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To the memory of my mother, Liliana

Several existence theorems are given for some second-order difference equations associ-
ated with maximal monotone operators in Hilbert spaces. Boundary conditions of mono-
tone type are attached. The main tool used here is the theory of maximal monotone
operators.

1. Introduction

In [1, 2], the authors proved the existence of the solution of the boundary value problem

p(t)u′′(t) + r(t)u′(t)∈ Au(t) + f (t), a.e. on [0,T], T > 0, (1.1)

u′(0)∈ α
(
u(0)− a

)
, u′(T)∈−β(u(T)− b

)
, (1.2)

where A : D(A)⊆H →H , α : D(α)⊆H →H , and β : D(β)⊆H →H are maximal mono-
tone operators in the real Hilbert space H (satisfying some specific properties), a, b are
given elements in the domain D(A) of A, f ∈ L2(0,T ;H), and p,r : [0,T]→R are contin-
uous functions, p(t)≥ k > 0 for all t ∈ [0,T].

Particular cases of this problem were considered before in [9, 10, 12, 15, 16]. If p ≡
1, r ≡ 0, f ≡ 0, T =∞, and the boundary conditions are u(0) = a and sup{‖u(t)‖, t ≥
0} <∞ instead of (1.2), the solution u(t) of (1.1), (1.2) defines a semigroup of nonlinear
contractions {S1/2(t), t ≥ 0} on the closure D(A) of D(A) (see [9, 10]). This semigroup
and its infinitesimal generator A1/2 have some important properties (see [9, 10, 11, 12]).

A discretization of (1.1) is pi(ui+1 − 2ui + ui−1) + ri(ui+1 − ui) ∈ kiAui + gi, i = 1,N ,
where N is a given natural number, pi,ri,ki > 0, gi ∈H . This leads to the finite difference
scheme (

pi + ri
)
ui+1−

(
2pi + ri

)
ui + piui−1 ∈ kiAui + gi, i= 1,N , (1.3)

u1−u0 ∈ α
(
u0− a

)
, uN+1−uN ∈−β

(
uN+1− b

)
, (1.4)

where a,b ∈H are given, (pi)i=1,N , (ri)i=1,N , and (ki)i=1,N are sequences of positive num-
bers, and (gi)i=1,N ∈HN .
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In this paper, we study the existence and uniqueness of the solution of problem (1.3),
(1.4) under various conditions on A, α, and β.

The case pi ≡ 1, ri ≡ 0, gi ≡ 0 was discussed in [14] for the boundary conditions u0 = a
and uN+1 = b. These boundary conditions can be seen as a particular case of (1.4) with
α= β = ∂ j (the subdifferential of j), where j : H →R is the lower-semicontinuous, con-
vex, and proper function:

j(x)=
0, x = 0,

+∞, otherwise.
(1.5)

In [6, 8, 13, 14], one studies the existence, uniqueness, and asymptotic behavior of the
solution of the difference equation(

pi + ri
)
ui+1−

(
2pi + ri

)
ui + piui−1 ∈ kiAui + gi, i≥ 1, (1.6)

(pi≡1, ri ≡ 0 in [13, 14] and the general case in [6, 8]), subject to the boundary conditions

u0 = a, sup
i≥0

∥∥ui∥∥ <∞. (1.7)

Here ‖ · ‖ is the norm of H . In [7], the author establishes the existence for problem (1.3),
(1.4) under the hypothesis that A is also strongly monotone.

Other classes of difference or differential inclusions in abstract spaces are presented in
[3, 4, 5].

In Section 2, we recall some notions and results that we need to show our main exis-
tence theorems. They are stated in Section 3 and represent the discrete version of some
results obtained in [1, 2] for the continuous case.

2. Preliminary results

In this section, we recall some fundamental elements on nonlinear analysis we need in
this paper.

If H is a real Hilbert space with the scalar product (·,·) and the norm ‖ · ‖, then the
operator A ⊆ H ×H (with the domain D(A) and the range R(A)) is called a monotone
operator if (x− x′, y− y′)≥ 0 for all x,x′ ∈D(A), y ∈ Ax, and y′ ∈ Ax′. The monotone
operator A ⊆ H ×H is said to be maximal monotone if it is not properly enclosed in a
monotone operator. A basic result of Minty (see [11, Theorem 1.2, page 9]) asserts that
A is maximal monotone if and only if A is monotone and the range of A+ λI is the whole
space H for all λ > 0 (or equivalently, for only one λ0 > 0). It is also known that a maximal
monotone and coercive operator A is surjective, that is, its range R(A) is H .

For all x ∈D(A), we denote by A0x the element of least norm in Ax:∥∥A0x
∥∥= inf

{‖y‖, y ∈ Ax
}
. (2.1)

If A is maximal monotone and ‖A0x‖→∞ as ‖x‖→∞, then A is surjective.
The operator A ⊆ H ×H (possibly multivalued) is said to be one to one if (Ax1)∩

(Ax2) 
=Φ (with x1, x2 ∈D(A)) implies x1 = x2.
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If A and B are maximal monotone in H and their domains satisfy the condition
(intD(A))∩D(B) 
= Φ, then A + B is maximal monotone (see [11, Theorem 1.7, page
46]). If A : D(A) ⊆ H → H is maximal monotone, then A is demiclosed, that is, from
[xn, yn]∈ A, xn⇀ x and yn → y, then [x, y]∈ A. Here and everywhere below, we denote
by “⇀” the weak convergence and by “→” the strong convergence in H .

For every maximal monotone operator A and the scalar λ > 0, we may consider the
single-valued and everywhere-defined operators Jλ and Aλ, namely, Jλ = (I + λA)−1 and
Aλ = (I − Jλ)/λ. They are called the resolvent and the Yosida approximation of A, respec-
tively. Obviously, we have Jλx+ λAλx = x for all x ∈H and for all λ > 0. Properties of these
operators can be found in, for example, [11, Proposition 1.1, page 42] or [11, Proposition
3.2, page 73].

Recall now another result concerning the sum of two maximal monotone operators
(see [11, Theorem 3.6, page 82]).

Theorem 2.1. If A : D(A)⊆H →H and B : D(B)⊆H →H are maximal monotone oper-
ators in H such that D(A)∩D(B) 
=Φ and (y,Aλx)≥ 0 for all [x, y]∈ B and for all λ > 0,
then A+B is maximal monotone.

We end this section with some remarks on problem (1.3), (1.4). Denoting

θi = pi
pi + ri

, ci = ki
pi + ri

, fi = gi
pi + ri

, i= 1,N , (2.2)

problem (1.3), (1.4) becomes

ui+1−
(
1 + θi

)
ui + θiui−1 ∈ ciAui + fi, i= 1,N ,

u1−u0 ∈ α
(
u0− a

)
, uN+1−uN ∈−β

(
uN+1− b

)
.

(2.3)

If pi,ri,ki > 0, i= 1,N , then θi ∈ (0,1) and ci > 0 for all i= 1,N .
Let (ai)i=1,N be the finite sequence given by

a0 = 1, ai = 1
θ1 ···θi , i= 1,N , (2.4)

and let � be the product space HN =H ×···×H (N factors) endowed with the scalar
product

〈(
ui
)
i=1,N ,

(
vi
)
i=1,N

〉
=

N∑
i=1

ai
(
ui,vi

)
. (2.5)

It is clear that HN and � coincide as sets and their norms are equivalent. Observe that

aiθi = ai−1, i= 1,N. (2.6)

Consider the operator B in HN ×HN :

B
((
ui
)
i=1,N

)
= (−ui+1 +

(
1 + θi

)
ui− θiui−1

)
i=1,N ,

D(B)=
{(
ui
)
i=1,N ∈HN , u1−u0 ∈ α

(
u0− a

)
, uN+1−uN ∈−β

(
uN+1− b

)}
.

(2.7)
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This operator is not necessarily monotone in HN , but we have the following auxiliary
result (see [7, Proposition 2.1]).

Proposition 2.2. The operator B given above is maximal monotone in �.

Recall here an existence theorem from [7], which we use in the sequel.

Theorem 2.3. Assume that A, α, and β are maximal monotone operators in H with 0 ∈
D(A)∩D(α)∩D(β), A is also strongly monotone and(

Aλx−Aλy,z
)≥ 0 (2.8)

for all z ∈ α(x− y) (with x− y ∈ D(α)) and for all z ∈ β(x− y) (with x− y ∈ D(β)). If
θi ∈ (0,1), ci > 0, fi ∈H , i= 1,N , and a,b ∈H , then problem (2.3) has a unique solution
(ui)i=1,N ∈D(A)N .

3. Existence theorems

Let H be a real Hilbert space with the norm ‖ · ‖ and the scalar product (·,·). Consider
the maximal monotone operators A : D(A)⊆H →H , α : D(α)⊆H →H , and β : D(β)⊆
H →H satisfying the properties

0∈D(A)∩D(α)∩D(β), 0∈ α(0)∩β(0), (3.1)(
Aλx−Aλy,z

)≥ 0 ∀z ∈ α(x− y) with x− y ∈D(α), (3.2)(
Aλx−Aλy,z

)≤ 0 ∀z ∈−β(x− y) with x− y ∈D(β). (3.3)

Consider the difference inclusion (1.3), (1.4). As we have already discussed, problem
(1.3), (1.4) has the equivalent form (2.3).

We first study the existence of the solution to problem (1.3), (1.4) in the case a= b = 0,
supposing that(

Aλx,z
)≥ 0 ∀z ∈ α(x) with x ∈D(α), z ∈ β(x) with x ∈D(β), (3.4)

and

R(α) is bounded,
∥∥β0(x)

∥∥−→∞ as ‖x‖ −→∞, (3.5)

or

R(β) is bounded,
∥∥α0(x)

∥∥−→∞ as ‖x‖ −→∞. (3.6)

Theorem 3.1. Let A, α, and β be maximal monotone operators in the real Hilbert space H
such that (3.1), (3.4), and (3.5) or (3.6) hold. If pi,ri,ki > 0, i = 1,N , and (gi)i=1,N ∈HN ,
then the boundary value problem(

pi + ri
)
ui+1−

(
2pi + ri

)
ui + piui−1 ∈ kiAui + gi, i= 1,N ,

u1−u0 ∈ α
(
u0
)
, uN+1−uN ∈−β

(
uN+1

)
,

(3.7)
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has at least one solution (ui)i=1,N ∈ D(A)N . The solution is unique up to an additive con-
stant. If A or α is one to one, then the solution is unique. If A is, in addition, strongly mono-
tone, then again uniqueness is obtained.

Proof. We use the form (2.3) of the problem (3.7), where a= b = 0. By Proposition 2.2,
we know that the operator

B
((
ui
)
i=1,N

)
= (−ui+1 +

(
1 + θi

)
ui− θiui−1

)
i=1,N ,

D(B)=
{(
ui
)
i=1,N ∈HN , u1−u0 ∈ α

(
u0
)
, uN+1−uN ∈−β

(
uN+1

)} (3.8)

is maximal monotone in �. Denote by | · | the norm in �. We show that

∣∣∣B((ui)i=1,N

)∣∣∣−→∞ as
∣∣∣(ui)i=1,N

∣∣∣−→∞. (3.9)

Suppose by contradiction that (uni )i=1,N ∈ D(B) such that |(uni )i=1,N | → ∞ as n→∞
and |B((uni )i=1,N )| ≤ C1. If (ai)i=1,N is the sequence given in (2.4), this means that

N∑
i=1

ai
∥∥uni ∥∥2 −→∞,

N∑
i=1

ai
∥∥uni+1−uni − θi

(
uni −uni−1

)∥∥2 ≤ C1. (3.10)

Assume that (3.5) holds. By the boundary conditions in (3.7), we obtain that un1 − un0 is
bounded, say ‖un1 −un0‖ ≤ C2, for all n∈N and

∥∥unN+1−unN
∥∥−→∞ as n−→∞ if

∥∥unN+1

∥∥−→∞. (3.11)

The equality ai(uni+1−uni )= un1 −un0 +
∑i

k=1[ak(unk+1−unk)− ak−1(unk −unk−1)] implies that
‖ai(uni+1−uni )‖ ≤ C2 +C3|B((ui)i=1,N )| and in view of (3.10), we get ‖ai(uni+1−uni )‖ ≤ C4,
i = 1,N , n ∈ N. In particular, ‖aN (unN+1 − unN )‖ ≤ C4 for all n ∈ N and from (3.11), we
infer that ‖unN+1‖ ≤ C5 for all n∈N.

Using the boundedness of unN+1 and ak(unk+1−unk) and the identity

uni = unN+1−
N∑
k=i

(
unk+1−unk

)
, i= 1,N , (3.12)

one arrives at ‖uni ‖ ≤ C6, hence
∑N

i=1 ai‖uni ‖2 ≤ C7 for all n∈N. But this is in contradic-
tion with (3.10) and therefore (3.9) is true. This shows that B is coercive.

Next we show that

〈
B
((
ui
)
i=1,N

)
,
(
Aλui

)
i=1,N

〉
≥ 0 ∀(ui)i=1,N ∈D(B), λ > 0. (3.13)
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Indeed,

〈
B
((
ui
)
i=1,N

)
,
(
Aλui

)
i=1,N

〉
=−

N∑
i=1

[
ai
(
ui+1−ui,Aλui

)− ai−1
(
ui−ui−1,Aλui−1

)]
+

N∑
i=1

ai−1
(
ui−ui−1,Aλui−Aλui−1

)
≥−aN

(
uN+1−uN ,AλuN

)
+
(
u1−u0,Aλu0

)
.

(3.14)

Hypothesis (3.4) for x = u0 and z = u1−u0 gives us (u1−u0, Aλu0)≥ 0, while (3.4) for
x = uN+1 and z = −uN+1 + uN implies that −(uN+1 − uN ,AλuN ) = (uN+1 − uN ,AλuN+1 −
AλuN )− (uN+1−uN ,AλuN+1)≥ 0. Thus, by (3.14), inequality (3.13) follows.

Let � : D(A)N →HN be the operator

�
((
ui
)
i=1,N

)
= (c1v1, . . . ,cNvN

)
, vi ∈Aui, ui ∈D(A), i= 1,N. (3.15)

Since (0, . . . ,0)∈D(�)∩D(B) and (3.13) takes place, we deduce with the aid of Theorem
2.1 and Proposition 2.2 the maximal monotonicity of B + � in �. Next, we can eas-
ily show that 〈B((ui)i=1,N ), �((ui)i=1,N )〉 ≥ 0, so |(B + �)(ui)i=1,N | ≥ |B((ui)i=1,N )|, and
from (3.9), one obtains the coercivity of B+ �. This shows that B+ � is surjective, that is,
for all ( fi)i=1,N ∈HN , there exists (ui)i=1,N ∈D(�)∩D(B) such that (B+ �)((ui)i=1,N )=
(− fi)i=1,N . But this is the abstract form of (3.7). Thus the existence is proved.

We show now that the difference of the two solutions (ui)i=1,N and (vi)i=1,N of (3.7) is
a constant. Put wi = ui− vi, i= 0,N + 1. Subtracting the corresponding equations of (2.3)
for ui and vi, multiplying by aiwi, and summing from i= 1 to i=N , one arrives with the
aid of the monotonicity of A at

N∑
i=1

[
ai
(
wi+1−wi,wi

)− aiθi
(
wi−wi−1,wi

)]≥ 0 (3.16)

or, in view of (2.6), at

N∑
i=1

[
ai
(
wi+1−wi,wi

)− ai−1
(
wi−wi−1,wi−1

)]≥ N∑
i=1

ai−1
∥∥wi−wi−1

∥∥2
. (3.17)

By the boundary conditions in (2.3), we have

N∑
i=1

ai−1
∥∥wi−wi−1

∥∥2 ≤ aN
(
wN+1−wN ,wN

)− (w1−w0,w0
)≤ 0, (3.18)

so w0 =w1 = ··· =wN . This implies that ui = vi +C, i= 0,N , where C ∈H is a constant.
If A or α is one to one, then the uniqueness follows easily. If A is maximal monotone and
strongly monotone, then we obtain

N∑
i=1

ai
∥∥wi

∥∥2
+

N∑
i=1

ai−1
∥∥wi−wi−1

∥∥2 ≤ 0, (3.19)

so the solution is unique and the proof is complete. �
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Now we replace (3.4) by (3.2) and (3.3) and remove (3.5) and (3.6). Adding the bound-
edness of the domain of β, we can state the following result.

Theorem 3.2. Let A, α, and β be maximal monotone operators in H such that D(β) is
bounded and (3.1), (3.2), (3.3) hold. If a,b ∈H , (gi)i=1,N ∈HN , and pi,ri,ki > 0, i= 1,N ,
then problem (1.3), (1.4) admits at least one solution (ui)i=1,N ∈D(A)N and the difference
between two solutions is constant. If A or α is one to one, then the solution is unique. If A is
also strongly monotone, then again uniqueness is obtained.

Proof. We use again the equivalent form (2.3) of problem (1.3), (1.4) and the maximal
monotone operator � given by (3.15). If Aλ and �λ are the Yosida approximations of A
and �, respectively, then �λ((ui)i=1,N )= (c1Aλu1, . . . ,cNAλuN ) for all (ui)i=1,N ∈HN . By
Proposition 2.2, B + �λ is maximal monotone in �, therefore, R(B + �λ + λI)=�, that
is, for all ( fi)i=1,N ∈HN , for all λ > 0, the problem

uλi+1−
(
1 + θi

)
uλi + θiu

λ
i−1 = ciAλu

λ
i + λuλi + fi, i= 1,N ,

uλ1−uλ0 ∈ α
(
uλ0− a

)
, uλN+1−uλN ∈−β

(
uλN+1− b

)
,

(3.20)

has a unique solution (uλi )i=1,N ∈HN . (The uniqueness follows from Theorem 2.3 for the
strongly monotone operator �λ + λI .)

We first prove that (uλi )i=1,N is bounded in H with respect to λ. To do this, we multiply
(3.20) by aiuλi and sum up from i= 1 to i=N . Without any loss of generality, suppose that

0 ∈ A0. If not, we put Ã = A+A00 and f̃i = fi − ciA00 instead of A and fi, respectively,
where A0x denotes the element of least norm in Ax. Since Aλ is monotone, Aλ0= 0, and
aiθi = ai−1, we derive

N∑
i=1

ai
(
uλi+1−uλi ,uλi

)− N∑
i=1

ai−1
(
uλi −uλi−1,uλi−1

)
≥

N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2
+ λ

N∑
i=1

ai
∥∥uλi ∥∥2

+
N∑
i=1

ai
(
fi,uλi

)
,

(3.21)

hence

N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2 ≤ aN
(
uλN+1−uλN ,uλN

)− (uλ1−uλ0,uλ0
)− N∑

i=1

ai
(
fi,uλi

)
. (3.22)

Since uλ1−uλ0 ∈ α(uλ0− a), 0∈ α(0), and α is monotone, we infer

−(uλ1−uλ0,uλ0
)≤−(uλ1−uλ0,a

)≤ ‖a‖ ·∥∥uλ1−uλ0
∥∥ (3.23)

and, similarly,(
uλN+1−uλN ,uλN

)≤−∥∥uλN+1−uλN
∥∥2

+
(
uλN+1−uλN ,uλN+1− b

)
+
(
uλN+1−uλN ,b

)
, (3.24)

so (
uλN+1−uλN ,uλN

)≤ ‖b‖ ·∥∥uλN+1−uλN
∥∥. (3.25)
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Now (3.22), (3.23), and (3.25) yield

N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2 ≤ aN‖b‖ ·
∥∥uλN+1−uλN

∥∥+‖a‖ ·∥∥uλ1−uλ0
∥∥

+

( N∑
i=1

ai
∥∥ fi∥∥2

)1/2( N∑
i=1

ai
∥∥uλi ∥∥2

)1/2

.

(3.26)

The hypothesis that D(β) is bounded and the boundary conditions imply the bound-
edness of uλN+1 with respect to λ. Using this, together with the estimates

∥∥uλk∥∥≤
( N∑

i=1

ai
∥∥uλi ∥∥2

)1/2

,

∥∥uλk −uλk−1

∥∥≤ ( N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2
)1/2

(3.27)

for k = 1,N in (3.26), one deduces

N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2 ≤ C1 +C2

( N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2
)1/2

+C3

( N∑
i=1

ai
∥∥uλi ∥∥2

)1/2

, (3.28)

with C1,C2,C3 > 0 independent of λ.
For each i= 1,N , we have uλi = uλ0 +

∑i
k=1(uλk −uλk−1), so

∥∥uλi ∥∥≤ ∥∥uλ0∥∥+

( N∑
k=1

1
ak−1

)( N∑
k=1

ak−1
∥∥uλk −uλk−1

∥∥2
)1/2

, i= 1,N. (3.29)

From the boundary conditions, it follows that

∥∥uλ0∥∥2 ≤ ‖a‖ ·∥∥uλ0∥∥+‖a‖
( N∑

i=1

ai−1
∥∥uλi −uλi−1

∥∥2
)1/2

, (3.30)

and thus

∥∥uλ0∥∥≤ ‖a‖+‖a‖1/2

( N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2
)1/4

. (3.31)

Inequalities (3.29) and (3.31) imply that

∥∥uλi ∥∥≤ C4 +C5

( N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2
)1/2

, i= 1,N , (3.32)

which, together with (3.28), leads to the boundedness

N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2 ≤ C6 ∀λ > 0. (3.33)
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Now (3.31) and (3.32) show that ‖uλi ‖ ≤ C7, i= 0,N and λ > 0, and therefore,

N∑
i=1

ai
∥∥uλi ∥∥2 ≤ C8 ∀λ > 0. (3.34)

All the constants Cj > 0 ( j = 1, . . . ,13) here and below are independent of λ.
Multiplying (3.20) by aiAλu

λ
i and summing from 1 to N , we get via (2.6)

N∑
i=1

[
ai
(
uλi+1−uλi ,Aλu

λ
i

)− ai−1
(
uλi −uλi−1,Aλu

λ
i−1

)]− N∑
i=1

ai−1
(
uλi −uλi−1,Aλu

λ
i −Aλu

λ
i−1

)
=

N∑
i=1

aici
∥∥Aλu

λ
i

∥∥2
+ λ

N∑
i=1

ai
(
uλi ,Aλu

λ
i

)
+

N∑
i=1

ai
(
fi,Aλu

λ
i

)
.

(3.35)

Let c = inf{ci, i= 1,N}. Then

c
N∑
i=1

ai
∥∥Aλu

λ
i

∥∥2 ≤ aN
(
uλN+1−uλN ,Aλu

λ
N

)− (uλ1−uλ0,Aλu
λ
0

)− N∑
i=1

ai
(
fi,Aλu

λ
i

)
. (3.36)

We observe that assumptions (3.2) and (3.3) and the boundary conditions yield

(
uλN+1−uλN ,Aλu

λ
N

)≤ ∥∥A0b
∥∥ ·∥∥uλN+1−uλN

∥∥,

−(uλ1−uλ0,Aλu
λ
0

)≤ ∥∥A0a
∥∥ ·∥∥uλ1−uλ0

∥∥,
(3.37)

therefore, (3.36) implies

c
N∑
i=1

ai
∥∥Aλu

λ
i

∥∥2 ≤ aN
∥∥A0b

∥∥ ·∥∥uλN+1−uλN
∥∥+

∥∥A0a
∥∥ ·∥∥uλ1−uλ0

∥∥
+

( N∑
i=1

ai
∥∥ fi∥∥2

)1/2( N∑
i=1

ai
∥∥Aλu

λ
i

∥∥2
)1/2

.

(3.38)

In view of (3.29), (3.31), and the boundedness of uλN+1, this means that

N∑
i=1

ai
∥∥Aλu

λ
i

∥∥2 ≤ C9 +C10

( N∑
i=1

ai
∥∥Aλu

λ
i

∥∥2
)1/2

+C11

( N∑
i=1

ai−1
∥∥uλi −uλi−1

∥∥2
)1/2

. (3.39)

According to (3.33), this leads to

N∑
i=1

ai
∥∥Aλu

λ
i

∥∥2 ≤ C12. (3.40)
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We prove now that uλi −uλi−1 is a Cauchy sequence with respect to λ. Subtracting (3.20)
with ν in place of λ from the original equation (3.20), multiplying the result by ai(uλi −
uν
i ), and summing up from i= 1 to i=N , we find, with the aid of the equality x = Jλx +

λAλx,

N∑
i=1

ai
(
uλi+1−uν

i+1−uλi +uν
i ,u

λ
i −uν

i

)− N∑
i=1

ai−1
(
uλi −uν

i −uλi−1 +uν
i−1,uλi−1−uν

i−1

)
=

N∑
i=1

ai−1
∥∥uλi −uν

i −uλi−1 +uν
i−1

∥∥2
+

N∑
i=1

aici
(
Aλu

λ
i −Aνu

ν
i , Jλu

λ
i − Jνu

ν
i

)
+

N∑
i=1

aici
(
Aλu

λ
i −Aνu

ν
i ,λAλu

λ
i − νAνu

ν
i

)
+

N∑
i=1

ai
(
λuλi − νuν

i ,u
λ
i −uν

i

)
,

(3.41)

hence

N∑
i=1

ai−1
∥∥uλi −uν

i −uλi−1 +uν
i−1

∥∥2

≤ aN
(
uλN+1−uν

N+1−uλN +uν
N ,uλN −uν

N

)− (uλ1−uν
1−uλ0 +uν

0,uλ0−uν
0

)
+ (λ+ ν)

N∑
i=1

aici
(
Aλu

λ
i ,Aνu

ν
i

)
+ (λ+ ν)

N∑
i=1

ai
(
uλi ,uν

i

)
.

(3.42)

The boundary conditions in (3.20) and the upper bounds (3.34) and (3.40) imply

N∑
i=1

ai−1
∥∥uλi −uν

i −uλi−1 +uν
i−1

∥∥2 ≤ C13(λ+ ν), (3.43)

and therefore, uλi −uλi−1 is a strongly convergent sequence in H .
Let uλi ⇀ ui, i = 1,N (on a subsequence denoted again by λ). Then uλi − uλi−1 → ui −

ui−1, so B((uλi )i=1,N )→ B((ui)i=1,N ). In addition, we have Jλuλi (= uλi − λAλu
λ
i )⇀ ui as λ→

0, i= 1,N .
Since A is demiclosed, this enables us to pass to the limit as λ→ 0 in (3.20) written

under the form

−B
((
uλi
)
i=1,N

)
− λ

(
uλi
)
i=1,N −

(
fi
)
i=1,N ∈�

((
Jλu

λ
i

)
i=1,N

)
, (3.44)

and one obtains that (ui)i=1,N verifies problem (2.3). The uniqueness follows like in
Theorem 3.1. The proof is complete. �

We now replace the boundedness of D(β) by the conditions

inf
{
− (y,x)
‖x‖ , y ∈−β(x)

}
−→∞ as ‖x‖ −→∞, (3.45)

inf
{

(y,x)
‖x‖ , y ∈ α(x)

}
−→∞ as ‖x‖ −→∞. (3.46)

We get the following result.
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Theorem 3.3. If A, α, and β are maximal monotone operators in H satisfying hypotheses
(3.1), (3.2), (3.3), (3.45), and (3.46), then for given a,b ∈H , gi ∈H , and pi,ri,ki > 0, i =
1,N , problem (1.3), (1.4) has at least one solution (ui)i=1,N ∈D(A)N . The solution is unique
up to an additive constant.

Proof. One uses again the form (2.3) of problem (1.3), (1.4) and approximates it by
(3.20). In order to prove the boundedness of uλ0 and uλN+1 with respect to λ, consider
the auxiliary problem

vλi+1−
(
1 + θi

)
vλi + θiv

λ
i−1 = ciAλv

λ
i + λvλi + fi, i= 1,N ,

vλ0 = a, vλN+1 = b.
(3.47)

This problem is a particular case of problem (2.3), where the operator Aλ + λI is maxi-
mal monotone and strongly monotone and α, β are the subdifferential ∂ j of the lower-
semicontinuous, convex, and proper function j : H →R as presented in (1.5). Then Theo-
rem 2.3 implies the existence of a unique solution (vλi )i=1,N of (3.47).

A multiplication of the difference between (3.20) and (3.47) by ai(uλi − vλi ) followed by
a summation with respect to i leads to

N∑
i=1

ai−1
∥∥uλi − vλi −uλi−1 + vλi−1

∥∥2

≤ aN
(
uλN+1− b−uλN + vλN ,uλN − vλN

)− (uλ1− vλ1 −uλ0 + a,uλ0− a
) (3.48)

or, equivalently,

aN
∥∥uλN+1− b−uλN + vλN

∥∥2
+

N∑
i=1

ai−1
∥∥uλi − vλi −uλi−1 + vλi−1

∥∥2

≤ aN
(
uλN+1− b−uλN + vλN ,uλN+1− b

)− (uλ1− vλ1 −uλ0 + a,uλ0− a
)
.

(3.49)

From this inequality and the boundary conditions in (3.20), we can easily get

0≤ (uλ1−uλ0,uλ0− a
)− aN

(
uλN+1−uλN ,uλN+1− b

)
≤ (vλ1 − a,uλ0− a

)
+ aN

(
vλN − b,uλN+1− b

)
.

(3.50)

Since problem (3.47) is a particular case of (3.20), where D(β) is bounded, we can use
the proof of Theorem 3.2 to deduce the boundedness of vλ1 and vλN in H with respect to λ.
Hence, there exist two constants C1 and C2 independent of λ such that

0≤ (uλ1−uλ0,uλ0− a
)− aN

(
uλN+1−uλN ,uλN+1− b

)≤ C1
∥∥uλ0− a

∥∥+C2
∥∥uλN+1− b

∥∥. (3.51)

From (3.45), (3.46), and (3.51), we obtain that uλ0 and uλN+1 are bounded. Indeed, if
not, say ‖uλ0− a‖→∞ on a subsequence denoted again by λ. By (3.46), it follows that(

uλ1−uλ0,uλ0− a
)∥∥uλ0− a

∥∥ −→∞ as λ−→ 0. (3.52)
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If Rλ = ‖uλN+1 − b‖/‖uλ0 − a‖ is bounded, then we get a contradiction in (3.51). If Rλ

is unbounded, then dividing (3.51) by ‖uλN+1 − b‖ and using condition (3.45) for x =
uλN+1 − b and y = uλN+1 − uλN , we arrive again at a contradiction. This demonstrates the
boundedness of uλ0 and uλN+1.

From now on, the proof follows that of Theorem 3.2. �
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Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 24 (1978), no. 2, 277–287 (French).

N. C. Apreutesei: Department of Mathematics, Technical University “Gh. Asachi” of Iasi, 11, Bd.
Carol I, 700506 Iasi, Romania

E-mail address: napreut@math.tuiasi.ro

mailto:napreut@math.tuiasi.ro

