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We consider the pair diffusion process which includes cluster reactions of high
order. We are able to prove a local (in time) existence result in arbitrary space
dimensions. The model includes a nonlinear system of reaction-drift-diffusion
equations, a nonlinear system of ordinary differential equations in Banach
spaces, and a nonlinear elliptic equation for the electrochemical potential. The
local existence result is based on the fixed point theorem of Schauder.

1. Introduction

During the doping process impurity atoms of higher or lower chemical valence
as silicon are introduced into a silicon layer to influence its electrical properties.
Such dopants penetrate under high temperatures, usually around 1000 ◦C, with
the so-called pair diffusion mechanism into the (homogeneous) layer. A precise
description of the process can be found in [2, 3, 4] and in the literature cited
therein.

Usually, dopant atoms (A) occupy substitutional sites in the silicon crystal
lattice, loosing (donors, such as Arsenic and Phosphorus) or gaining (acceptors,
such as Boron) by this an electron. The dopants move by interacting with native
point defects called interstitials (I) and vacancies (V). Interstitials are silicon
atoms which are not placed on a lattice site and move through the crystal un-
constrained, and vacancies are empty lattice sites. Both can form mobile pairs
with dopant atoms (AI, AV), while the unpaired dopants are immobile. The for-
mation and decay of such pairs as well as the recombination of defects cause
a movement of the dopants. We additionally include cluster formations, where
a certain number of dopant atoms accumulate to immobile clusters (Acl) in the
silicon lattice.
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These interactions can be modelled in terms of chemical reactions of arbitrary
order. The resulting nonlinear model contains a set of reaction-drift-diffusion
equations for the point defects and pairs, reaction equations for the immobile
dopants and clusters as well as a Poisson equation for the electrochemical po-
tential.

2. The model

For i ∈ {I,V ,AI,AV,A,Acl} we consider the species Xi and denote their
concentrations by Ci . We distinguish between mobile and immobile species
defining

J := {I,V ,AI,AV }, J ′ := {A,Acl}, (2.1)

respectively. We denote by C= (CI ,CV ,CAI ,CAV ,CA,CAcl) the correspond-
ing concentration vector. Each of the Xi , i ∈ J ∪J ′, is considered as the union
of charged species X

(j)
i , with the charged states j ∈ Si , where each Si ⊂ Z.

Thus, if C
(j)
i denotes the concentration of X

(j)
i , the total concentrations Ci are

defined as

Ci :=
∑
j∈Si

C
(j)
i for i ∈ J ∪J ′. (2.2)

The immobile species Xi , i ∈ J ′, usually obey one fixed charged state.
The chemical potential of the electrons is denoted by ψ . The charge density

of the electrons n and holes p are assumed to obey the Boltzmann statistics,
meaning that

n= ni exp

(
ψ

UT

)
, p = ni exp

(
− ψ

UT

)
. (2.3)

Moreover,

Pi(ψ)=
∑
j∈Si

K
(j)
i e−jψ/UT (2.4)

are reference concentrations with positive constants K
(j)
i . Set

ai = Ci

Pi(ψ)
for i ∈ J ∪J ′, (2.5)

which represents the electrochemical activity of the ith component.
We define QT := �× (0,T ), where � ⊂ R

n, 0 < T <∞ and 3 ≤ n ∈ N,
with the lateral surface �T := ∂�× (0,T ). We consider the following system
of equations.
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The mobile species for i ∈ J obey reaction-drift-diffusion equations

∂Ci

∂t
+divJi = Ri

((
Ck

)
k∈J∪J ′,ψ

)
in QT ,

Ci(·,0)= C0
i (·) in �,

Ji ·n = 0 on �T .

(2.6)

The immobile dopant concentration CA obeys the reaction equation

∂CA

∂t
= RA

((
Ck

)
k∈J∪J ′,ψ

)
in QT ,

CA(·,0)= C0
A(·) in �.

(2.7)

The immobile cluster concentration CAcl also obeys a reaction equation

∂CAcl

∂t
= RAcl

((
Ck

)
k∈J∪J ′,ψ

)
in QT ,

CAcl(·,0)= C0
Acl

(·) in �.

(2.8)

The equation for the chemical potential of the electrons reads

−ε

e
!ψ+2ni sinh

(
ψ

UT

)
=

∑
i∈J∪J ′

Qi(ψ)Ci in QT ,

∇ψ ·n = 0 on �T ,

(2.9)

where ε,e are physical quantities. For i ∈ J , the drift-diffusion term is given by

Ji =−Di(ψ)

{
∇Ci+Qi(ψ)∇

(
ψ

UT

)
Ci

}
, (2.10)

with the diffusivity

Di(ψ)=
∑
j∈Si

D
(j)
i K

(j)
i e−jψ/UT

Pi(ψ)
, (2.11)

where D
(j)
i are positive constants. Whereas,

Qi(ψ)=
∑
j∈Si

jK
(j)
i e−jψ/UT

Pi(ψ)
(2.12)

represents the total charge of the ith species for i ∈ J ∪J ′.
Next, we put the reactions in concrete form. The source terms Ri(C,ψ)

result from the reactions occurring during the redistribution of the dopants. All
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relevant reactions (including cluster formations of high order) occurring during
the (single) dopant diffusion are due to (2.5) of the form

RA,I :=KA,I (ψ)
(
aAaI −aAI

)
,

RA,V :=KA,V (ψ)
(
aAaV −aAV

)
,

RI,V :=KI,V (ψ)
(
aI aV −1

)
,

RAV,I :=KAV,I (ψ)
(
aAV aI −aA

)
,

RAI,V :=KAI,V (ψ)
(
aAI aV −aA

)
,

RAI,AV :=KAI,AV (ψ)
(
aAI aAV −a2

A

)
,

(2.13)

as well as the cluster reaction

RA,AI,AV :=KA,AI,AV (ψ)
(
al
Aa

m
AI a

n
AV −aAcla

s
I a

r
V

)
, (2.14)

where l,m,n,s,r ∈ N, cl := l+m+n (the size of the cluster) and for i,h,k ∈
J ∪J ′, the reaction rate coefficients are

Ki,h,k(ψ)=
∑

j∈Si,h,k
K

(j)
i,h,ke

−jψ/UT , (2.15)

K
(j)
i,h,k > 0 are constants and Si,h,k ⊂ Z are special sets of indices. Thus, the

source terms Ri(C,ψ) are for i ∈ J of the form

RI (C,ψ)=−RA,I −RAV,I −RI,V +sRA,AI,AV ,

RV (C,ψ)=−RA,V −RAI,V −RI,V +rRA,AI,AV ,

RAI (C,ψ)= RA,I −RAI,V −RAI,AV −mRA,AI,AV ,

RAV (C,ψ)= RA,V −RAV,I −RAI,AV −nRA,AI,AV ,

(2.16)

and for i ∈ J ′ we have

RA(C,ψ)=−RA,I −RA,V +RAI,V +RAV,I +2RAI,AV − lRA,AI,AV ,

RAcl(C,ψ)= RA,AI,AV .

(2.17)

For the detailed description and physical meaning of the coefficients men-
tioned above, (see for instance [3].)

Moreover, we set the constants ε,e,UT ,2ni equal to one for the analytical
investigations.

3. Problem (P)

Now we summarize the basic properties of the coefficients appearing in the
equations. The notation of the function spaces corresponds to that in [5, 6]. If
we consider some function space Y , we denote by Y+ the cone of its nonneg-
ative elements. Operations on vectors have to be understood componentwise.
Throughout the paper, * > 0 denotes a generic constant, which we supply with
indices if the occasion arises.
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As can easily be seen, the coefficients appearing in the equations for i ∈ J∪J ′
and k ∈ J have the following properties

Dk,Qi,Pi ∈ C2(R), 0 < *1 ≤Dk(ψ)≤*2,∣∣D(l)
k (ψ)

∣∣, ∣∣Q(l)
i (ψ)

∣∣≤*3 with Q′i (ψ) < 0,

Pi(ψ)= Pi(0)exp

(
−
∫ ψ

0
Qi(s)ds

)
, Pi(0) > 0,

(3.1)

for all ψ ∈ R and derivatives (l = 0,1,2) of required order two.
Furthermore,

0 < Ki,h,k(ψ) ∈ C2(R), (3.2)

for i,h,k ∈ J ∪J ′ and where

Pi(ψ),Ki,h,k(ψ)≤*4 exp
(
*5|ψ |

)
. (3.3)

The source terms (2.16) and (2.17) obey the growth conditions

Ri(C,ψ)≤ λ1(ψ)

( ∑
k∈J∪J ′

(
Ck

)l+m+n+1

)
for i ∈ J, (3.4)

RA(C,ψ)≤−λ2(ψ)
(
CA

)l+λ3(ψ)

(∑
k∈J

(
Ck

)l+m+n+1

)
, (3.5)

RAcl(C,ψ)≤−λ4(ψ)CAcl+λ5(ψ)

(∑
k∈J

(
Ck

)l+m+n+1

)
, (3.6)

respectively, where λr ∈ C(R) for r = 1, . . . ,5, λr(ψ) > 0 for all ψ ∈ R, and
under the assumption of nonnegative concentrations C= (Ck)k∈J∪J ′ .

For i ∈ J ∪J ′, the source terms satisfy the property

Ri(C,ψ)≥ 0, (3.7)

for all ψ ∈ R, C ∈ R
6+ and if Ci = 0.

Finally, we assume

�⊂ R
n is bounded, n≥ 3,

∂� ∈ C1,1,

C0
i ≥ 0 in � for i ∈ J ∪J ′,

C0
i ∈W

2−2/p
p (�) for i ∈ J,

C0
i ∈ C(�̄) for i ∈ J ′.

(3.8)
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Since in our case, |J | = 4 and |J ′| = 2 are the numbers of mobile and immobile
species, respectively, the formulation of the problem reads.

Definition 3.1. Let p ∈ (n+2,∞). We denote the system of (2.6), (2.7), (2.8),
and (2.9) by (P), and call the vector ((Ci)i∈J , (Ci)i∈J ′,ψ) a solution of (P) if((

Ci

)
i∈J ,

(
Ci

)
i∈J ′,ψ

)
∈ [W 2,1

p

(
QTf

)]4×[C1([0,Tf

];C(�̄))]2×W 1
p

(
0,Tf ;W 2

p(�)
) (3.9)

and satisfies (P) for some Tf ∈ (0,∞).

4. Ordinary differential equations

In this section, we consider the system of ordinary differential equations in
Banach spaces (2.7) and (2.8). For given functions (Ck)k∈J and ψ , with the
properties

Ck ≥ 0, Ck,ψ ∈ C
([0,T ];C(�̄)), (4.1)

we state an existence result, which we need in the next section.
In accordance with the results and notation used in [7], we extend (2.7) and

(2.8) to the whole interval [0,∞) and write them in the form

u̇= α1+α2w−α3u−α4u
2−α5u

l in [0,∞), u(0)= u0,

ẇ = β1u
l−β2w in [0,∞), w(0)= w0,

(4.2)

where l ∈ N, and we make the functions Ck,ψ ∈ C([0,T ];C(�̄)), k ∈ J ,
continuous by

C̃k(t, ·) :=
{
Ck(t, ·), if t ∈ [0,T ];
Ck(T , ·), if t ∈ (T ,∞),

(4.3)

(the same with ψ) those functions, which are contained in the coefficients αi

(i ∈ IA := {1, . . . ,5}) and βj (j ∈ IB := {1,2}) due to (2.17). With (3.1) and
(3.2) we conclude that

αi,βj ∈ C
([0,∞);C(�̄)), with αi(t,x),βj (t,x)≥ 0 in [0,∞)×�̄. (4.4)

Moreover, from (2.17) we conclude that

α5(t,x)= lβ1(t,x), α2(t,x)= lβ2(t,x) in [0,∞)×�̄. (4.5)

We have C+(�̄)⊂ C(�̄) is closed and convex. Let

f := (f1,f2
) : [0,∞)×[C+(�̄)]2 −→ [

C
(
�̄
)]2

, (4.6)
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where

f1
(
t, (u,w)

) := f1
(
t, (u,w)

)
(x)

= α1(t,x)+α2(t,x)w(x)−α3(t,x)u(x)

−α4(t,x)u
2(x)−α5(t,x)u

l(x),

f2
(
t, (u,w)

) := f2
(
t, (u,w)

)
(x)= β1(t,x)u

l(x)−β2(t,x)w(x),

(4.7)

which is continuous and maps bounded sets into bounded sets.

Lemma 4.1. Let (4.4) and (4.5) be satisfied. Then system (4.2) has a unique,
nonnegative solution

(u,w) ∈ [C1([0,∞);C(�̄))]2, (4.8)

which satisfies the estimate∥∥u(t)∥∥
C(�̄)

+∥∥w(t)
∥∥
C(�̄)

≤ ∥∥u0
∥∥
C(�̄)

+∥∥w0
∥∥
C(�̄)

+*̂0(t), (4.9)

where *̂0 ∈ C+([0,∞)), which depends on the coefficients αi,βj and the initial
data.

Proof. We proceed in several steps.
(I) We have to ensure that

(u,w)+hf
(
t, (u,w)

) ∈ [C+(�̄)]2 for h > 0 (4.10)

and for all t ∈ [0,∞) and (u,w) ∈ [C+(�̄)]2.
Since α1,α2w ≥ 0 we get

u(x)+hf1
(
t, (u,w)

)
(x)

≥ u(x)−hu(x)
(
α3(t,x)+α4(t,x)u(x)+α5(t,x)u

l−1(x)
)≥ 0,

(4.11)

if

h <
(∥∥α3(t)

∥∥
C(�̄)

+∥∥α4(t)
∥∥
C(�̄)

‖u‖C(�̄)+
∥∥α5(t)

∥∥
C(�̄)

∥∥ul−1
∥∥
C(�̄)

)−1
.

(4.12)
Similarly, we deduce that

w(x)+hf2
(
t, (u,w)

)
(x)≥ w(x)+h

(
β1(t,x)u

l(x)−β2(t,x)w(x)
)

≥ w(x)
(
1−hβ2(t,x)

)≥ 0,
(4.13)

if

h <
(∥∥β2(t)

∥∥
C(�̄)

)−1
. (4.14)
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(II) Next, we prove the unique existence of a local solution. Let a,R > 0,
t0 ∈ [0,∞), t ∈ [t0, t0+ a] and let ut0 ,wt0 ∈ [C+(�̄)]2 be the corresponding
initial data with

∥∥(ut0 ,wt0

)−(u,w)
∥∥
C([t0,t0+a];C(�̄))

,
∥∥(ut0 ,wt0

)−(ū, w̄)∥∥
C([t0,t0+a];C(�̄))

≤ R.

(4.15)
We get a local Lipschitz condition, that is,

∥∥f1
(
t, (u,w)

)−f1
(
t,
(
ū, w̄

))∥∥
C(�̄)

+∥∥f2
(
t, (u,w)

)−f2
(
t,
(
ū, w̄

))∥∥
C(�̄)

≤ ∥∥α2
∥∥
C([t0,t0+a];C(�̄))

∥∥w− w̄
∥∥
C(�̄)

+∥∥α3
∥∥
C([t0,t0+a];C(�̄))

∥∥u− ū
∥∥
C(�̄)

+ R̃
∥∥α4

∥∥
C([t0,t0+a];C(�̄))

∥∥u− ū
∥∥
C(�̄)

+ R̂
(∥∥α5

∥∥
C([t0,t0+a];C(�̄))

∥∥u− ū
∥∥
C(�̄)

+∥∥β1
∥∥
C([t0,t0+a];C(�̄))

∥∥u− ū
∥∥
C(�̄)

)+∥∥β2
∥∥
C([t0,t0+a];C(�̄))

∥∥w− w̄
∥∥
C(�̄)

≤*
(∥∥u− ū

∥∥
C(�̄)

+∥∥w− w̄
∥∥
C(�̄)

)
,

(4.16)

where we set ‖u+ ū‖C(�̄) ≤ R̃ and
∑l−1

j=0 ‖ul−1−j ūj‖C(�̄) ≤ R̂.
From [7, Theorem 3.1, page 216], we conclude the existence of a local,

nonnegative solution to the right of (4.2) from the point (t0, (ut0 ,wt0)).
(III) Finally, we derive a priori estimates in order to extend the solution to the

maximal right-open interval, which is in our case [0,∞) as we will see. Now
let (u,w) be a solution of (4.2) in some interval J ⊂ [0,∞). Thus, for t ∈ J we
have

u(t)+w(t)= u0+w0+
∫ t

0
f1
(
s,
(
u(s),w(s)

))+f2
(
s,
(
u(s),w(s)

))
ds.

(4.17)
Let x ∈ �̄, then from (4.3), step (I), and (4.5), it follows that

w(t,x)≤ u(t)(x)+w(t)(x)

≤ u0(x)+w0(x)+
∫ t

0

(
α1(s,x)+w(s,x)(l−1)β2(s,x)

+ul(s,x)(1− l)β1(s,x)
)
ds

≤ ∥∥u0
∥∥
C(�̄)

+∥∥w0
∥∥
C(�̄)

+
∫ t

0

(
α1(s,x)+w(s,x)(l−1)β2(s,x)

)
ds

≤ ∥∥u0
∥∥
C(�̄)

+∥∥w0
∥∥
C(�̄)

+ t
∥∥α1

∥∥
C([0,T ];C(�̄))

+(l−1)
∥∥β2

∥∥
C([0,T ];C(�̄))

∫ t

0
w(s,x)ds.

(4.18)
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Gronwall’s lemma yields

∥∥w(t)
∥∥
C(�̄)

≤
(∥∥u0

∥∥
C(�̄)

+∥∥w0
∥∥
C(�̄)

+t
∥∥α1

∥∥
C([0,T ];C(�̄))

)
e
t (l−1)‖β2‖C([0,T ];C(�̄))

=: *̂(t)

(4.19)

for all t ∈ J . From this we immediately get∥∥u(t)∥∥
C(�̄)

≤ ∥∥u0
∥∥
C(�̄)

+ t
(∥∥α1

∥∥
C([0,T ];C(�̄))

+∥∥α2
∥∥
C([0,T ];C(�̄))

*̂(t)
)
,

(4.20)
which we summarize as∥∥u(t)∥∥

C(�̄)
+∥∥w(t)

∥∥
C(�̄)

≤ ∥∥u0
∥∥
C(�̄)

+∥∥w0
∥∥
C(�̄)

+*̂0(t) ∀t ∈ J. (4.21)

Since *̂0 ∈ C+([0,∞)), we conclude, with [7, Proposition 1.1, page 200], the
existence of a global solution, that is, the solution exists for any t ∈ [0,∞). �

For later use, we state a compactness result concerning equation (4.2). Let
n+2 < p <∞ and αi,βj ∈ C([0,T ];C+(�̄))∩L1(0,T ;W 1

p(�)) for i ∈ IA,
j ∈ IB . Let

r := ∣∣IA∣∣+ ∣∣IB ∣∣, (4.22)

then we define the operator

L : [C([0,T ];C+(�̄))∩L1(0,T ;W 1
p(�)

)]r −→ [
C
([0,T ];C+(�̄))]2,

(4.23)
by

L
((
αi

)
i∈IA,

(
βj

)
j∈IB

)= (u,w), (4.24)

where (u,w) is a solution of (4.2) in [0,T ].
We use Ascoli’s theorem (see [7]) to state the following result.

Lemma 4.2. The mapping stated in (4.23) is compact.

Proof. Let {((αn
i )i∈IA, (β

n
j )j∈IB )}n∈N⊂[C([0,T ];C+(�̄))∩L1(0,T ;W 1

p(�))]r
be a sequence, satisfying∥∥((αn

i

)
i∈IA,

(
βn
j

)
j∈IB

)∥∥[C([0,T ];C+(�̄))]r

+∥∥((αn
i

)
i∈IA,

(
βn
j

)
j∈IB

)∥∥[L1(0,T ;W 1
p(�))]r ≤ *̄,

(4.25)

with a constant *̄ > 0.
We consider the sequence {(un,wn)}n∈N ⊂ [C([0,T ];C+(�̄))]2, defined by

(un,wn)= L((αn
i )i∈IA, (β

n
j )j∈IB ).
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We again proceed in several steps.
(I) We have to show that {un,wn}n∈N is equicontinuous in the time variable.

Let

f n
1

(
t, (u,w)

)
(x)= αn

1 (t,x)+αn
2 (t,x)w(x)−αn

3 (t,x)u(x)

−αn
4 (t,x)u

2(x)−αn
5 (t,x)u

l(x),

f n
2

(
t, (u,w)

)
(x)= βn

1 (t,x)u
l(x)−βn

2 (t,x)w(x).

(4.26)

For s < t we have the estimate,

∥∥un(t)−un(s)
∥∥
C(�̄)

+∥∥wn(t)−wn(s)
∥∥
C(�̄)

≤
∫ t

s

∥∥f n
1

(
τ,
(
un(τ),wn(τ)

))∥∥
C(�̄)

dτ+
∫ t

s

∥∥f n
2

(
τ,
(
un(τ),wn(τ)

))∥∥
C(�̄)

dτ

≤ (t−s)*̃,

(4.27)

where the constant *̃ > 0 is independent of n. This proves the equicontinuity.
(II) Finally, we have to verify that, for any t ∈ [0,T ], the set {un(t),wn(t)}n∈N

⊂ [C(�̄)]2 is relatively compact. We apply the theorem of Arcelá-Ascoli.
(1) From (4.9) we get the estimate

∣∣un(t)(x)
∣∣+ ∣∣wn(t)(x)

∣∣≤ ∥∥un(t)
∥∥
C(�̄)

+∥∥wn(t)
∥∥
C(�̄)

≤ *̂0(T ) (4.28)

for all x ∈ �̄, which is independent of n ∈ N.
(2) It remains to prove the equicontinuity in �̄. Let x �= y ∈ �̄. A short

calculation and the application of Gronwall’s lemma yield

∣∣un(t)(x)−un(t)(y)
∣∣+ ∣∣wn(t)(x)−wn(t)(y)

∣∣
≤ exp

(
*1T

)
*2

(∣∣u0(x)−u0(y)
∣∣+ ∣∣w0(x)−w0(y)

∣∣
+
∫ T

0

∑
i∈IA

∣∣αn
i (s,x)−αn

i (s,y)
∣∣ds

+
∫ T

0

∑
j∈IB

∣∣βn
j (s,x)−βn

j (s,y)
∣∣ds)

(4.29)

for all t ∈ [0,T ] and some constants *1,*2 which are composed of the quan-
tities *̄,*̂ introduced in the present derivation.

Since each component of (αn
i )i∈IA, (β

n
j )j∈IB belongs to L1(0,T ;W 1

p(�)), it

results, from the embedding theorems, (see [5]) that it also belongs to L1(0,T ;
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Cλ(�̄)) with 0 < λ≤ 1−n/p. Thus, we get∫ T

0

∣∣αn
1 (s,x)−αn

1 (s,y)
∣∣

‖x−y‖λ ds‖x−y‖λ

≤
∫ T

0

∥∥αn
1 (s)

∥∥
Cλ(�̄)

ds‖x−y‖λ ≤ T*‖x−y‖λ,
(4.30)

and similarly with the other coefficients. In summary, we conclude that∣∣un(t)(x)−un(t)(y)
∣∣+ ∣∣wn(t)(x)−wn(t)(y)

∣∣
≤*

(∣∣u0(x)−u0(y)
∣∣+ ∣∣w0(x)−w0(y)

∣∣+‖x−y‖λ), (4.31)

which yields, combined with the continuity of the initial data, the desired
equicontinuity and completes the proof of compactness. �

5. Poisson equation

Next, we collect results concerning the elliptic equation (2.9). We sketch the
results and refer the reader for a detailed analysis to [1, 8, 9, 10]. The following
results regarding the Poisson equation are valid in any space dimension.

Let n < p < ∞ and C ∈ [Lp
+(�)]6. Then we are able to show (with the

help of Leray-Schauder’s fixed point theorem, see [1]) that there exists a unique
solution

ψ ∈W 2
p(�) (5.1)

of (2.9). Moreover, there exists a constant *p > 0 such that

‖ψ‖W 2
p(�) ≤*p

∑
i∈J∪J ′

∥∥Ci

∥∥
Lp(�)

, (5.2)

and the stability estimate∥∥ψ− ψ̃
∥∥
W 2

p(�)
≤*p

∑
i∈J∪J ′

∥∥Ci− C̃i

∥∥
Lp(�)

(5.3)

for all C, C̃ ∈ [Lp
+(�)]6 and the corresponding ψ,ψ̃ satisfying the Poisson equa-

tion. Estimate (5.3) is also true, if only one of the concentrations is nonnegative.
We will use this fact in (6.53).

If Ci ∈ C([0,T ];Lp(�)) for i ∈ J ∪J ′, then we immediately get that

ψ ∈ C
([0,T ];W 2

p(�)
)
, (5.4)

and that there exists a constant *p > 0 such that

‖ψ‖C([0,T ];W 2
p(�)) ≤*p

∑
i∈J∪J ′

∥∥Ci

∥∥
C([0,T ];Lp(�))

. (5.5)
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If in addition, Ci ∈ W 1
p(0,T ;Lp(�))∩C([0,T ];C(�̄)) for i ∈ J ∪J ′, we are

able to show that

ψ ∈W 1
p

(
0,T ;W 2

p(�)
)
, (5.6)

and that there exists another constant *p > 0 satisfying

‖ψ‖W 1
p(0,T ;W 2

p(�)) ≤*p

∑
i∈J∪J ′

∥∥Ci

∥∥
W 1

p(0,T ;Lp(�))
. (5.7)

Thus, we have summarized all results concerning ψ , which we need for
further investigations.

6. Existence and uniqueness

Using the fixed point theorem of Schauder, we prove the existence of a strong
solution according to Definition 3.1. We are able to formulate the following
main result.

Theorem 6.1. Under the assumptions (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7),
and (3.8), there exists an instant of time Tf > 0, such that the system of (2.6),
(2.7), (2.8), and (2.9) has a unique solution. The solution satisfies C≥ 0.

The proof of this theorem consists of several steps, which we present in the
next subsections. We start with a modification of our problem.

Definition 6.2. If we replace in (P) the source terms by Ri((C
+
k )k∈J , (Ck)k∈J ′,ψ)

and the right-hand side in the Poisson equation by
∑

i∈J Qi(ψ)C+i +∑
i∈J ′Qi(ψ)Ci, where

Ci
+ :=

{
Ci, if Ci ≥ 0;
0, if Ci < 0,

(6.1)

we denote the modified system by (P+).

In the next subsection, we will show that, for any solution of (P+), the
concentrations are nonnegative. Then we will prove the existence of a strong
solution of problem (P+) with the help of Schauder’s fixed point theorem in
Sobolev spaces and use regularity results to get the desired smoothness. This
(nonnegative) solution obviously solves (P), too. Finally, we have to show that
there exists no other solution of (P), which concludes the proof of Theorem 6.1.

6.1. Problem (P+)

Lemma6.3. Let p ∈ (1,∞) and ((Ci)i∈J∪J ′,ψ) ∈ [W 2,1
p (QTf )]4×[C1([0,Tf ];

C(�̄))]2 ×W 1
p(0,Tf ;W 2

p(�)) be a solution of (P+), then Ci ≥ 0 for i ∈ J .
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Proof. For i ∈ J , we test the equation

∂Ci

∂t
+divJi = Ri

((
C+k

)
k∈J ,

(
Ck

)
k∈J ′,ψ

)
, (6.2)

with C−i := C+i −Ci , where Ji is defined in (2.10). We get with appropriate
constants the estimate∫

�

(
C−i (t)

)2
dx+

∫ t

0

∫
�

(
*1
(∇C−i

)2+Ri

((
C+k

)
k∈J ,

(
Ck

)
k∈J ′,ψ

)
C−i

)
dx ds

≤*

(
ε

2

∫ t

0

∫
�

(∇C−i
)2
dx ds+*ε

∫ t

0

∫
�

(∇ψ
)2(

C−i
)2
dx ds

)

≤*

(
ε

2

∫ t

0

∫
�

(∇C−i
)2
dx ds+*ε

∫ t

0
‖∇ψ‖2

C(�̄)

∥∥C−i ∥∥2
L2(�)

ds

)
,

(6.3)

where we used Young’s inequality and properties (3.1) and (3.2). Since C+i C−i =
0, we are able to apply property (3.7) to omit the reaction rates. We choose ε > 0
such that *ε/2=*1, then we get

∥∥C−i (t)
∥∥2
L2(�)

≤*

∫ t

0
‖∇ψ‖2

C(�̄)

∥∥C−i ∥∥2
L2(�)

ds. (6.4)

We have ∇ψ ∈ L2(0,T ;C(�̄)) and C−i ∈ C([0,T ];L2(�)), so we can use
Gronwall’s lemma, saying that∥∥C−i (t)

∥∥2
L2(�)

= 0 ∀t ∈ [0,T ]. (6.5)
�

6.2. Fixed point iteration for (P+). Now we prove the existence of a local
solution of (P+) in Sobolev spaces by means of the fixed point theorem of
Schauder. Let

p ∈ (n+2,∞). (6.6)

Set

*0

2
:=
∑
i∈J

∥∥C0
i

∥∥
W

2−2/p
p (�)

+
∑
i∈J ′

∥∥C0
i

∥∥
C(�̄)

+1,

K0 :=
∑
i∈J

Ki,

G0 := k
(
1+K0

)
*0,

(6.7)

where the constants Ki,k > 0 depend on known quantities only and will be
specified below.
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We define the set

XT :=
{
(�,φ) ∈ [W 2,1

p

(
QT

)]4×C
([0,T ];W 1

p(�)
) :

∥∥(�i

)
i∈J
∥∥
W

2,1
p (QT )

≤K0*0,‖φ‖C([0,T ];W 1
p(�))≤G0

} (6.8)

for some T ∈ (0,∞).
We consider the vector-valued mapping

Z :XT −→
[
W 2,1

p

(
QT

)]4×C
([0,T ];W 1

p(�)
)
, (6.9)

by

Z
((

�k

)
k∈J ,φ

)= ((Ck

)
k∈J ,ψ

)
, (6.10)

where Ci , i ∈ J , is the solution of

∂Ci

∂t
−div

{
Di(ψ)

[∇Ci+Qi(ψ)∇ψCi

]}=Ri

((
�+k
)
k∈J ,

(
Ck

)
k∈J ′,ψ

)
in QT ,

∇Ci ·n = 0 on <T ,

Ci(·,0)= C0
i in �,

(6.11)
and ψ is the solution of

−!ψ+sinh(ψ)=
∑
i∈J

Qi(ψ)�+i +
∑
i∈J ′

Qi(ψ)Ci in QT ,

∇ψ ·n = 0 on <T .

(6.12)

Therefore, Ci , i ∈ J ′, is the nonnegative solution of the ordinary differential
equation in the Banach spaces,

∂Ci

∂t
= Ri

((
�+k
)
k∈J ,

(
Ck

)
k∈J ′,φ

)
in QT ,

Ci(·,0)= C0
i in �.

(6.13)

Now we check the properties of the mapping required in the fixed point
theorem in the following steps (I), (II), and (III).

(Ia) The mapping Z is well defined, since system (6.11), (6.12) has a unique
solution ((

Ci

)
i∈J ,ψ

) ∈ [W 2,1
p

(
QT

)]4×W 1
p

(
0,T ;W 2

p(�)
)
. (6.14)

In order to see the solvability of (6.11), (6.12), we first note that, for i ∈ J each
�i ∈ W

2,1
p (QT ) (cf. (6.6)) also belongs due to the embedding theorems to the

space C([0,T ];C(�̄)) and so do the cuts. The function φ ∈ C([0,T ];W 1
p(�)) is

also continuous in both variables. Having this in mind, we can say that for given
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((�i )k∈J ,φ) ∈ [C([0,T ];C(�̄))]5, the nonlinear system (6.13) has according
to Lemma 4.1 a unique solution, that is,

CA,CAcl ∈ C1([0,T ];C(�̄)), (6.15)

which satisfies CA,CAcl ≥ 0.
From (6.15) and embedding theorems, it follows that the coefficients as well

as the right-hand side of (6.11) are continuous, and thus they also belong to
the space Lp(QT ) for any p ≥ 1, especially for p ∈ (n+ 2,∞). In addition,
the right-hand side of (6.12) belongs to the space W 1

p(0,T ;Lp(�)). So with
(3.8), the parabolic theory (see [5]) and the result (5.6) concerning the elliptic
equation yield (6.14).

(Ib) For later use, we state an estimate. We get, by testing (6.13) with
(∂/∂t)(C1

i −C2
i )|(∂/∂t)(C1

i −C2
i )|p−2, i ∈ J ′, combined with the linear theory

of ordinary differential equations in Banach spaces, and from the linear elliptic
theory applied to (6.12) that there exists a constant * > 0, such that the stability
estimate∑

i∈J ′

∥∥C1
i −C2

i

∥∥
W 1

p(0,T ;Lp(�))
+∥∥ψ1−ψ2

∥∥
Lp(0,T ;W 2

p(�))

≤*

(∑
i∈J

∥∥�1+
i −�2+

i

∥∥
Lp(0,T ;Lp(�))

+∥∥φ1−φ2
∥∥
Lp(0,T ;Lp(�))

) (6.16)

holds for all φ1,φ2,�1+
i ,�2+

i ∈ Lp(0,T ;Lp(�)) and the corresponding solu-
tions C1

i ,C
2
i of (6.13) as well as ψ1,ψ2 of (6.12).

(II) We show, that there exists an instant of time Tf ∈ (0,∞), such that
Z(XTf )⊆XTf .

At first, we state the constants Ki,k > 0 defined in (6.7). In order to discuss
Ki > 0, we write (6.11) for i ∈ J in the form

∂Ci

∂t
−Di(ψ)!Ci = Fi, (6.17)

where

Fi = Ri

((
�+k
)
k∈J ,

(
Ck

)
k∈J ′,ψ

)+div
{
Di(ψ)Qi(ψ)∇ψCi

}+D′(ψ)∇ψ ·∇Ci.

(6.18)

Let T0 ∈ (0,∞) and set Ki ≡ Ki(T0). Then the parabolic theory yields the
estimate

∥∥Ci

∥∥
W

2,1
p (QT )

≤ Ki

2

(∥∥C0
i

∥∥
W

2−2/p
p (�)

+∥∥Fi

∥∥
Lp(0,T ;Lp(�))

)
, (6.19)

which is true for all T ∈ (0,T0], and where Ki > 0 remains bounded for any
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finite T0 > 0 (see [5]). For (6.12) we get according to (4.9) and (5.5) the estimate

‖ψ‖C([0,T ];W 2
p(�)) ≤ k

(∑
i∈J

∥∥�+i
∥∥
C([0,T ];Lp(�))

+
∑
i∈J ′

∥∥Ci

∥∥
C([0,T ];Lp(�))

)
,

(6.20)

with a constant k > 0.
We start to estimate inequality (6.20). We get with (4.9)

‖ψ‖C([0,T ];W 2
p(�)) ≤ k

(∑
i∈J

∥∥�+i
∥∥
C([0,T ];Lp(�))

+
∑
i∈J ′

∥∥Ci

∥∥
C([0,T ];Lp(�))

)

≤ k

(
*0K0+*0

2
+*�*̂0(T )

)
,

(6.21)

where *̂0(T ) > 0 depends only on quantities defined in (6.8), with *̂0(T )→ 0
for T → 0. We choose T1 ∈ (0,T ] such that

*�*̂0
(
T1
)≤ *0

2
, (6.22)

then we conclude that

‖ψ‖C([0,T1];W 1
p(�)) ≤ ‖ψ‖C([0,T1];W 2

p(�)) ≤G0, (6.23)

where G0 is defined in (6.7).
Moreover, the local solution ψ ∈ W 1

p(0,T1;W 2
p(�)) satisfies estimate (5.7)

with �+i instead of Ci for i ∈ J therein.
Next, we get with (6.19) the estimates∥∥Ci

∥∥
W

2,1
p (QT )

≤Ki

2

(∥∥C0
i

∥∥
W

2−2/p
p (�)

+∥∥Ri

((
�+k
)
k∈J ,

(
Ck

)
k∈J ′,ψ

)∥∥
Lp(0,T ;Lp(�))

+∥∥div
{
Di(ψ)Qi(ψ)∇ψCi

}∥∥
Lp(0,T ;Lp(�))

+∥∥D′(ψ)∇ψ ·∇Ci

∥∥
Lp(0,T ;Lp(�))

)

≤ K0

2

(
*0

2
+∥∥Ri

((
�+k
)
k∈J ,

(
Ck

)
k∈J ′,ψ

)∥∥
Lp(0,T ;Lp(�))

+∥∥div
{
Di(ψ)Qi(ψ)∇ψCi

}∥∥
Lp(0,T ;Lp(�))

+∥∥D′(ψ)∇ψ ·∇Ci

∥∥
Lp(0,T ;Lp(�))

)
(6.24)

for i ∈ J , and where the constants K0,*0 are defined in (6.7).
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We estimate the first Lp-norm in (6.24). Using the growth conditions (3.4),
we see that there exists a constant *1 > 0, just depending on known quantities
defined in (6.8), such that∥∥Ri

((
�+k
)
k∈J ,

(
Ck

)
k∈J ′,ψ

)∥∥
Lp(0,T ;Lp(�))

≤ T 1/p*�

∥∥λi(ψ)
∥∥
C([0,T ];C(�̄))

×
(∑

k∈J

∥∥(�+k )s∥∥C([0,T ];C(�̄))
+
∑
k∈J ′

∥∥(Ck

)s∥∥
C([0,T ];C(�̄))

+1

)

≤ T 1/p*1,

(6.25)

where s := l+m+n and λi ∈ C(R), i ∈ J . We consider the second Lp-norm
in (6.24), which is

div
{
Di(ψ)Qi(ψ)∇ψCi

}= (D′i (ψ)Qi(ψ)+Di(ψ)Q′i (ψ)
)(∇ψ

)2
Ci

+Di(ψ)Qi(ψ)!ψCi+Di(ψ)Qi(ψ)∇ψ ·∇Ci.

(6.26)

We use (3.1) to get the estimate∥∥Di(ψ)Qi(ψ)∇ψ ·∇Ci

∥∥
Lp(0,T ;Lp(�))

≤ T 1/p*‖∇ψ‖C([0,T ];Lp(�))

∥∥∇Ci

∥∥
C([0,T ];C(�̄))

≤ T 1/p*‖∇ψ‖C([0,T ];Lp(�))

∥∥Ci

∥∥
W

2,1
p (QT )

,

(6.27)

where the last inequality is true for n+2 < p <∞, (see [5]) an explanation of
our special choice of p. The other terms in (6.26) and the last Lp-norm in (6.24)
may be estimated similarly. Again we can say that there exists a constant *2 > 0,
just depending on known quantities, such that∥∥div

{
Di(ψ)Qi(ψ)∇ψCi

}∥∥
Lp(0,T ;Lp(�))

+∥∥D′(ψ)∇ψ ·∇Ci

∥∥
Lp(0,T ;Lp(�))

≤ T 1/p*2
∥∥Ci

∥∥
W

2,1
p (QT )

.

(6.28)

Thus, in summary,(
1−T 1/p K0*2

2

)∥∥Ci

∥∥
W

2,1
p (QT )

≤ K0

2

(
*0

2
+T 1/p*1

)
. (6.29)

We choose Tf ∈ (0,T1], such that

0 < T
1/p
f ≤min

{
1

K0*2
,
*0

2*1

}
, (6.30)
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then ∥∥Ci

∥∥
W

2,1
p (QTf

)
≤K0*0 for i ∈ J, (6.31)

and so Z :XTf →XTf .
(III) Compactness and continuity of the mapping.
We proceed with the following lemma.

Lemma 6.4. The mapping

Z :XTf −→XTf (6.32)

is compact and continuous.

Proof. At first, we note that the embedding

W 1
p

(
0,Tf ;W 2

p(�)
)⊂ C

([
0,Tf

];W 1
p(�)

)
(6.33)

is compact. Thus, from (6.14), the mapping is compact in the second variable.
Now let {(�m

i )i∈J ,φm}m∈N ⊂XTf .

(1) From the compact embedding of W 2,1
p (QTf ) into the space

Y := Lp
(
0,Tf ;W 1

p(�)
)

(6.34)

there exists a subsequence �n
i → �i in Y for n→∞. This is also true for the

cuts, that is,

�n+
i −→ �+i in Y for n−→∞. (6.35)

(2) If we apply Lemma 4.2 to the system (6.13) we conclude that there exists
a subsequence

Cn
i −→ Ci in C

([0,Tf ];C
(
�̄
))

for n−→∞, i ∈ J ′. (6.36)

(3) From (6.33), (6.35), and (6.36) we get the convergence of a subsequence

ψn −→ ψ in C
([0,Tf ];W 1

p(�)
)

for n−→∞. (6.37)

Let Cn
i ,Ci , i ∈ J , be the solutions of (6.11). We set

�̄n
i := �n+

i −�+i , for i ∈ J,

C̄n
i := Cn

i −Ci, for i ∈ J ∪J ′,
ψ̄n := ψn−ψ.

(6.38)

In QTf , we consider the system for C̄n
i , i ∈ J , which is

∂C̄n
i

∂t
−div

{
B1∇C̄n

i

}+B2∇C̄n
i +B3C̄

n
i = F̄ n

i , (6.39)
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where

F̄ n
i = A1

(
Di

(
ψn

)−Di(ψ)
)+A2

(
D′i
(
ψn

)−D′i (ψ)
)

+A3
(
Qi

(
ψn

)−Qi(ψ)
)+A4

(
Q′i
(
ψn

)−Q′i (ψ)
)+A5∇ψ̄n

+A6!ψ̄n+Ri

((
�n+

k

)
k∈I ,

(
Cn

k

)
k∈I ′,ψn

)−Ri

((
�+k
)
k∈I ,

(
Ck

)
k∈I ′,ψ

)
,

(6.40)

and with the boundary conditions∇C̄n
i ·n = 0 on �T , and zero initial conditions.

We do not discuss the coefficients A,B (supplied with indices) appearing in
the linear equations in detail, but we mention that they belong at least to the
space C([0,Tf ];Lp(�)), which will be discussed in a moment.

The parabolic theory (see [5]) yields

∑
i∈J

∥∥C̄n
i

∥∥
W

2,1
p (QTf

)
≤*

∑
i∈J

∥∥F̄ n
i

∥∥
Lp(0,Tf ;Lp(�))

. (6.41)

In order to show the convergence of the left-hand side, we have to estimate the
right-hand side of (6.41) with the help of (5.3) as well as (6.35) and (6.36).

For this, we use the mean value theorem to get

Qi

(
ψn

)−Qi(ψ)=
∫ 1

0
Q′i
(
ψ̃(s)

)
dsψ̄n, (6.42)

(the same with the other coefficients which depend on ψ), where ψ̃(s)= sψn+
(1− s)ψ . Representatively, we estimate the term A3(Qi(ψn)−Qi(ψ)), where
a short calculation gives

A3 =D′i (ψ)Ci(∇ψ)2+Di(ψ)∇Ci ·∇ψ+Di(ψ)Ci!ψ. (6.43)

Therefore, !ψ ∈ C([0,Tf ];Lp(�)), whereas the other functions are continuous
due to embedding results, so we get A3 ∈ C([0,Tf ];Lp(�)). Thus,

∥∥∥∥A3

∫ 1

0
Q′i
(
ψ̃(s)

)
dsψ̄n

∥∥∥∥
Lp(0,Tf ;Lp(�))

≤*
(∥∥ψ̄n

∥∥
Lp(0,Tf ;Lp(�))

+∥∥!ψψ̄n
∥∥
Lp(0,Tf ;Lp(�))

)
≤*

(
1+‖!ψ‖C([0,Tf ];Lp(�))

∥∥ψ̄n
∥∥
Lp(0,Tf ;C(�̄))

)
≤*

∥∥ψ̄n
∥∥
Lp(0,Tf ;W 2

p(�))

≤*

(∑
i∈J

∥∥�̄n
i

∥∥
Lp(0,Tf ;Lp(�))

+
∑
i∈J ′

∥∥C̄n
i

∥∥
Lp(0,Tf ;Lp(�))

)
.

(6.44)
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The other terms in (6.41) may be estimated similarly. Thus, we are able to show
that there exists a constant * > 0 satisfying

∑
i∈J

∥∥F̄ n
i

∥∥
Lp(0,Tf ;Lp(�))

≤*

(∑
i∈J

∥∥�̄n
i

∥∥
Lp(0,Tf ;Lp(�))

+
∑
i∈J ′

∥∥C̄n
i

∥∥
Lp(0,Tf ;Lp(�))

)
,

(6.45)

which implies convergence in the left-hand side of (6.41). This and (6.33) prove
the compactness of the mapping Z.

The continuity can be obtained by similar arguments. More precisely, we
take a sequence {(�n

i )i∈J ,φn}n∈N ⊂XTf . From this we get that

�n+
i −→ �+i in Lp

(
0,Tf ;W 1

p(�)
)∩W 1

p

(
0,Tf ;Lp(�)

)
, (6.46)

as well as

φn −→ φ in C
([

0,Tf

];W 1
p(�)

)
(6.47)

for n→∞.
We consider the differences in (6.11), (6.12), and (6.13), use inequalities

(5.3) and (6.16) to get the continuity of the mapping Z. �

From steps (I), (II), and (III), we conclude the existence of a local, nonneg-
ative solution of problem (P+).

6.3. Uniqueness and problem (P). The solution of (P+) obviously solves
problem (P), too. In order to show that the (nonnegative) solution, which we
denote by C1

i ,ψ
1, i ∈ J ∪ J ′, is the only one, we assume the existence of

another, not necessarily, nonnegative solution C2
i ,ψ

2, i ∈ J ∪J ′.
We again consider the system for the respective differences C̄i := C1

i −C2
i ,

i ∈ J ∪J ′, which is for i ∈ J exactly the same as (6.39) if we replace the cuts
(�n+

k )k∈J and (�+k )k∈J in the right-hand side F̄i by the solution vectors (C1
k )k∈J

and (C2
k )k∈J , respectively. We test the ith equation with C̄i and if we set

‖·‖2
V 1,0(Qt )

:= sup
0≤τ≤t

‖·‖2
L2(�)

+‖·‖2
L2(0,t;H 1(�))

, (6.48)

we get, with the same methods presented in the previous sections, the inequality

∥∥C̄i

∥∥2
V 1,0(Qt )

≤*

(
*ε

∑
k∈J∪J ′

∫ t

0

∥∥g(s)∥∥2
L∞(�)

∥∥C̄k(s)
∥∥2
L2(�)

ds

+ ε

2

∑
k∈J

∥∥C̄k

∥∥2
V 1,0(Qt )

+∥∥ψ̄∥∥
L2(0,t;H 1(�))

)
for i ∈ J,

(6.49)

with some g ∈ L2(0, t;L∞(�)) and ε > 0 arbitrarily.
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Similarly, we deduce that

∥∥C̄i(t)
∥∥2
L2(�)

≤*

( ∑
k∈J∪J ′

∫ t

0

∥∥g(s)∥∥2
L∞(�)

∥∥C̄k(s)
∥∥2
L2(�)

ds+∥∥ψ̄∥∥
L2(0,t;H 1(�))

)
for i ∈ J ′.

(6.50)

Summation over i ∈ J ∪J ′, the choice of a suitable ε > 0 and the application
of the stability estimate (5.3) yield

∑
i∈J∪J ′

∥∥C̄i(t)
∥∥2
L2(�)

≤*
∑

i∈J∪J ′

∫ t

0

(
1+‖g‖2

L∞(�)

)∥∥C̄i

∥∥2
L2(�)

ds ∀t ∈ [0,Tf ].
(6.51)

So, we conclude with Gronwall’s lemma∑
i∈J∪J ′

∥∥C̄i(t)
∥∥2
L2(�)

= 0, (6.52)

and this in turn yields with (5.3) that∥∥ψ1(t)−ψ2(t)
∥∥
H 1(�)

= 0. (6.53)

This proves the unique solvability of (P), which is Theorem 6.1. �
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