjG ≡ 0 for m ≤ s. In particular, G = v ≡ 0
for m≤ s. This clearly contradicts the construction of v.

Assume that Pn−2G has at least two generalized zeros counting multiplicities for s+ 1≤
m. Then a similar argument gives that G = v + χ ≡ 0 for s+ 1 ≤m. If v = −χ, then the
disconjugacy is violated.

Thus, G is of strict sign on {n− 2, . . . ,b− 1}×{n− 1, . . . ,b}×{0, . . . ,b−n}.
To determine the sign of G, evaluate the sign of

h(m)=
b−n∑
s=0

G(m,s), (2.12)
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which is the unique solution of the BVP

Pu= 1, m∈ {0, . . . ,b−n}, (2.13)

with boundary conditions (2.3). Pjh has a generalized zero at n− ( j + 2) because of the
boundary conditions. In addition, because of the nonlocal boundary conditions and re-
peated applications of Rolle’s theorem, Pjh has a generalized zero at mj,1, where

n− ( j + 2) <mj,1 <mj−1,1 < b (2.14)

for j = 1, . . . ,n− 2. Moreover, due to Rolle’s theorem, Pn−1h has precisely one generalized
zero since Pnu≡ 1.

Pnu≡ 1 implies that vnPn−1u is increasing. From the above construction, vnPn−1u has
precisely one generalized zero at 0 < mn−1,1. Hence, vnPn−1u < 0 on {0, . . . ,mn−1,1 − 1}.
Continue inductively. Initially, vn−1Pn−2u is decreasing and Pn−2u(0)= 0; so Pn−2u(1) < 0.
Inductively, it follows that Pju(n− 1− j) < 0, j = 0, . . . ,n− 2. In particular, u(n− 1) < 0;
since G does not change sign, u does not change sign. Thus, u negative implies that (2.9)
is valid. �

Theorem 2.5. Assume that Pu = 0 is right (n− 1;1) disfocal on {0, . . . ,b}. Then G, as a
function of m1, is decreasing; that is, if n− 2≤m1 <m2 ≤ b− 1, then

G
(
m2;m,s

)
< G

(
m1;m,s

)≤ 0, (2.15)

(m,s)∈ {n− 1, . . . ,b}×{0, . . . ,b−n}. The second inequality is strict, except in the conjugate
case, m1 = n− 2, at m= b.

To prove the above comparison theorem, we first obtain a useful lemma. Let G2 denote
the quasidifference of G with respect to m; that is, let

G2
(
m1;m,s

)= P0G
(
m1;m+ 1,s

)−P0G
(
m1;m,s

)= v2P1G. (2.16)

Lemma 2.6. Let m1 ∈ {n− 2, . . . ,b− 2}.Then

G2
(
m1 + 1;m1,s

)
< 0, s∈ {0, . . . ,b−n}. (2.17)

Proof. The proof requires only a simple extension from the proof of Theorem 2.3. As
summarized in the fourth paragraph of the proof of Theorem 2.3, we know that P1G has
precisely one generalized zero m11 to the right of n− 3. We also know by Rolle’s theorem
that m1 ≤m11.

G(n − 2) = 0, G(n − 1) < 0 imply that P1G(n − 2) < 0 which in turn implies that
P1G(m1− 1) < 0. �

Proof of Theorem 2.5. Let G1 denote the difference of G with respect to m1; that is, let

G1
(
m1;m,s

)=G
(
m1 + 1;m,s

)−G
(
m1;m,s

)
. (2.18)

In particular, we assume that m1 < b− 1.
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Note that G1 is the unique solution of the BVP

Pu= 0, m∈ {0, . . . ,b−n},
Pju(0)= 0, j = 0, . . . ,n− 2,

P0u(b)−P0u
(
m1
)=G2

(
m1 + 1;m1,s

)
< 0.

(2.19)

G1 satisfies the difference equation and each of the initial conditions at 0; this is clear
since each term of G(m1 + 1;m,s), G(m1;m,s) satisfies the difference equation and the
initial conditions. Simply calculate the nonlocal boundary condition

P0
(
G
(
m1 + 1;b,s

)−G
(
m1;b,s

))−P0
(
G
(
m1 + 1;m1,s

)−G
(
m1;m1,s

))
= (P0G

(
m1 + 1;b,s

)−P0G
(
m1 + 1;m1 + 1,s

))
+
(
P0G

(
m1 + 1;m1 + 1,s

)−P0G
(
m1 + 1;m1,s

))
=G2

(
m1 + 1;m1,s

)
.

(2.20)

In particular,

P0u(b) < P0u
(
m1
)
. (2.21)

The boundary conditions at 0 and the right (n− 1;1) disfocality imply that P0u is mono-
tone for m> n− 2. P0u(b) < P0u(m1) implies that P0u is monotone-decreasing and (2.15)
is proved. �

We end the paper with a brief general observation. Let l ∈ {0, . . . ,n− 2}. Let m1 ∈
{n− 2, . . . ,b− l− 1}. Consider the BVP

Pu(m)= 0, m∈ {0, . . . ,b−n}, (2.22)

with boundary conditions

Pju(0)= 0, j = 0, . . . ,n− 2, Plu
(
m1
)= Plu(b− l). (2.23)

We state without proof theorems analogous to Theorems 2.3 and 2.5. The observation
to make now is that the BVP at l = 0, m1 = b− 1 is equivalent to the BVP with l = 1,
m1 = n− 3. One can now begin an inductive argument on l and repeat the arguments in
the paper.

A Green function G(l,m1;m,s) for the BVP (1.1), (2.23) is readily constructed as in the
proof of Theorem 2.2. So, from the above observation, we claim that

G(0,b− 1;m,s)=G(1,n− 3;m,s). (2.24)

Define the jth difference of G with respect to m by ∆ jG. The proof of Theorem 2.3 gen-
eralizes readily to show that

∆lG
(
l,m1;m,s

)≤ 0, (2.25)
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(m1,m,s) ∈ {n− l − 2, . . . ,b − l − 1} × {n− l − 1, . . . ,b − l} × {0, . . . ,b − n}. We do not
present the proofs because the arguments, applied to ∆lG(l,m1;m,s), go through in com-
plete analogy; the inequalities for the lower-order differences are then obtained through
repeated definite summations from m= 0, which are valid because of the boundary con-
ditions.

Theorem 2.7. Assume that Pu= 0 is right (n− 1; l) disfocal on {0, . . . ,b}. Then

∆ jG
(
l,m1;m,s

)≤ 0, (2.26)

(m1,m,s) ∈ {n− 2, . . . ,b− l− 1} × {n− j − 1, . . . ,b− j} × {0, . . . ,b− n}, j = 0, . . . , l. The
inequality is strict, except in the case j = l, m1 = n− l− 2, at m= b− l.

Theorem 2.8. Assume that Pu= 0 is right (n− 1; l) disfocal on {0, . . . ,b}. Then ∆ jG, as a
function of m1, is decreasing; that is, if n− 2≤m1 <m2 ≤ b− l− 1, then

∆ jG
(
l,m2;m,s

)
< ∆ jG

(
l,m1;m,s

)≤ 0, (2.27)

(m,s) ∈ {n− j − 1, . . . ,b− j} × {0, . . . ,b− n}, j = 0, . . . , l. The second inequality is strict,
except in the case j = l, m1 = n− l− 2, at m= b− l.

Finally, in the spirit of the interesting comparison theorems first introduced by Elias
[7] (see also [19] or [11]) and later discretized [10], we close with the following compar-
ison theorem.

Theorem 2.9. Assume that Pu= 0 is right-disfocal on {0, . . . ,b}. Let l1 < l2. Then

∆ jG
(
l2,ml2 ;m,s

)
< ∆ jG

(
l1,ml1 ;m,s

)≤ 0, (2.28)

(m,s)∈ {n− j− 1, . . . ,b− j}×{0, . . . ,b−n}, j = 0, . . . , l1. The inequality is strict, except in
the case j = l1, m1 = n− l1− 2, at m= b− l1. If l1 = l2 and m1 <m2, then ∆ jG(l,m2;m,s) <
∆ jG(l,m1;m,s) ≤ 0, (m,s) ∈ {n − j − 1, . . . ,b − j} × {0, . . . ,b − n}, j = 0, . . . , l1 = l2.
The inequality is strict, except in the case, j = l1, m1 = n− l1− 2, at m= b− l1.
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