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We consider a nonhomogeneous linear delay difference equation with continuous vari-
able and establish an asymptotic result for the solutions. Our result is obtained by the use
of a positive root with an appropriate property of the so-called characteristic equation of
the corresponding homogeneous linear (autonomous) delay difference equation. More
precisely, we show that, for any solution, the limit of a specific integral transformation
of it, which depends on a suitable positive root of the characteristic equation, exists as
a real number and it is given explicitly in terms of the positive root of the characteristic
equation and the initial function.

1. Introduction and statement of the main result

Difference equations with continuous variable are difference equations in which the un-
known function is a function of a continuous variable. (The term “difference equation”
is usually used for difference equations with discrete variables.) In practice, time is often
involved as the independent variable in difference equations with continuous variable. In
view of this fact, we may also refer to them as difference equations with continuous time.
Difference equations with continuous variable appear as natural descriptions of observed
evolution phenomena in many branches of the natural sciences (see, e.g., the book by
Sharkovsky et al. [15]; see, also, the paper by Ladas [9]). The book [15] presents an ex-
position of unusual properties of difference equations (and, in particular, of difference
equations with continuous variable). For some results on the oscillation of difference
equations with continuous variable, we choose to refer to Domshlak [1], Ladas et al. [10],
Shen [16], Yan and Zhang [17], and Zhang et al. [18] (and the references cited therein).

Driver et al. [4] obtained some significant results on the asymptotic behavior, the
nonoscillation, and the stability of the solutions of first-order scalar linear delay differen-
tial equations with constant coefficients and one constant delay. See Driver [2] for some
similar important results for first-order scalar linear delay differential equations with in-
finitely many distributed delays. Several extensions of the results in [4] for delay differ-
ential equations as well as for neutral delay differential equations have been presented by
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Philos [11], Kordonis et al. [6], and Philos and Purnaras [12]. For some related results,
we refer to Graef and Qian [5]. Moreover, the discrete analogues of the results in [6, 11]
have been given by Kordonis and Philos [7] and Kordonis et al. [8], respectively. The re-
sults in [7, 8] concern difference equations with discrete variable. For some related results
for difference equations (with discrete variable), see Driver et al. [3] and Pituk [13, 14].
Motivated by the results in [4] as well as by those in the above-mentioned papers, we here
make a first attempt to arrive at analogous results for the case of difference equations with
continuous variable.

In this paper, we give an asymptotic criterion for the solutions of some linear delay
difference equations with continuous variable.

Consider the delay difference equation with continuous variable

x(t)− x(t− σ)= ax(t− σ) +
k∑
j=1

bjx
(
t− τj

)
+ f (t), (1.1)

where k is a positive integer, a and bj �= 0 ( j = 1, . . . ,k) are real constants, σ and τj ( j =
1, . . . ,k) are positive real numbers with τj1 �= τj2 ( j1, j2 = 1, . . . ,k; j1 �= j2) such that τj > σ
( j = 1, . . . ,k), and f is a continuous real-valued function on the interval [0,∞).

We define

τ = max
j=1,...,k

τj (1.2)

(τ is a positive real number with τ > σ).
By a solution of the difference equation (1.1), we mean a continuous real-valued func-

tion x defined on the interval [−τ,∞) which satisfies (1.1) for all t ≥ 0.
In the sequel, by Φ we will denote the set of all continuous real-valued functions φ

defined on the interval [−τ,0], which satisfy the “compatibility condition”

φ(0)−φ(−σ)= aφ(−σ) +
k∑
j=1

bjφ
(− τj

)
+ f (0). (1.3)

By the method of steps, one can easily see that, for any given initial function φ ∈Φ,
there exists a unique solution x of the delay difference equation (1.1) which satisfies the
initial condition

x(t)= φ(t) for t ∈ [−τ,0]; (1.4)

this function x will be called the solution of the initial problem (1.1), (1.2), (1.3), and
(1.4) or, more briefly, the solution of (1.1), (1.2), (1.3), and (1.4).

In the case where the function f is identically zero on the interval [0,∞), the delay
difference equation (1.1) reduces to

x(t)− x(t− σ)= ax(t− σ) +
k∑
j=1

bjx
(
t− τj

)
. (1.5)

Furthermore, we introduce the following assumption.
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(H) There exist integers mj > 1 ( j = 1, . . . ,k) such that

τj =mjσ ( j = 1, . . . ,k). (1.6)

Throughout the paper, it will be supposed that assumption (H) holds without any further
mention.

If we look for solutions of (1.5) of the form x(t)= λt/σ for t ≥−τ, then we can easily
see that λ satisfies

λ− 1= a+
k∑
j=1

bjλ
−mj+1. (1.7)

Equation (1.7) will be called the characteristic equation of the delay difference equation
(1.5).

To obtain the main result of the paper, we will make use of a positive root λ0 of the
characteristic equation (1.7) with the property

k∑
j=1

∣∣bj

∣∣(mj − 1
)
λ
−mj

0 < 1. (1.8)

The following lemma due to Kordonis et al. [8] provides sufficient conditions for the
characteristic equation (1.7) to have a positive root λ0 with the property (1.8).

Lemma 1.1. Set

m= max
j=1,...,k

mj (1.9)

and assume that

k∑
j=1

bj
mmj

(m− 1)mj−1 >−1− am,
k∑
j=1

∣∣bj

∣∣mj − 1

m− 1
· mmj

(m− 1)mj−1 ≤ 1. (1.10)

Then, in the interval ((m− 1)/m,∞), the characteristic equation (1.7) has a unique (pos-
itive) root λ0; this root has the property (1.8).

For some comments on the conditions imposed in the above lemma, we refer to [8].
Moreover, we notice that a generalization of this lemma has been given by Kordonis and
Philos [7].

Our main result is the following theorem.

Theorem 1.2. Let λ0 be a positive root of the characteristic equation (1.7) with the property
(1.8) and assume that

Fλ0 ≡
∫∞

0
λ−t/σ0 f (t)dt (1.11)

exists (as a real number).
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Then, for any φ∈Φ, the solution x of (1.1), (1.2), (1.3), and (1.4) satisfies

lim
t→∞

∫ t

t−σ
λ−s/σ0 x(s)ds= Lλ0 (φ) +Fλ0

1 +
∑k

j=1 bj
(
mj − 1

)
λ
−mj

0

, (1.12)

where

Lλ0 (φ)=
∫ 0

−σ
λ−s/σ0 φ(s)ds+

k∑
j=1

bjλ
−mj

0

∫ −σ
−τj

λ−s/σ0 φ(s)ds. (1.13)

Note. Property (1.8) guarantees that

1 +
k∑
j=1

bj
(
mj − 1

)
λ
−mj

0 > 0. (1.14)

Clearly, our theorem can be applied to the delay difference equation (1.5) with Fλ0 = 0.
We can immediately see that λ0 = 1 is a (positive) root of the characteristic equation

(1.7) with the property (1.8) if and only if

a+
k∑
j=1

bj = 0,
k∑
j=1

∣∣bj

∣∣(mj − 1
)
< 1. (1.15)

Thus, an application of our theorem with λ0 = 1 leads to the following result.
Let condition (1.15) be satisfied and assume that

∫∞
0 f (t)dt exists (as a real number).

Then, for any φ∈Φ, the solution x of (1.1), (1.2), (1.3), and (1.4) satisfies

lim
t→∞

∫ t

t−σ
x(s)ds=

[∫ 0
−σ φ(s)ds+

∑k
j=1 bj

∫−σ
−τj φ(s)ds

]
+
∫∞

0 f (s)ds

1 +
∑k

j=1 bj
(
mj − 1

) . (1.16)

Note. The second assumption of (1.15) guarantees that

1 +
k∑
j=1

bj
(
mj − 1

)
> 0. (1.17)

2. Proof of Theorem 1.2

First of all, we define

µλ0 =
k∑
j=1

∣∣bj

∣∣(mj − 1
)
λ
−mj

0 , γλ0 =
k∑
j=1

bj
(
mj − 1

)
λ
−mj

0 . (2.1)

Property (1.8) means that

0 < µλ0 < 1. (2.2)
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Furthermore, we have |γλ0| ≤ µλ0 < 1. This, in particular, implies that

1 + γλ0 > 0. (2.3)

Consider an arbitrary function φ ∈Φ and let x be the solution of (1.1), (1.2), (1.3),
and (1.4). We will show that

lim
t→∞

∫ t

t−σ
λ−s/σ0 x(s)ds= Lλ0 (φ) +Fλ0

1 + γλ0

. (2.4)

Set

y(t)= λ−t/σ0 x(t) for t ≥−τ. (2.5)

Then, by taking into account the fact that τj =mjσ ( j = 1, . . . ,k) and using the hypothesis
that λ0 is a (positive) root of the characteristic equation (1.7), we obtain, for every t ≥ 0,

x(t)− x(t− σ)− ax(t− σ)−
k∑
j=1

bjx
(
t− τj

)− f (t)

= λt/σ0

[
y(t)− λ−1

0 y(t− σ)− aλ−1
0 y(t− σ)−

k∑
j=1

bjλ
−τj /σ
0 y

(
t− τj

)]− f (t)

= λt/σ0

[
y(t)− λ−1

0 (1 + a)y(t− σ)−
k∑
j=1

bjλ
−mj

0 y
(
t− τj

)]− f (t)

= λt/σ0

[
y(t)− λ−1

0

(
λ0−

k∑
j=1

bjλ
−mj+1
0

)
y(t− σ)−

k∑
j=1

bjλ
−mj

0 y
(
t− τj

)]− f (t)

= λt/σ0

[
y(t)− y(t− σ) +

( k∑
j=1

bjλ
−mj

0

)
y(t− σ)−

k∑
j=1

bjλ
−mj

0 y
(
t− τj

)]− f (t).

(2.6)

So, the fact that x satisfies (1.1) for t ≥ 0 is equivalent to the fact that y satisfies

y(t)− y(t− σ)=−
k∑
j=1

bjλ
−mj

0

[
y(t− σ)− y

(
t− τj

)]
+ λ−t/σ0 f (t) for t ≥ 0. (2.7)

On the other hand, the initial condition (1.4) reduces to

y(t)= λ−t/σ0 φ(t) for t ∈ [−τ,0]. (2.8)

Furthermore, because of our assumption on the function f , it is clear that (2.7) can equiv-
alently be written as follows:

d

dt

[∫ t

t−σ
y(s)ds

]
= d

dt

[
−

k∑
j=1

bjλ
−mj

0

∫ t−σ

t−τj
y(s)ds−

∫∞
t
λ−s/σ0 f (s)ds

]
for t ≥ 0. (2.9)
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Moreover, by using (2.8) and taking into account the definitions of Lλ0 (φ) and Fλ0 , we get

{∫ t

t−σ
y(s)ds−

[
−

k∑
j=1

bjλ
−mj

0

∫ t−σ

t−τj
y(s)ds−

∫∞
t
λ−s/σ0 f (s)ds

]}∣∣∣∣∣
t=0

=
∫ 0

−σ
y(s)ds+

k∑
j=1

bjλ
−mj

0

∫ −σ
−τj

y(s)ds+
∫∞

0
λ−s/σ0 f (s)ds

=
[∫ 0

−σ
λ−s/σ0 φ(s)ds+

k∑
j=1

bjλ
−mj

0

∫ −σ
−τj

λ−s/σ0 φ(s)ds

]
+
∫∞

0
λ−s/σ0 f (s)ds

= Lλ0 (φ) +Fλ0 .

(2.10)

Thus, (2.7) is equivalent to

∫ t

t−σ
y(s)ds=−

k∑
j=1

bjλ
−mj

0

∫ t−σ

t−τj
y(s)ds−

∫∞
t
λ−s/σ0 f (s)ds+

[
Lλ0 (φ) +Fλ0

]
for t ≥ 0.

(2.11)

Next, we define

Y(t)=
∫ t

t−σ
y(s)ds for t ≥−τ + σ. (2.12)

Then, by taking into account the fact that τj =mjσ ( j = 1, . . . ,k), we have, for any j ∈
{1, . . . ,k} and every t ≥ 0,

∫ t−σ

t−τj
y(s)ds=

∫ t−σ

t−mjσ
y(s)ds=

mj−1∑
i=1

∫ t−iσ

t−(i+1)σ
y(s)ds

=
mj−1∑
i=1

∫ (t−iσ)

(t−iσ)−σ
y(s)ds=

mj−1∑
i=1

Y(t− iσ).

(2.13)

Hence, (2.11) takes the following equivalent form:

Y(t)=−
k∑
j=1

bjλ
−mj

0

[mj−1∑
i=1

Y(t− iσ)

]
−
∫∞
t
λ−s/σ0 f (s)ds+

[
Lλ0 (φ) +Fλ0

]
for t ≥ 0.

(2.14)

Also, (2.8) becomes

Y(t)=
∫ t

t−σ
λ−s/σ0 φ(s)ds for t ∈ [−τ + σ ,0]. (2.15)

Now, we introduce the function

z(t)= Y(t)− Lλ0 (φ) +Fλ0

1 + γλ0

for t ≥−τ + σ. (2.16)
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By using the way of the definition of γλ0 , one can easily see that (2.14) reduces to the
following equivalent equation:

z(t)=−
k∑
j=1

bjλ
−mj

0

[mj−1∑
i=1

z(t− iσ)

]
−
∫∞
t
λ−s/σ0 f (s)ds for t ≥ 0. (2.17)

On the other hand, (2.15) can equivalently be written as

z(t)=
∫ t

t−σ
λ−s/σ0 φ(s)ds− Lλ0 (φ) +Fλ0

1 + γλ0

for t ∈ [−τ + σ ,0]. (2.18)

Thus, z is a solution of the delay difference equation (2.17) which satisfies the initial
condition (2.18), that is, z is a solution of the initial problem (2.17) and (2.18).

By the definitions of y, Y , and z, we immediately see that (2.4) is equivalent to

lim
t→∞z(t)= 0. (2.19)

So, the proof of the theorem can be completed by showing (2.19).
Since 0 < µλ0 < 1, we can consider a number ε0 ∈ (0,1) so that

0 < µλ0 + ε0 < 1. (2.20)

Furthermore, by using our assumption on the function f , we can inductively define a
sequence of points (tn)n≥1 in [0,∞) with

tn+1− tn ≥ τ − σ (n= 1,2, . . .) (2.21)

such that, for all n= 1,2, . . . ,
∣∣∣∣
∫∞
t
λ−s/σ0 f (s)ds

∣∣∣∣≤ ε0
(
µλ0 + ε0

)n−1
for every t ≥ tn. (2.22)

Set t0 =−τ + σ and

M =max
{

1, max
t∈[t0,t1]

∣∣z(t)
∣∣}. (2.23)

Then M ≥ 1 and

∣∣z(t)
∣∣≤M for t ∈ [t0, t1

]
. (2.24)

We will prove that M is a bound of z on the whole interval [t0,∞), that is,

∣∣z(t)
∣∣≤M ∀t ≥ t0. (2.25)

To this end, we consider an arbitrary number ε > 0. We claim that

∣∣z(t)
∣∣ <M + ε for every t ≥ t0. (2.26)
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Otherwise, in view of (2.24), there exists a point t∗ > t1 so that

∣∣z(t)
∣∣ <M + ε for t ∈ [t0, t∗

)
,

∣∣z(t∗)∣∣=M + ε. (2.27)

Then, by using (2.22) with n= 1, from (2.17), we obtain

M + ε = ∣∣z(t∗)∣∣≤ k∑
j=1

∣∣bj

∣∣λ−mj

0

[mj−1∑
i=1

∣∣z(t∗ − iσ
)∣∣]+

∣∣∣∣
∫∞
t∗
λ−s/σ0 f (s)ds

∣∣∣∣

<

[ k∑
j=1

∣∣bj

∣∣(mj − 1
)
λ
−mj

0

]
(M + ε) + ε0,

(2.28)

and consequently, in view of the definition of µλ0 and the fact that M ≥ 1 and 0 < µλ0 +
ε0 < 1, we have

M + ε < µλ0 (M + ε) + ε0 < µλ0 (M + ε) + ε0(M + ε)

= (µλ0 + ε0
)
(M + ε) <M + ε.

(2.29)

This is a contradiction and hence (2.26) holds true. From the fact that (2.26) is fulfilled
for all numbers ε > 0, it follows immediately that (2.25) is always satisfied. Next, by using
(2.22) (with n = 1) and (2.25), and taking into account the way of the definition of µλ0

and the fact that M ≥ 1, from (2.17), we get, for every t ≥ t1,

∣∣z(t)
∣∣≤ k∑

j=1

∣∣bj

∣∣λ−mj

0

[mj−1∑
i=1

∣∣z(t− iσ
)∣∣]+

∣∣∣∣
∫∞
t
λ−s/σ0 f (s)ds

∣∣∣∣

≤
[ k∑

j=1

∣∣bj

∣∣(mj − 1
)
λ
−mj

0

]
M + ε0

= µλ0M + ε0

≤ µλ0M + ε0M.

(2.30)

Therefore,

∣∣z(t)
∣∣≤ (µλ0 + ε0

)
M for all t ≥ t1. (2.31)

Our purpose is to show that for each n= 0,1,2, . . . ,

∣∣z(t)
∣∣≤ (µλ0 + ε0

)n
M ∀t ≥ tn. (2.32)

We observe that (2.32) with n = 0 coincides with (2.25), while (2.32) with n = 1 is the
same as (2.31). Assume that (2.32) is true for n= ν, where ν is a positive integer, that is,

∣∣z(t)
∣∣≤ (µλ0 + ε0

)ν
M ∀t ≥ tν. (2.33)
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Then, in view of (2.22) (with n= ν + 1) and (2.33) as well as of the definition of µλ0 and
the fact that M ≥ 1, from (2.17), it follows that, for t ≥ tν+1,

∣∣z(t)
∣∣≤ k∑

j=1

∣∣bj

∣∣λ−mj

0

[mj−1∑
i=1

∣∣z(t− iσ)
∣∣]+

∣∣∣∣
∫∞
t
λ−s/σ0 f (s)ds

∣∣∣∣

≤
[ k∑

j=1

∣∣bj

∣∣(mj − 1
)
λ
−mj

0

](
µλ0 + ε0

)ν
M + ε0

(
µλ0 + ε0

)ν

= µλ0

(
µλ0 + ε0

)ν
M + ε0

(
µλ0 + ε0

)ν

≤ µλ0

(
µλ0 + ε0

)ν
M + ε0

(
µλ0 + ε0

)ν
M

= (µλ0 + ε0
)ν+1

M.

(2.34)

Thus, (2.32) is also true for n= ν + 1. Hence, by the induction principle, we conclude that
(2.32) holds true for all nonnegative integers n. Finally, since 0 < µλ0 + ε0 < 1, we have

lim
n→∞

(
µλ0 + ε0

)n = 0, (2.35)

and so, as (2.32) is true for all n= 0,1,2, . . . , we can easily be led to (2.19). This completes
the proof of the theorem.
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