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1. Introduction

We study the problem of the existence and nonexistence of global weak solutions of the
initial value problem for systems of parabolic inequalities of the following two types:

ut −|x|τ1�u≥ |v|q, (x, t) ∈ R
N ×(0,∞),

vt −|x|τ2�v ≥ |u|p, (x, t) ∈ R
N ×(0,∞),

(1.1)

ut −�u≥ tk1 |x|−σ1 |v|q, (x, t) ∈ R
N ×(0,∞),

vt −�v ≥ tk2 |x|−σ2 |u|p, (x, t) ∈ R
N ×(0,∞),

(1.2)

where p,q > 1 and u(x,0) = u0(x), v(x,0) = v0(x), x ∈ R
N. Systems like (1.1)

and (1.2) will be called degenerate and singular, respectively. Several authors have
addressed this problem recently: we refer the interested reader to the papers by Levine
[4] and Deng and Levine [1] for a survey of the literature on this subject. In the proofs
we follow the technique developed by Mitidieri and Pohozaev in [6, 7], which allows
to prove the nonexistence of not necessarily positive solutions avoiding the use of any
comparison principle through the choice of suitable text functions and careful capacitary
estimates. We emphasize that in the present paper we do not assume any sign condition
on the solutions, while we ask that the initial data have the following weak weighted
positivity property:

lim inf
R→∞

∫
BR

u0|x|−τ1 dx > 0, lim inf
R→∞

∫
BR

v0|x|−τ2 dx > 0, (1.3)

where τ1 = τ2 = 0 in case of system (1.2). Of course, (1.3) is in particular satisfied by
positive initial data.

Throughout the paper by “nonexistence of weak solution” we mean “nonexistence
of nontrivial weak solutions.”
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The paper is organized as follows: in Section 2, we consider systems of type (1.1),
containing subcritical degeneracies, that is, we assume that τ1 < τ2 ≤ 2. The main result
of this section (Theorem 2.4) recovers the result obtained in [7] for the single inequality,
that is, when τ1 = τ2 and p = q. Moreover, Theorem 2.4 includes as a particular case
the result by Escobedo and Herrero [2], which concerns the system of equations under
the assumptions that τ1 = τ2 = 0 and u0,v0 ≥ 0.

In Section 3, we deal with critical degenerate systems like (1.1), where the term
“critical” means that τ1 = τ2 = 2. For the single inequality (p = q), it is known (see
[7]) that q∗, the critical exponent for the nonexistence of global solutions, is independent
of the dimension N . Here we show that the same fact occurs for systems like (1.1).
More precisely, in Theorem 3.4 we establish that if τ1 = τ2 = 2 and p,q > 1 satisfy
the following condition:

min
{
q(p−2),p(q−2)

} ≤ 3, (1.4)

then, no weak solution of (1.1) exists. In the second part of Section 3, we prove that
global solutions of system (1.1) exist when τ1 = τ2 = 2, p,q > 1 and (1.4) does not hold
and the initial data are sufficiently small. The results of this section can be summarized
by saying that the curve

min
{
q(p−2),p(q−2)

} = 3 (1.5)

is the critical curve for the system (2.39).
Section 4 contains a nonexistence theorem for the singular parabolic system (1.2).

Fujita-type results for system (1.2) were obtained in [8] for k1 = k2 = 0 and in [9]
for σ1 = σ2 = 0. Theorem 4.2 includes the blowup results of [8, 9], giving a unique
nonexistence condition containing all the parameters. This answers a question posed in
Deng-Levine [1].

Throughout the paper we use the following notations: for any p > 1 we denote by p′
the conjugate exponent of p, that is, 1/p+1/p′ = 1. The symbol C denotes a positive
constant which may vary from line to line.

We conclude this introduction with a short remark: in the course of the proofs, we
frequently use the fact that if φ ∈ C∞

0 (R
N ×[0,∞)) is a standard cut-off function and

ρ > 1, then it is always possible to select φ in order that∫ ∞

0

∫
RN

|Dφ|ρ
φρ−1

dx dt <∞. (1.6)

A justification of this fact is contained for instance in [6].

2. Systems of parabolic differential inequalities containing
subcritical degeneracies

Set D = R
N ×(0,+∞). We consider the following initial value problem:

ut −|x|τ1�u≥ |v|q, vt −|x|τ2�v ≥ |u|p, (x, t) ∈D,
u(x,0)= u0(x), v(x,0)= v0(x), x ∈ R

N,
(2.1)

where we assume that τ1 < τ2 ≤ 2, p,q > 1 and v0|x|−τ2 , u0|x|−τ1 ∈ L1
loc(R

N).
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Definition 2.1. We say that (u,v) is a weak solution of (2.1) if the following assumptions
are satisfied:

(i) u, v :D→ R,
(ii) |v|q |x|−τ1 , |u|p|x|−τ2 ∈ L1

loc(D),
(iii) v|x|−τ2 , u|x|−τ1 ∈ L1

loc(D),
(iv) u, v ∈ L1

loc(D),

and for any nonnegative φ ∈ C∞
0 (R

N ×[0,∞)) the following inequalities hold:∫
D

|v|q |x|−τ1φdx dt ≤ −
∫
D

u
(
�φ+|x|−τ1φt

)
dx dt−

∫
RN

u0|x|−τ1φ(x,0)dx,

∫
D

|u|p|x|−τ2φdx dt ≤ −
∫
D

v
(
�φ+|x|−τ2φt

)
dx dt−

∫
RN

v0|x|−τ2φ(x,0)dx.

(2.2)

In this section, we study the nonexistence of weak solutions of problem (2.1). To
this aim we use the approach developed by Mitidieri and Pohozaev in [6] in the context
of elliptic problems and successively modified in [5, 7] to deal with parabolic and
hyperbolic problems. This technique consists in deriving careful estimates of weighted
Lp-norms of solutions by choosing suitable cut-off functions and rescaling arguments.

In order to formulate our results we introduce some notations.
Let γ > 0 and R > 0 be given. For any φ0 ∈ C∞

0 (R) such that 0 ≤ φ0(s) ≤ 1, for
any s ∈ R and

φ0(s)=
{

1, 0 ≤ s ≤ 1,

0, s ≥ 2,
(2.3)

we define

φγ (x)= φ0

(
t

Rγ
+ |x|2
R2

)
. (2.4)

For any u,v :D→ R such that |v|q |x|−τ1 and |u|p|x|−τ2 ∈ L1
loc(D), we set

�1 =
∫
D

|v|q
|x|τ1

φγ dx dt, �2 =
∫
D

|u|p
|x|τ2

φγ dx dt. (2.5)

Further, given γ > 0 let

α1 = −γ −
(
τ1 − τ2

p

)
+ γ +N

p′ ,

α2 = −2+ τ2

p
+ γ +N

p′ ,

α3 = −γ −
(
τ2 − τ1

q

)
+ γ +N

q ′ ,

α4 = −2+ τ1

q
+ γ +N

q ′ .

(2.6)
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Proposition 2.2. Assume that v0|x|−τ2 , u0|x|−τ1 ∈ L1
loc(R

N) and that (u,v) is a weak
solution of (2.1). Then, for any φγ ∈ C∞

0 (R
N ×[0,∞)) given by (2.4) the following

estimates hold:

�1 ≤ C(
Rα1 +Rα2

)
�

1/p
2 −

∫
RN

u0|x|−τ1φγ (x,0)dx,

�2 ≤ C(
Rα3 +Rα4

)
�

1/q
1 −

∫
RN

v0|x|−τ2φγ (x,0)dx.

(2.7)

Proof. Let (u,v) be a weak solution of (2.1). Applying Hölder inequality to the right-
hand sides of (2.2) with φ = φγ , we obtain

�1 ≤
[(∫

D

∣∣(φγ )t ∣∣p′ |x|−(τ1−τ2/p)p
′
φ1−p′
γ dx dt

)1/p′

+
(∫

D

∣∣�φγ ∣∣p′ |x|τ2(p
′−1)φ1−p′

γ dx dt

)1/p′]
�

1/p
2 −

∫
RN

u0|x|−τ1φγ (x,0)dx,

(2.8)

�2 ≤
[(∫

D

∣∣(φγ )t ∣∣q ′ |x|−(τ2−τ1/q)q
′
φ1−q ′
γ dx dt

)1/q ′

+
(∫

D

∣∣�φγ ∣∣q ′ |x|τ1(q
′−1)φ1−q ′

γ dx dt

)1/q ′]
�

1/q
1 −

∫
RN

v0|x|−τ2φγ (x,0)dx.

(2.9)

Using the definition of φγ and applying the following change of variables:

t = Rγ s, x = Rξ, (2.10)

to the integrals in (2.8) and (2.9), we get

∫
D

∣∣(φγ )t ∣∣p′ |x|−(τ1−τ2/p)p
′
φ1−p′
γ dx dt ≤ CR−γp′−(τ1−τ2/p)p

′+γ+N,∫
D

∣∣�φγ ∣∣p′ |x|τ2(p
′−1)φ1−p′

γ dx dt ≤ CR−2p′+τ2(p
′−1)+γ+N.

(2.11)

Analogously from (2.9) we get

∫
D

∣∣(φγ )t ∣∣q ′ |x|−(τ2−τ1/q)q
′
φ1−q ′
γ dx dt ≤ CR−γ q ′−(τ2−τ1/q)q

′+γ+N,∫
D

∣∣�φγ ∣∣q ′ |x|τ1(q
′−1)φ1−q ′

γ dx dt ≤ CR−2q ′+τ1(q
′−1)+γ+N.

(2.12)

We conclude the proof by substituting (2.11) and (2.12) into (2.8) and (2.9). �
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For the sake of brevity, we introduce the following notations: for any u0,v0 such
that v0|x|−τ2 , u0|x|−τ1 ∈ L1

loc(R
N) and φγ given by (2.4) we set

i1(R)=
∫

RN

v0(x)|x|−τ2φγ (x,0)dx,

i2(R)=
∫

RN

u0(x)|x|−τ1φγ (x,0)dx.

(2.13)

From Proposition 2.2 the following result follows.

Corollary 2.3. Assume that v0|x|−τ2 , u0|x|−τ1 ∈ L1
loc(R

N). Let (u,v) be a weak
solution of (2.1). Then, for any φγ ∈ C∞

0 (R
N ×[0,∞)) given by (2.4) the following

estimates hold:

�1 ≤ C(
Rα1 +Rα2

)((
Rα3 +Rα4

)
�

1/q
1 − i1(R)

)1/p− i2(R), (2.14)

�2 ≤ C(
Rα3 +Rα4

)((
Rα1 +Rα2

)
�

1/p
2 − i2(R)

)1/q− i1(R). (2.15)

Proof. The inequalities (2.14) and (2.15) follow from (2.7) by substitution. �

Now we are in a position to state the main result of this section.

Theorem 2.4. Let p,q > 1 and τ1 ≤ τ2 < 2. Assume that u0
−|x|−τ1 , v0

−|x|−τ2 ∈
L1(RN) and that

lim inf
R→∞

∫
BR

u0|x|−τ1dx > 0, lim inf
R→∞

∫
BR

v0|x|−τ2dx > 0. (2.16)

If

min
{(
N−τ1

)
(pq−1)−(

2−τ1
)−q(2−τ2

)
,(

N−τ2
)
(pq−1)−(

2−τ2
)−p(

2−τ2
)
,(

N−τ1
)
(pq−1)−(

2−τ2
)−p(

2−τ1
)} ≤ 0,

(2.17)

then there exists no weak solution of (2.1).

Proof. Let (u,v) be a weak solution of (2.1) and suppose that i1(R)≥ 0 and i2(R)≥ 0
for any R large enough. Slight modifications yield the proof in the general case. From
Corollary 2.3 it follows that

�
1−(1/pq)
1 ≤ C(

Rα1 +Rα2
)(
Rα3 +Rα4

)1/p
, (2.18)

�
1−(1/pq)
2 ≤ C(

Rα3 +Rα4
)(
Rα1 +Rα2

)1/q
. (2.19)

We deduce that if there exists γ > 0 such that one of the following conditions holds:

max
{
α1p+α3, α1p+α4, α2p+α3, α2p+α4

}
< 0, (2.20a)

max
{
α1 +α3q, α1 +α4q, α2 +α3q, α2 +α4q

}
< 0, (2.20b)
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then taking the limit as R→ ∞ in (2.18), or respectively in (2.19), we obtain that∫
Aγ,R

|v|q |x|−τ1dx dt −→ 0, or respectively
∫
Aγ,R

|u|p|x|−τ2dx dt −→ 0, (2.21)

where Aγ,R = {(x, t) ∈ D : tR−γ +|x|2R−2 ≤ 1}. This implies that u ≡ 0 and v ≡ 0,
against our assumption.

Now, define

f1(γ )≡ α1p+α3, f2(γ )≡ α1p+α4,

f3(γ )≡ α2p+α3, f4(γ )≡ α2p+α4,

h1(γ )≡ α1 +α3q, h2(γ )≡ α1 +α4q,

h3(γ )≡ α2 +α3q, h4(γ )≡ α2 +α4q.

(2.22)

Using (2.6), it is easy to check that the lines δ = fi(γ ), and respectively δ = hi(γ ),
mutually intersect at γ = 2−τ1 and γ = 2−τ2 as follows:

f1
(
2−τ1

) = f3
(
2−τ1

) =
(
N−τ1

)
(pq−1)−(

2−τ1
)−q(2−τ1

)
q

,

f2
(
2−τ1

) = f4
(
2−τ1

) =
(
N−τ1

)
(pq−1)−(

2−τ1
)−q(2−τ2

)
q

,

f1
(
2−τ2

) = f2
(
2−τ2

) =
(
N−τ1

)
(pq−1)−(

2−τ2
)−q(2−τ2

)
q

,

f3
(
2−τ2

) = f4
(
2−τ2

) =
(
N−τ2

)
(pq−1)−(

2−τ1
)−q(2−τ2

)
q

,

h1
(
2−τ1

) = h3
(
2−τ1

) =
(
N−τ2

)
(pq−1)−(

2−τ1
)−p(

2−τ1
)

p
,

h2
(
2−τ1

) = h4
(
2−τ1

) =
(
N−τ1

)
(pq−1)−(

2−τ2
)−p(

2−τ1
)

p
,

h1
(
2−τ2

) = h2
(
2−τ2

) =
(
N−τ2

)
(pq−1)−(

2−τ2
)−p(

2−τ2
)

p
,

h3
(
2−τ2

) = h4
(
2−τ2

) =
(
N−τ2

)
(pq−1)−(

2−τ2
)−p(

2−τ2
)

p
.

(2.23)

Figure 2.1 shows the graphs of the lines δ = fi(γ ) for the following choice of the
parameters: p = 2, q = 3, τ1 = 0, and τ2 = 1. Note that in this case 2 − τ1 = 2 and
2−τ2 = 1.

The best condition on the parameters p, q, τ1, τ2 in order that (2.20a), or (2.20b)
holds for some γ > 0, (actually, γ = 2−τ1 or γ = 2−τ2), is

min
{

max
{
fi

(
2−τ1

)
, i = 1,4

}
, max

{
fi

(
2−τ2

)
, i = 1,4

}
,

max
{
hi

(
2−τ1

)
, i = 1,4

}
, max

{
hi

(
2−τ2

)
, i = 1,4

}}
< 0.

(2.24)
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Figure 2.1

From the explicit expressions of fi(2 − τj ) and hi(2 − τj ) for i = 1,4 and j = 1,2
which can be obtained using (2.6) we can deduce that, since τ1 ≤ τ2,

f3
(
2−τ2

) ≤ f2
(
2−τ2

)
, f1

(
2−τ1

) ≤ f2
(
2−τ1

)
,

h3
(
2−τ2

) ≤ h2
(
2−τ2

)
, h3

(
2−τ1

) ≤ h2
(
2−τ1

)
.

(2.25)

Moreover, we can check that f2 is decreasing and hence (2.24) is equivalent to

min
{
f2

(
2−τ1

)
, h2

(
2−τ2

)
, h2

(
2−τ1

)}
< 0, (2.26)

that is,

min
{(
N−τ1

)
(pq−1)−(

2−τ1
)−q(2−τ2

)
,(

N−τ2
)
(pq−1)−(

2−τ2
)−p(

2−τ2
)
,(

N−τ1
)
(pq−1)−(

2−τ2
)−p(

2−τ1
)}
< 0.

(2.27)

This concludes the proof when (2.17) holds with the strict inequality.
Now, suppose that

min
{(
N−τ1

)
(pq−1)−(

2−τ1
)−q(2−τ2

)
,(

N−τ2
)
(pq−1)−(

2−τ2
)−p(

2−τ2
)
,(

N−τ1
)
(pq−1)−(

2−τ2
)−p(

2−τ1
)}

= (
N−τ1

)
(pq−1)−(

2−τ1
)−q(2−τ2

) = 0.

(2.28)

The other cases can be handled similarly.
Since (N − τ1)(pq− 1)− (2 − τ1)−q(2 − τ2) = max{fi(2 − τ1), i = 1,4} = 0, it

follows that for any i = 1, 4 we have fi(2−τ1) ≤ 0. Set γ = 2−τ1. From (2.14), we
get that ∫

D

|v|q |x|−τ1dx dt <∞. (2.29)
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From the definition of weak solution and the fact that φ0(s) = 1 for any s ∈ [0,1], we
know that∫

D

|v|q |x|−τ1φ2−τ1dx dt

≤ −
∫
DR

u
(
�φ2−τ1 +|x|−τ1

(
φ2−τ1

)
t

)
dx dt−

∫
RN

u0|x|−τ1φ2−τ1dx,

∫
D

|u|p|x|−τ2φ2−τ1dx dt

≤ −
∫
DR

v
(
�φ2−τ1 +|x|−τ2

(
φ2−τ1

)
t

)
dx dt−

∫
RN

v0|x|−τ2φ2−τ1dx,

(2.30)

where

DR = {
(x, t) ∈D : 1< tRτ1−2 +|x|2R−2 < 2

}
. (2.31)

Applying Hölder inequality and proceeding as in the proof of Proposition 2.2 and
Corollary 2.3, we find that

∫
Aγ,R

|v|q |x|−τ1dx dt ≤ C

(∫
DR

|v|q |x|−τ1dx dt

)1/(pq)

, (2.32)

where we have also used that φ2−τ1(·, ·)≤ 1. From (2.29) we know that∫
DR

|v|q |x|−τ1dx dt −→ 0, R −→ ∞, (2.33)

hence taking the limit for R → ∞ in (2.32) we get a contradiction. This concludes
the proof. �

Remark 2.5. If τ1 = τ2, p = q, and u0 ≡ v0, Theorem 2.4 recovers the result for the
single inequality proved in [5]. For the sake of completeness we state the corresponding
result.

Corollary 2.6. Let p > 1 and τ < 2. Assume that u0
−|x|−τ ∈ L1(RN), and that

lim inf
R→∞

∫
BR

u0|x|−τ dx > 0. (2.34)

If

p ≤ 1+ 2−τ
N−τ , (2.35)

then there exists no weak solution of the following problem:

ut −|x|τ�u≥ |u|p, (x, t) ∈D,
u(x,0)= u0(x), x ∈ R

N.
(2.36)
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Remark 2.7. In the special case τ1 = τ2 = 0 the system (2.1) reduces to

ut −�u≥ |v|q, (x, t) ∈D,
vt −�v ≥ |u|p, (x, t) ∈D,
u(x,0)= u0(x), x ∈ R

N,

v(x,0)= v0(x), x ∈ R
N,

(2.37)

and the nonexistence condition given by Theorem 2.4 coincides with the condition
found by Escobedo and Herrero in [2], for the system of equations with positive initial
data, that is,

max

{
p+1

pq−1
,
q+1

pq−1

}
≥ N

2
. (2.38)

Now, consider the case when τ2 = 2:

ut −|x|τ1�u≥ |v|q, (x, t) ∈D,
vt −|x|2�v ≥ |u|p, (x, t) ∈D,
u(x,0)= u0(x), x ∈ R

N,

v(x,0)= v0(x), x ∈ R
N.

(2.39)

Arguing as in the proof of Theorem 2.4 we can prove the following theorem.

Theorem 2.8. Let p,q > 1 and τ1 < 2. Assume that u0
−|x|−τ1 , v0

−|x|−2 ∈ L1(RN)

and that

lim inf
R→∞

∫
BR

u0|x|−τ1dx > 0, lim inf
R→∞

∫
BR

v0|x|−2dx > 0. (2.40)

If (
N−τ1

)
(pq−1)−(

2−τ2
)−p(

2−τ1
) ≤ 0, (2.41)

then there exists no weak solution of (2.39).

Proof. The proof is similar to the proof of Theorem 2.4. In this case we are forced to
choose γ = 2−τ1. Hence, the best condition which guarantees that (2.20a) or (2.20b)
holds is

min
{

max
{
fi

(
2−τ1

)}
,max

{
hi

(
2−τ1

)}}
< 0, (2.42)

which taking into account of the explicit values of the fi(2 − τ1) and fi(2 − τ1) is
equivalent to (

N−τ1
)
(pq−1)−p(

2−τ1
)
< 0. (2.43)

The case when (N−τ1)(pq−1)−p(2−τ1)= 0 can be dealt with as in Theorem 2.4.
�
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3. Systems of parabolic differential inequalities containing critical degeneracies

3.1. Nonexistence of global solutions. Set D∗ = R
N \ {0} × (0,∞). Consider the

following initial value problem

ut −|x|2�u≥ |v|q, (x, t) ∈D∗,
vt −|x|2�v ≥ |u|p, (x, t) ∈D∗,
u(x,0)= u0(x), x ∈ R

N \{0},
v(x,0)= v0(x), x ∈ R

N \{0},

(3.1)

where p,q > 1 and v0, u0 ∈ L1
loc(R

N \{0}).
Here, we extend to the case of systems the definition of weak solution introduced in

[5] for critical degenerate problems.

Definition 3.1. We say that (u,v) is a weak solution of (3.1) if the following assumptions
are satisfied:

(i) u, v :D∗ → R,
(ii) |v|q , |u|p ∈ L1

loc(D
∗),

and for any nonnegative φ ∈ C∞
0 (R

N \{0}×[0,+∞)) the following inequalities hold:∫
D∗

|v|q |x|−Nφ dx dt

≤ −
∫
D∗
u
(
�

(|x|2−Nφ
)+|x|−Nφt

)
dx dt−

∫
RN

u0|x|−Nφ(x,0)dx,∫
D∗

|u|p|x|−Nφ dx dt

≤ −
∫
D∗
v
(
�

(|x|2−Nφ
)+|x|−Nφt

)
dx dt−

∫
RN

v0|x|−Nφ(x,0)dx.

(3.2)

It is understood that in the proofs of the theorems of this section we choose the
cut-off function φ as follows: let ψ0,ψ1 ∈ C∞

0 (R) be such that 0 ≤ ψi(s) ≤ 1, for any
s ∈ R, i = 0,1 and

ψ0(s)=
{

1, 0 ≤ s ≤ 1,

0, s ≥ 2,
ψ1(s)=

{
1, |s| ≤ 1,

0, |s| ≥ 2.
(3.3)

Then for any R > 0, we take

φ(x, t)= ψ0

(
t

R2

)
ψ1

(
log |x|+(N−2)t

R

)
. (3.4)

For the sake of brevity, we introduce the following notations: for any u, v :D∗ → R

such that |v|q and |u|p ∈ L1
loc(D

∗) and φ ∈ C∞
0 (R

N \{0}×[0,+∞)), we set

�1 =
∫
D∗

|v|q |x|−Nφ dx dt, �2 =
∫
D∗

|u|p|x|−Nφ dx dt. (3.5)
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Proposition 3.2. Assume that v0, u0 ∈ L1
loc(R

N \{0}) and that (u,v) is a weak solution
of (3.1). Then, for any φ ∈ C∞

0 (R
N \ {0} × [0,+∞)) given by (3.4) the following

estimates hold:

�1 ≤ CR(3−2p′)/p′
�

1/p
2 −

∫
RN

u0|x|−Nφ(x,0)dx,

�2 ≤ CR(3−2q ′)/q ′
�

1/q
1 −

∫
RN

v0|x|−Nφ(x,0)dx.
(3.6)

Proof. Suppose that N > 2 and let (u,v) be a weak solution of (3.1). We proceed as in
the proof of Proposition 2.2. First we apply Hölder inequality to the right-hand sides
of (3.2) with φ given by (3.4) and obtain

�1 ≤ �
1/p
2

(∫
D∗

∣∣�(|x|2−Nφ
)+φt |x|−N

∣∣p′

φp
′−1

|x|N(p′−1)dx dt

)1/p′

−
∫

RN

u0|x|−Nφ(x,0)dx,

�2 ≤ �
1/q
1

(∫
D∗

∣∣�(|x|2−Nφ
)+φt |x|−N

∣∣q ′

φq
′−1

|x|N(q ′−1)dx dt

)1/q ′

−
∫

RN

v0|x|−Nφ(x,0)dx.

(3.7)

In order to estimate the term∫
D∗

∣∣�(|x|2−Nφ
)+φt |x|−N

∣∣p′

φp
′−1

dx dt, (3.8)

we first apply the change of variables

σ = log(|x|), |x|> 0 (3.9)

and obtain∫
D∗

∣∣�(|x|2−Nφ
)+φt |x|−N

∣∣p′

φp
′−1

dx dt ≤ C
∫ ∞

0

∫ ∞

−∞

∣∣φσσ +(2−N)φσ +φt
∣∣p′

φp
′−1

dσ dt.

(3.10)
Then, we introduce the change of variables,

t = R2τ, σ = Rξ, (3.11)

and we get

∫ ∞

0

∫ ∞

−∞

∣∣φσσ +(2−N)φσ +φt
∣∣p′

φp
′−1

dσ dt

≤ CR3−2p′
∫ ∞

0

∫ ∞

−∞
&(ξ,τ )p

′
φ(ξ,τ )1−p′

dξ dτ,

(3.12)
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where

&(ξ,τ )= ∣∣ψ0(τ )ψ
′′
1

(
ξ+(N−2)Rτ

)+ψ ′
0(τ )ψ1

(
ξ+(N−2)Rτ

)∣∣,
φ(ξ,τ )= ψ0(τ )ψ1

(
ξ+(N−2)Rτ

)
.

(3.13)

Analogously, we obtain

∫
D

∣∣�(|x|2−Nφ
)+φt |x|−N

∣∣q ′

φq
′−1

dx dt

≤ CR3−2q ′
∫ ∞

0

∫ ∞

−∞
&(ξ,τ )q

′
φ(ξ,τ )1−q ′

dξ dτ.

(3.14)

Now, we observe that since the functions ψi for i = 0,1 have compact support, then∫ ∞

0

∫ ∞

−∞
&(ξ,τ )p

′
φ(ξ,τ )1−p′

dξ dτ <∞,

∫ ∞

0

∫ ∞

−∞
&(ξ,τ )q

′
φ(ξ,τ )1−q ′

dξ dτ <∞.

(3.15)

From (3.12) and (3.14) the statement follows. �

Set

j1(R)=
∫

RN

u0|x|−Nφ(x,0)dx j2(R)=
∫

RN

v0|x|−Nφ(x,0)dx, (3.16)

where φ is given by (3.4). Notice that ji(·), (i = 1,2), depend on R through φ.

Corollary 3.3. Let (u,v) be a weak solution of (3.1). Assume that v0, u0 ∈ L1
loc(R

N \
{0}). Then, for any φ ∈ C∞

0 (R
N \ {0} × [0,+∞)) given by (3.4) the following esti-

mates hold:

�1 ≤ CR(3−2p′)/p′(
CR(3−2q ′)/(q ′p)�1/q

1 −j1(R)
)1/p−j2(R),

�2 ≤ CR(3−2q ′)/q ′(
CR(3−2p′)/(p′p)�1/p

2 −j2(R)
)1/q−j1(R).

(3.17)

Proof. The inequalities (3.17) follow from (3.6) by substitution. �

Theorem 3.4. Let p,q > 1. Assume that u0
−, v0

− ∈ L1
loc(R

N \{0}) and that

lim inf
R→∞

∫
BR

u0|x|−Ndx > 0, lim inf
R→∞

∫
BR

v0|x|−Ndx > 0. (3.18)

If one of the following conditions holds:

q(p−2)≤ 3, (3.19)

p(q−2)≤ 3, (3.20)

then there exists no weak solution of problem (3.1).
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Proof. Let (u,v) be a weak solution of (3.1). Assume that j1(R) ≥ 0 and j2(R) ≥ 0
for any R large enough. Slight modifications yield the proof in the general case. From
Corollary 3.3, it follows that

(∫
DR

|v|q |x|−Ndx dt
)1−1/(pq)

≤ CR(3−2p′)/(p′)+(3−2q ′)/(q ′p), (3.21)

(∫
DR

|u|p|x|−Ndxdt
)1−1/(pq)

≤ CR(3−2q ′)/(q ′)+(3−2p′)/(p′q), (3.22)

where DR = {(x, t) ∈D∗ : | log |x|+(N−2)t | ≤ R and t ≤ R2}. If q(p−2) < 3, then

3−2p′

p′ + 3−2q ′

q ′p
< 0. (3.23)

From (3.21) we conclude that∫
BR

|v|q |x|−Ndx dt −→ 0, as R −→ ∞, (3.24)

against our assumption that v �= 0. If q(p− 2) = 3, we proceed as in the proof of
Theorem 2.4. We argue similarly if (3.20) holds. This completes the proof. �

Remark 3.5. When p = q > 1, the condition (3.19) is equivalent to p ≤ 3. Hence,
Theorem 3.4 contains the result for the single inequality proved by Mitidieri and
Pohozaev in [5], see also Giacomoni [3] for the case of the equation with positive
initial data.

3.2. Existence of global solutions. In this section, we deal with the problem of the
existence of global solutions of system (3.1), when we assume that p,q > 1 do not
satisfy (3.19) or (3.20) and the initial data u0 and v0 are nonnegative, radially symmetric
and small. The result we are going to prove (see Theorem 3.6) shows that the curve in
the (p,q)-plane defined by

min
{
q(p−2),p(q−2)

} = 3, p,q > 1, (3.25)

is the sharp critical curve for problem (3.1), that is,

(a) if p,q > 1 and min{q(p−2), p(q−2)} ≤ 3, then there exists no weak solution
defined on D∗;

(b) if p,q > 1 and min{q(p−2), p(q−2)} > 3, then there exist global solutions
defined on R

N ×(0,∞) for sufficiently small initial data.

Part (a) has been established in Theorem 3.4. In order to prove part (b) we restrict
our attention to radial solutions of (3.1). Hence, we assume that u0(x) = u0(|x|) and
v0(x)= v0(|x|).

By introducing the change of variables s = − log(|x|) and setting ũ(s, t) =
u(s, t)exp(−(N − 2)/(2)s) and ṽ(s, t) = v(s, t)exp(−(N−2)/(2)s), it is easy to see
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that the radial solutions of system (2.39) satisfy

ũt − ũss+λNũ= e−((N−2)/2)(q−1)s ṽq , s ∈ R, t > 0,

ṽt − ṽss+λN ṽ = e−((N−2)/2)(p−1)s ũp, s ∈ R, t > 0,

ũ(s,0)= ũ0(s), ṽ(s,0)= ṽ0(s), s ∈ R,

(3.26)

where ũ0(s) = u0(s)exp(−((N−2)/2)s), ṽ0(s) = v0(s)exp(−((N−2)/2)s) and
λN =((N−2)/2)2.

Theorem 3.6. Assume that

min
{
q(p−2), p(q−2)

}
> 3. (3.27)

Then the system (3.1) has global solutions for small initial data.

Proof. During the course we adapt the idea developed in [3] for the equation to the case
of systems. In particular, in [3] it is proved that the heat kernel of the linear differential
operator −uss+λNu is given by

H(s, t)= exp
(−λNt−s2/4t

)
√

4πt
, s ∈ R, t > 0. (3.28)

Hence, the solutions of (3.26) satisfy the following integral system:

ũ(s, t)=H(s, t)∗ ũ0(s)+
∫ t

0
H(s, t−τ)∗ ṽ(s,τ )qe((N−2)/2)(q−1)s dτ,

ṽ(s, t)=H(s, t)∗ ṽ0(s)+
∫ t

0
H(s, t−τ)∗ ũ(s,τ )pe((N−2)/2)(p−1)s dτ,

(3.29)

where ∗ denotes the convolution operator in the space variable.
Now, we sketch the idea of the proof. Assume that (3.27) holds and that q ≥ p. It

follows that q > 3. Assume that there exists C > 0 such that

0 ≤ ũ0(s)≤ CH(s,γ ), s ∈ R, (3.30)

0 ≤ ṽ0(s)≤ CH(s,γ ), s ∈ R. (3.31)

Let

� = {
w(·, t) ∈ L∞(

R
N

) : ∃K > 0 such that
∣∣w(s, t)∣∣ ≤KH(s, t+γ )}. (3.32)

� is a Banach space with respect to the norm

|w|� = sup
t>0

∣∣∣∣ w(·, t)
H(·, t+γ )

∣∣∣∣∞. (3.33)

Define the operators

/1(w)(s, t)=H(s, t)∗ ṽ0(s)+
∫ t

0
H(s, t−τ)∗w(s,τ )pe((N−2)/2)(p−1)s dτ,

/2(w)(s, t)=H(s, t)∗ ũ0(s)+
∫ t

0
H(s, t−τ)∗w(s,τ )qe((N−2)/2)(q−1)s dτ,

(3.34)
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where w ∈ �. Since H(·, ·) ≥ 0 and ũ0, ṽ0 ≥ 0, it follows that both /1 and /2 leave
invariant the cone P = {w ∈ � : w ≥ 0} of positive functions.

In what follows, we will prove that /2 �/1 is a contraction on a small closed ball B
of �. By the contraction mapping principle, it will follow that there exists ū ∈ B ∩P
such that

ū=/2 �/1(ū). (3.35)

Defining v̄ =/1(ū), we obtain a solution (ū, v̄) of the integral system (3.29). Note that
if ũ0 and ṽ0 are continuous, then ū and v̄ are smooth.

First, we prove that /2 �/1(�) ⊂ �. To this aim we remark that from (3.30) it
follows that

H(s, t)∗ ũ0(s)≤ C
∫

R

H(s−x, t)H(x,γ )dx = CH(s, t+γ ), (3.36)

and similarly from (3.31),

H(s, t)∗ ṽ0(s)≤ C
∫

R

H(s−x, t)H(x,γ )dx = CH(s, t+γ ). (3.37)

The following estimate will be useful:∫ t

0
H(s, t−τ)∗H(s,τ+γ )pe((N−2)/2)(p−1)s dτ

=
∫ t

0
H(s, t−τ)∗H(s,τ+γ )

(
e−λN (τ+γ )−(s2/4(τ+γ ))+((N−2)/2)s

√
4π(τ+γ )

)p−1

dτ

≤H(s, t+γ )
∫ t

0

(
4π(τ+γ ))−(p−1)/2

dτ,

(3.38)

where we have used that sup{e−λN (τ+γ )−(s2/4(τ+γ ))+((N−2)/2)s : s ∈ R} = 1.
Now, assume that

0 ≤ w(s, t)≤ CH(s, t+γ ), s ∈ R, t > 0. (3.39)

From the definition of /1 and /2, we get that

/2
(
/1(w)

)
(s, t)

=H(s, t)∗ ũ0(s)+
∫ t

0
H(s, t−τ)∗(

/1(w)(s,τ )
)q
e((N−2)/2)(q−1)sdτ

≤ CH(s, t+γ )+2q−1
∫ t

0
H(s, t−τ)∗(

H(s,τ )∗v0(s)
)q
e((N−2)/2)(q−1)sdτ

+2q−1
∫ t

0
H(s, t−τ)∗

(∫ τ

0
H(s,τ−η)∗w(s,η)pe((N−2)/2)(p−1)sdη

)q

×e((N−2)/2)(q−1)sdτ.

(3.40)
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From (3.37) and (3.39), we have

∫ t

0
H(s, t−τ)∗(

H(s,τ )∗v0(s)
)q
e((N−2)/2)(q−1)s dτ

≤ Cq
∫ t

0
H(s, t−τ)∗H(s,τ+γ )qe((N−2)/2)(q−1)s dτ

≤ CqH(s, t+γ )
∫ t

0

(
4π(τ+γ ))−(q−1)/2

dτ.

(3.41)

Since q > 3 it follows that

∫ ∞

0

(
4π(τ+γ ))−(q−1)/2

dτ =K1 <∞. (3.42)

Using (3.42) in (3.41), we get that

∫ t

0
H(s, t−τ)∗(

H(s,τ )∗v0(s)
)q
e((N−2)/2)(q−1)s dτ ≤ CqK1H(s, t+γ ). (3.43)

On the other hand, from (3.39) and (3.38), we obtain

∫ t

0
H(s, t−τ)∗

(∫ τ

0
H(s,τ−η)∗w(s,η)pe((N−2)/2)(p−1)sdη

)q
e((N−2)/2)(q−1)s dτ

≤ Cpq
∫ t

0
H(s, t−τ)∗H(s,τ+γ )qe((N−2)/2)(q−1)s

×
(∫ τ

0

(
4π(η+γ ))−(p−1)/2

dη

)q
dτ

≤ CpqH(s, t+γ ) ·
∫ t

0

(∫ τ

0

(
4π(η+γ ))−(q−1)/2

dη

)

×
(∫ τ

0

(
4π(η+γ ))−(p−1)/2

dη

)q
dτ.

(3.44)

Since q > 3 and q(p−2) > 3, it follows that

∫ ∞

0

(∫ τ

0

(
4π(η+γ ))−(q−1)/2

dη

)(∫ τ

0

(
4π(η+γ ))−(p−1)/2

dη

)q
dτ =K2 (3.45)

is finite. Therefore, from (3.43), (3.44), and (3.45) we conclude that

/2 ◦/1(w)(s, t)≤ CH(s, t+γ )+2q−1CqK1H(s, t+γ )+2q−1CpqK2H(s, t+γ ),
(3.46)

which shows that if C > 0 is sufficiently small and BC denotes the ball of � of radius
C, then /2 ◦/1(BC ∩P)⊂ BC ∩P .



Gabriella Caristi 281

Now, we prove that /2 ◦/1 is a contraction of BC∩P for C > 0 sufficiently small.
Let w1 and w2 ∈ � satisfy (3.39). Then, for any t > 0, we deduce that∣∣/1

(
w1

)
(s,τ )−/1

(
w2

)
(s,τ )

∣∣
≤

∫ τ

0
H(s,τ−η)∗ ∣∣w1(s,η)

p−w2(s,η)
p
∣∣e((N−2)/2)(p−1)sdη

≤ pCp−1
∫ τ

0
H(s,τ−η)∗H(s,η+γ )p−1

∣∣w1(s,η)−w2(s,η)
∣∣

×e((N−2)/2)(p−1)sdη

≤ pCp−1
∥∥w1 −w2

∥∥
�
H(s,τ+γ )

∫ τ

0

(
4π(η+γ ))−(p−1)/2

dη.

(3.47)

Furthermore,∣∣/2 ◦/1
(
w1

)
(s, t)−/2 ◦/1

(
w2

)
(s, t)

∣∣
≤

∫ t

0
H(s, t−τ)∗ ∣∣/1

(
w1

)
(s,τ )q−/1

(
w2

)
(s,τ )q

∣∣e((N−2)/2)(q−1)sdτ

≤ qCp(q−1)
∫ t

0
H(s, t−τ)∗H(s,τ+γ )q−1

(∫ τ

0

(
4π(η+γ ))−(p−1)/2

dη

)q−1

×e((N−2)/2)(q−1)s
∣∣/1

(
w1

)
(s,τ )−/1

(
w2

)
(s,τ )

∣∣dτ.
(3.48)

Using (3.47) in (3.48) we obtain∣∣/2 ◦/1
(
w1

)
(s, t)−/2 ◦/1

(
w2

)
(s, t)

∣∣
≤ pqCp(q−1)+(p−1)

∥∥w1 −w2
∥∥

�

×
∫ t

0
H(s, t−τ)∗H(s,τ+γ )q

(∫ τ

0

(
4π(η+γ ))−(p−1)/2

dη

)q
×e((N−2)/2)(q−1)sdτ

≤ pqCp(q−1)+(p−1)
∥∥w1 −w2

∥∥
�
H(s, t+γ )

×
∫ t

0

(∫ τ

0

(
4π(η+γ ))−(p−1)/2

dη

)q(
4π(τ+γ ))−(q−1)/2

dτ

≤ pqCp(q−1)+(p−1)H(s, t+γ )K2
∥∥w1 −w2

∥∥
�
. (3.49)

From (3.49), we get that∥∥/2 ◦/1
(
w1

)−/2 ◦/1
(
w2

)∥∥
�

≤ pqCp(q−1)+(p−1)K2
∥∥w1 −w2

∥∥
�
. (3.50)

Hence, if C > 0 is sufficiently small, /2 ◦/1 is a contraction. This concludes the
proof. �
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4. Systems of singular parabolic equations

Consider the following initial value problem:

ut−�u≥ tk1 |x|−σ1 |v|q, (x, t) ∈D,
vt−�v ≥ tk2 |x|−σ2 |u|p, (x, t) ∈D,

u(x,0)= u0(x), x ∈ R
N,

v(x,0)= v0(x), x ∈ R
N,

(4.1)

where we assume that ki,σi ∈ R for i = 1,2, p,q > 1 and v0, u0 ∈ L1
loc(R

N).

Definition 4.1. We say that (u,v) is a weak solution of (4.1) if the following assumptions
are satisfied:

(i) u,v :D→ R,
(ii) |v|q tk1 |x|−σ1 , |u|ptk2 |x|−σ2 ∈ L1

loc(D),
(iii) u,v ∈ L1

loc(D),

and for any nonnegative φ ∈ C∞
0 (R

N ×[0,∞)) the following inequalities hold:∫
D

|v|q tk1 |x|−σ1φdx dt ≤ −
∫
D

u
(
�φ+φt

)
dx dt−

∫
RN

u0φ(x,0)dx,∫
D

|u|ptk2 |x|−σ2φdx dt ≤ −
∫
D

v
(
�φ+φt

)
dx dt−

∫
RN

v0φ(x,0)dx.

(4.2)

Theorem 4.2. Let p,q > 1. Assume that u0
−,v0

− ∈ L1
loc(R

N) and that

lim inf
R→∞

∫
BR

u0 dx > 0, lim inf
R→∞

∫
BR

v0 dx > 0. (4.3)

If k1 < q−1, k2 < p−1, σ2 +N(p−1) > 0, σ1 +N(q−1) > 0 and

min
{
N(pq−1)−2

(
q+1+k1 +k2q

)+σ1 +qσ2,

N(pq−1)−2
(
p+1+k2 +k1p

)+σ2 +pσ1
} ≤ 0,

(4.4)

then, there exists no weak solution of (4.1).

Proof. Let (u,v) be a weak solution of (4.1). The proof is similar to that of Theorem 2.4,
for this reason most of the details are omitted. Let φ = φγ with φγ given by (2.4) and
set

�1 =
∫
D

|v|q |x|−σ1 tk1φγ dx dt, �2 =
∫
D

|u|p|x|−σ2 tk2φγ dx dt. (4.5)

Further, assume that for any R > 0 sufficiently large∫
RN

u0φ(x,0)dx ≥ 0,
∫

RN

v0φ(x,0)dx ≥ 0. (4.6)
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The general case can be treated by slight modifications.
Applying Hölder inequality to (4.2) we get

�1 ≤ �
1/p
2

[(∫
D

∣∣(φγ )t ∣∣p′ |x|σ2(p
′/p)t−k2(p

′/p)φ(p
′/p)

γ dx dt

)1/p′

+
(∫

D

∣∣�φγ ∣∣p′ |x|σ2(p
′/p)t−k2(p

′/p)φp
′/p
γ dx dt

)1/p′]
,

(4.7)

�2 ≤ �
1/q
1

[(∫
D

∣∣(φγ )t ∣∣q ′ |x|σ1(q
′/q)t−k1(q

′/q)φq
′/q
γ dx dt

)1/q ′

+
(∫

D

∣∣�φγ ∣∣q ′ |x|σ1(q
′/q)t−k1(q

′/q)φq
′/q
γ dx dt

)1/q ′]
.

(4.8)

Substituting (4.8) in (4.7) and proceeding as in Proposition 2.2 and Corollary 2.3 to
estimate the integrals, we get

�
1−1/(pq)
1 ≤ C(

Rα1 +Rα2
)(
Rα3 +Rα4

)1/p
, (4.9)

where

α1 = N+γ
p′ − 2+σ2

p
− k2

p
, α2 = N+γ

p′ − γ +σ2

p
− k2

p
,

α3 = N+γ
q ′ − 2+σ1

q
− k1

q
, α4 = N+γ

q ′ − γ +σ1

q
− k1

q
.

(4.10)

It is easy to check that if γ = 2, then

α1p+α3 = α1p+α4 = α2p+α3 = α2p+α4

= N(pq−1)−2
(
q+1+k1 +k2q

)+σ1 +qσ2

q
.

(4.11)

From (4.9) we conclude that if

N(pq−1)−2
(
q+1+k1 +k2q

)+σ1 +qσ2 < 0, (4.12)

then no weak solution of (4.1) exists. Analogously, substituting (4.7) in (4.8), we prove
that no weak solution exists if

N(pq−1)−2
(
p+1+k2 +k1p

)+σ2 +pσ1 < 0. (4.13)

The case when

min
{
N(pq−1)−2

(
q+1+k1 +k2q

)+σ1 +qσ2,

N(pq−1)−2
(
p+1+k2 +k1p

)+σ2 +pσ1
} = 0

(4.14)

can be treated as in the proof of Theorem 2.4. This concludes the proof. �

Remark 4.3. The nonexistence condition given in Theorem 4.2 includes all the param-
eters ki and σi (i = 1,2) and reduces to those found in [8, 9] in the particular cases
ki = 0 and σi = 0, respectively. This solves a question posed in Deng and Levine [1].
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