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The integration with respect to a vector measure may be applied in order to approximate
a function in a Hilbert space by means of a finite orthogonal sequence {fi} attending
to two different error criterions. In particular, if � ∈ R is a Lebesgue measurable set,
f ∈ L2(�), and {Ai} is a finite family of disjoint subsets of �, we can obtain a measure
µ0 and an approximation f0 satisfying the following conditions: (1) f0 is the projection
of the function f in the subspace generated by {fi} in the Hilbert space f ∈ L2(�,µ0).
(2) The integral distance between f and f0 on the sets {Ai} is small.

1. Introduction

Let � ⊂ R be a bounded Lebesgue measurable set. We consider the Hilbert space
of functions L2(�). A finite set of orthonormal functions B = {fi}ni=1 in this space,
generates a finite-dimensional subspace of L2(�), �. Given a function f ∈ L2(�),
we can obtain an approximation of f as the projection of f onto �, that is, f can be
approximated as

f ≈ P(f ) =
n∑

i=1

αifi, (1.1)

where the coefficients αi are given by

αi = 〈
fi,f

〉
, i = 1, . . . ,n. (1.2)

Depending on the particular measure that defines the Hilbert space and the set of
functions B chosen, the approximation of f , (1.1), is better or worse with respect to
a given error criterion. However, the measure of the Hilbert space (and therefore the
particular metric) is fixed when we define the framework we are going to work with. For
example, suppose that we have an orthonormal system {fi : i = 1, . . . ,n} in L2([0,1])
and we want to approximate a function of L2([0,1]) as the projection in the subspace
span{fi : i = 1, . . . ,n}. Then we can calculate easily the set of coefficients of this
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projection, but we cannot relate this set with the set of coefficients that we get if we
change, for instance, the Lebesgue measure µ by another weighted measure gµ. Since
the error criterion usually depends on the particular metric of the Hilbert space, the
solution of the problem strongly depends on the measure that we use in the definition
of the Hilbert space.

This problem motivates the introduction of the integration with respect to a vec-
tor measure as a tool for function approximations. Up to a point, this framework
allows us to introduce the measure that defines the function space as a variable of
the problem, and then to attend to two or more error criterions in the approxima-
tion of a function in a finite-dimensional subspace. Although the theory of the spaces
of integrable functions with respect to a vector measure has been strongly devel-
oped in the last thirty years, [2, 3, 7, 9], as far as we know, it has not been ap-
plied in the context of function approximations. In this paper, we present an appli-
cation. In particular, we show how this framework could be useful to solve the fol-
lowing problem: suppose that we have a finite orthonormal sequence and we want
to approximate a function f as a linear combination of the elements of this se-
quence using the structure of a Hilbert space. Moreover, we want the integral of
our approximation f0 to be close to the integral of the function f in certain sub-
sets {Ai}ni=1, that is, we want the integral distance defined in the sets {Ai}ni=1 be-
tween f and f0 to be small. In this case, we can treat this problem in the follow-
ing way. First, for each measure µi of a certain family we may obtain the projec-
tion of f on the finite-dimensional space span{fi : i = 1, . . . ,n} of L2(�,µi), the
Hilbert space endowed with the metric defined by µi . Then, we can use µi as the
variable of the problem, in order to find the best measure µi that also minimizes the
integral distance.

In this paper, we show a procedure to obtain such an approximation in the mentioned
theoretical context. Of course, all the elements that we have used in the above argument
(the different errors we work with, the family of measures µi , and the integral distance)
must be defined in a precise and natural way. This will be done in Sections 2 and 3.
Section 4 is devoted to the proof of the main theorem of the geometric procedure that
we propose, and Section 5 provides several examples of applications of our formalism.
Finally, we give in Section 6 some conclusions.

As the reader will see, the framework of the integration with respect to a vector
measure is not necessary to obtain some of our results, since we only develop the
theory in the finite-dimensional case (the image of the vector measure is defined in a
finite-dimensional space) and for a special kind of vector measures. Anyway, there are
two reasons to use it.

(1) The theory that we get in this way lets us define several metrics in the function
space in a natural way, and leads to an easy formalism.

(2) It would be possible to extend our results to every vector measure with image in
a Hilbert space, following the results that are known for spaces of integrable functions
with respect to vector measures (see [2, 3, 7]).

However, although the results in this paper may be generalized in several directions,
we prefer to sacrifice the generality to give our definitions and procedures in a concrete
form in order to show that it is possible to obtain some tools to perform calculations.
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Therefore, we will only use the following particular kind of vector measures. Let (�,�)

be the σ -algebra of the Lebesgue measurable sets of R and let µ be the Lebesgue
measure. Let (Ai)

n
i=1 be a family of pairwise disjoint Lebesgue measurable subsets of

R with (non null) finite measure. We define the vector measure

λ : � −→ R
n (1.3)

as λ(A) =∑n
i=1µ(Ai ∩A)ei , where A ∈ � and ei , i = 1, . . . ,n are the vectors of the

canonical basis of R
n.

Let � =⋃
Ai . Following the theory of integration with respect to a vector measure

(see [7] and [4, Chapter 1]), we define the integral of a function f ∈ L2(�) with respect
to λ as the operator ∫

�

f dλ =
n∑

i=1

(∫
Ai

f dµ

)
ei . (1.4)

If ‖ · ‖ is a norm in R
n, we may obtain a norm related to this integral in order to

construct a Banach space of (real) integrable functions. For instance, if we consider
the l1 norm in R

n, then the expression ‖∫
�
f 2dλ‖1/2

1 gives the norm in L2(�). More-
over, if v = (v1, . . . ,vn) is a vector and 〈·, ·〉 is the canonical inner product in R

n, the
expression 〈

v,

∫
�

f 2 dλ

〉1/2

(1.5)

is a norm if and only if 〈v,ei〉 > 0 for each i = 1, . . . ,n which is equivalent to the
natural norm of L2(�) (see [1]). Throughout this paper, we consider the class of all
these norms for different vectors v ∈ R

n satisfying 〈v,ei〉 > 0, i = 1, . . . ,n.
We use standard linear algebra and function spaces notation. The reader can find all

the results that are needed about Banach spaces, lattices, and function spaces in [6, 8]
or [10]. In particular, if n is a natural number, then we write ‖ · ‖ln2 (ν) to denote the
2-norm with measure ν in the space R

n, that is,

∥∥(vi)∥∥ln2 (ν) =
(

n∑
i=1

νiv
2
i

)1/2

, (1.6)

where ν = (ν1, . . . ,νn).

2. Vector measure orthogonality: definitions and basic results

Definition 2.1. Let f,g ∈ L2(�). We say that they are orthogonal with respect to the
vector measure λ (λ-orthogonal for short) if∫

�

fgdλ = 0. (2.1)

This condition is obviously equivalent to the fact that for each vector v ∈ R
n,

〈v,∫
�
fgdλ〉 = 0. It means that the functions f and g are orthogonal when restricted

to each Ai in the definition of the vector measure λ.
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In the following, we will define our functional structure, which is related to special
λ-orthogonal basis, and we will study some of its properties.

Definition 2.2. Let B = {fi}ni=1 ⊂ L2(�) a set of non-(almost everywhere null) λ-
orthogonal functions. We say that it is a λ-basis if the set Bλ = {∫

�
f 2
i dλ}ni=1 is a basis

of the linear space R
n.

For each basis V of a space R
n, we can define an inner product 〈·, ·〉V such that V is

an orthonormal basis. If C is the canonical basis of R
n, the Gram matrix that represents

this product when we work with the canonical coordinates of the vectors is

(C)TV (C)V , (2.2)

where (C)V is the matrix of change of coordinates from the basis C to the basis V .

Definition 2.3. We say that a couple

� = (
B,λ : � −→ R

n
)

(2.3)

is a λ-approximation structure, where B is a λ-basis of functions, and we have consid-
ered in R

n the scalar product 〈·, ·〉Bλ .

Proposition 2.4. Let � = (B,λ) be a λ-approximation structure. Then, if (v1, . . . ,vn)

∈ R
n are the coordinates of a vector v in the basis Bλ and f =∑n

i=1αifi , then〈
v,

∫
�

f 2 dλ

〉
Bλ

=
n∑

i=1

viα
2
i . (2.4)

Therefore, if g =∑n
i=1βifi and βi �= 0 for each i = 1, . . . ,n, then〈∫
�

g2 dλ,

∫
�

f 2 dλ

〉
Bλ

=
n∑

i=1

α2
i β

2
i = ∥∥(αi

)∥∥2
ln2 (β

2)
, (2.5)

where β2 = (β2
1 , . . . ,β

2
n). In particular, if f0 =∑n

i=1fi , then〈∫
�

f 2
0 dλ,

∫
�

f 2 dλ

〉
Bλ

=
n∑

i=1

α2
i = ‖f ‖2

L2(�) (2.6)

for each f ∈ span{B}.

Proposition 2.5. Let f,g,h,k ∈ span{B}. Then〈∫
�

fgdλ,

∫
�

hkdλ

〉
Bλ

=
〈∫

�

f hdλ,

∫
�

gkdλ

〉
Bλ

. (2.7)

Therefore, if g =∑n
i=1βifi and f =∑n

i=1αifi are elements of span{B} and βi �= 0
for each i = 1, . . . ,n, then ∥∥∥∥

∫
�

fgdλ

∥∥∥∥= ∥∥(αi

)∥∥
ln2 (β

2)
. (2.8)
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We want to remark that once we have fixed v ∈ R
n such that 〈v,ei〉 > 0, i = 1, . . . ,n,

we can obtain a projection of a function g ∈ L2(�) onto the subspace span{B} as

Pv(g) =
∑
i

αi(v)fi, (2.9)

where

αi(v) =
〈
v,
∫
�
fig dλ

〉
Bλ〈

v,
∫
�
f 2
i dλ

〉
Bλ

. (2.10)

This projection, Pv(g), gives an approximation of g over � in the Hilbert space sense.

Definition 2.6. We denote by f0 the function
∑n

i=1fi . Let g ∈ L2(�). The function
�a(g) ∈ span{fi : i = 1, . . . ,n} that satisfies the equation∫

�

gdλ =
∫
�

�a(g)f0 dλ, (2.11)

is called the approximation in area to the function g in the λ-approximation structure.

It is obvious that the family of constants βi , i = 1, . . . ,n, defining �a(g) = ∑n
i=1

βifi is unique, since {∫
�
f 2
i dλ}ni=1 is a basis. Moreover,

βi =
〈∫

�

gdλ,

∫
�

f 2
i dλ

〉
Bλ

. (2.12)

We use the notation βi(g) for these coefficients if it were necessary to specify the
function g.

If � is a λ-approximation structure and g is an element of L2(�), we define the
elements of the matrix Bg = (bij ) as

bij =
〈∫

�

fig dλ,

∫
�

f 2
j dλ

〉
Bλ

. (2.13)

Then, if we consider a function f =∑n
i=1 γifi , we have

∫
�

�a(fg)f0 dλ =
∫
�

(
n∑

i=1

γifi

)
gdλ =

n∑
i=1

γi

(
n∑

j=1

bij

∫
�

f 2
j d λ

)

=
∫
�

(
γ1, . . . ,γn

)
Bg

(
f 2

1 , . . . ,f
2
n

)T
dλ,

(2.14)

where we have used matrix notation also for the vector of the functions f 2
j . Hence, the

approximation in area of the function fg is given by

�a(fg) = (
γ1, . . . ,γn

)
Bg

(
f1, . . . ,fn

)T
. (2.15)

Now, we consider a vector v =∑n
j=1ωj

∫
�
f 2
j dλ such that 〈v,ei〉Bλ > 0 for all the

vectors ei , i = 1, . . . ,n, of the canonical basis of R
n. Such a vector v exists, since B is
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a basis, and defines a (positive) measure in �. Then, the coefficients of the projection
Pv(g) of the function g in the subspace span{B} are

αj (v) =
〈
v,
∫
�
fjg dλ

〉
Bλ〈

v,
∫
�
f 2
j dλ

〉
Bλ

= αj (v) =
∑n

i=1ωi

〈 ∫
�
f 2
i dλ,

∫
�
fjg dλ

〉
Bλ

ωj

. (2.16)

Thus, the projection of g can be written as

Pv(g) = (
ω1, . . . ,ωn

)
BT
g

(
f1

ω1
, . . . ,

fn

ωn

)T

. (2.17)

Therefore, the same matrix Bg can be used in order to obtain both the approximation
�a(fg) for each function f ∈ span{B} and all the projections of g in the sense of the
Hilbert spaces with different measures induced by the vectors v, Pv(g).

Now, we try to obtain an approximation of a given function g in the sense of the
Hilbert space, Pv(g), which is a good approximation of g in an “area sense.” To
find the vector v determining this approximation, we impose new conditions to the
λ-approximation structures.

3. Error bounds for function approximations

From now on, to construct the λ-approximation structures we consider special sets of
functions B = {fi} that satisfy the following conditions:

(1) {∫
�
f 2
i dλ : i = 1, . . . ,n} is a basis of R

n, as in Definition 2.3.
(2) For each fi ∈ B,

∫
Aj

fi dµ = ∫
Aj

f 2
i dµ, j = 1, . . . ,n.

Condition (2) is then obviously equivalent to the fact that for each function f ∈
span{fi},

∫
�
f0f dλ = ∫

�
f dλ. Therefore, f0 works as an identity in the subspace

generated by B if we consider the integration with respect to λ. This property will be
very important to select a good definition of an error between the approximations Pv(g)

and �a(g). In fact, we impose property (2) on the λ-approximation structures in order
to get a reasonable and unified definition for this error. The optimization of this error
will be, of course, the answer of the problem that we proposed at the end of the last
section. Note that, we have at least two reasonable definitions for an error criterion.

On one hand, we have the error from the Hilbert space point of view,

ε(g)w =
〈
w,

∫
�

(
Pv(g)−�a(g)

)2
dλ

〉1/2

Bλ

(3.1)

for a vector w satisfying the conditions 〈w,ei〉 > 0, i = 1, . . . ,n.
On the other hand, we can give the error in an area sense, that may be defined as

εA(g)v :=
∥∥∥∥
∫
�

(
Pv(g)−�a(g)

)
dλ

∥∥∥∥
Bλ

. (3.2)

The following proposition shows that these two errors are really the same one, when
we consider the vector w induced by the function f0.
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Proposition 3.1. Let g ∈ L2(�). For a given vector v, the approximation in the Hilbert
space sense

Pv(g) =
n∑

i=1

αi(v)fi (3.3)

satisfies

∥∥∥∥
∫
�

Pv(g)dλ−
∫
�

gdλ

∥∥∥∥
Bλ

=
〈∫

�

f0 dλ,

∫
�

(
Pv(g)−�a(g)

)2
dλ

〉1/2

Bλ

=
(

n∑
i=1

(
αi(v)−βi(g)

)2)1/2

,

(3.4)

where
∑n

i=1βifi = �a(g).

Proof. Since both functions �a(g) and Pv(g) are in span{B}, we can write the differ-
ence between them as follows:

Pv(g)−�a(g) =
n∑

i=1

(
αi(v)−βi(g)

)
fi. (3.5)

The definition of the λ-approximation structures gives∫
�

f0
(
Pv(g)−�a(g)

)
dλ =

∫
�

(
Pv(g)−�a(g)

)
dλ. (3.6)

Straightforward calculations using Propositions 2.4 and 2.5 give the result. �

In the following, we will show a procedure to estimate the error defined in Proposition
3.1. The main idea is to find a bound for expression (3.4) with two different parts which
can be associated with different geometric aspects of our function space.

We have that∥∥∥∥
∫
�

n∑
i=1

αi(v)fi dλ−
∫
�

gdλ

∥∥∥∥
Bλ

≤
∥∥∥∥
∫
�

n∑
i=1

(
αi(v)fi −gf0

)
dλ

∥∥∥∥
Bλ

+
∥∥∥∥
∫
�

g
(
I −f0

)
dλ

∥∥∥∥
Bλ

,

(3.7)

where we have denoted by I the identity function χ�. We intend to find a vector v that
minimizes the error (

n∑
i=1

(
αi(v)−βi(g)

)2)1/2

, (3.8)

and this will be done by analyzing the two terms on the right-hand side of (3.7).
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Definition 3.2. We define the symmetry error associated to a function g and a vector v
in a λ-approximation structure as

εs(g,v) =
∥∥∥∥∥
∫
�

(
n∑

i=1

αi(v)fi −gf0

)
dλ

∥∥∥∥∥
Bλ

, (3.9)

and the orthogonality error associated to the function g as

εo(g) :=
∥∥∥∥
∫
�

g
(
I −f0

)
dλ

∥∥∥∥
Bλ

. (3.10)

Note that the symmetry error depends on the vector v, but this is not the case for the
orthogonality error, that only depends on the orthogonality properties of the function g

with respect to the λ-approximation structure. We write simply εs(g) for the symmetry
error if the dependence of the vector v is clear.

3.1. The symmetry error. As we have shown in Section 2, the coefficients of the
projection of a function g in the Hilbert space defined by the vector v are given by

αi(v) =
〈
v,
∫
�
fig dλ

〉
Bλ

vi
, (3.11)

where the components of v in the basis Bλ are given by

vi =
〈
v,

∫
�

fi dλ

〉
Bλ

. (3.12)

Although this is only defined in the classical situation for vectors v that define a
positive measure in the related Hilbert space (that is, 〈v,ei〉 > 0, i = 1, . . . ,n), we can
extend this definition for the general case of any vector v ∈ R

n using the same formula.
Of course, we need to give a definition of αi(v) when vi = 0. We can write

�a
(
f0g

)=
∑
i

βi

(
f0g

)
fi. (3.13)

The definition of the coefficients βi(f0g) (see Definition 2.6) motivates that in the case
that vi = 0, we define αi(v) = βi(f0g).

We see that it is possible to find for each function g a (nontrivial) vector v =
(v1, . . . ,vn) such that the expression

n∑
i=1

v2
i

(
αi(v)−βi

(
f0g

))2 (3.14)

is equal to 0. This result means that it is possible to find a (non necessarily positive)
measure induced by the vector v, such that αi(v) = βi(f0g) for every i = 1, . . . ,n.

For the sake of clarity, we introduce the following notation.
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Definition 3.3. If f,g,h,k ∈ Ł2(�), we define the commutator [f,g | h,k] as

[f,g | h,k] :=
〈∫

�

fgdλ,

∫
�

hkdλ

〉
Bλ

−
〈∫

�

hgdλ,

∫
�

f kdλ

〉
Bλ

. (3.15)

Note that the commutator is linear for each component. In particular, this means
that, as a consequence of the definition of the coefficients αi(v) and βi(f0g) related to
a function g and a vector v of components vi in the basis Bλ, we have that

[
f0,

n∑
j

vjfj | fi,g
]

=
〈∫

�

f0

(∑
j

vjfj

)
dλ,

∫
�

fig dλ

〉
Bλ

−
〈∫

�

fi

(∑
j

vjfj

)
dλ,

∫
�

f0gdλ

〉
Bλ

=
∑
j

vj

〈∫
�

f 2
j dλ,

∫
�

fig dλ

〉
Bλ

−vi

〈∫
�

f 2
i dλ,

∫
�

f0gdλ

〉
Bλ

= vi
(
αi(v)−βi

(
f0g

))
,

(3.16)

for each i = 1, . . . ,n. Considering the error vector (v1(α1(v)−β1), . . . ,vn(αn(v)−βn)),
if we define the commutator matrix as Acom = (aij ) as

aij = [
f0,fi | fj ,g

]
, (3.17)

we have (
v1
(
α1(v)−β1

)
, . . . ,vn

(
αn(v)−βn

))= (
v1, . . . ,vn

)
Acom. (3.18)

But the matrix Acom is always singular, since∑
j

aij =
∑
j

[
f0,fi | fj ,g

]= [
f0,fi | f0,g

]= 0, (3.19)

for every i = 1, . . . ,n.
This means that we can always find a nontrivial vector v that makes the symmetry

error equal to zero.
Note that, if we can assure that the vector v has positive coordinates (in the canonical

basis), we get a positive measure and then a solution from a Hilbert space point of view.
This condition can be written using convex analysis arguments, since we just need to
assure that the vector 0 is in the convex closure of the file vectors of the transformation
of the matrix Acom for the canonical basis. For example, we can use the geometric form
of the Hahn-Banach theorem to get easy characterizations of this result (see [1, 5]), and
would be also applied in the general context of a vector measure defined on a Banach
space.

We can easily obtain other consequences of the former argument. For example, if
we get a symmetric matrix Acom for a particular problem, we can assure that we have
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a complete solution, since the vector v = (1/n, . . . ,1/n) defining a positive measure
is in the kernel of Acom. This is the reason which motivates the use of the expression
symmetry error.

3.2. The orthogonality error. As we have said in the definition of the orthogonality
error associated to the function g, this error does not depend on the vector v. This means
that this error is only related to the adequation of the chosen basis to approximate the
function g. As we can see, the error expression

εo(g) =
∥∥∥∥
∫
�

g
(
I −f0

)
dλ

∥∥∥∥
Bλ

(3.20)

is small when the function g is almost (vector) orthogonal to the function (I −f0). The
assumed properties for the basis functions of the λ-approximation structure assures that
the function f0 is a projection of the identity function onto the subspace generated by
the same basis. In fact, for each i,j = 1, . . . ,n, we have

∫
Ai

fj
(
I −f0

)
dµ =

∫
Ai

(
fj −f 2

j

)
dµ = 0, (3.21)

and then the function (I −f0) is (vector) orthogonal to each function of span{fi : i =
1, . . . ,n}. Therefore, a λ-approximation structure is good to approximate a function
g, when g is almost in the subspace span{fi : i = 1, . . . ,n}, and, in this case, the
orthogonality error is small. It is also interesting (but only from the orthogonality error
point of view) when the projection of g in the complement of the subspace generated
by the basis functions is (vector) orthogonal to (I −f0).

Anyway, we can obtain a general bound for the orthogonality error as a direct appli-
cation of the theory of the Bochner integration [8]. Using the representation theorem
for vector measures of the Radon-Nikodym theory, we know that of course the measure
λ is representable (see [4, Sections 1, 2, and 3]). This means that there is a Bochner
integrable function h such that for each measurable set A ⊂ �,

λ(A) =
∫
A

hdµ. (3.22)

In our case, the function is h =∑n
i=1 eiχAi

, where χAi
is the characteristic function

of the set Ai . This means that we can write for each function g ∈ L2(�),

∫
�

gdλ =
∫
�

ghdµ. (3.23)

Now, we can apply the properties of the Bochner integral to the expression

εo(g) =
∥∥∥∥
∫
�

hg
(
I −f0

)
dµ

∥∥∥∥
Bλ

. (3.24)
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An application of a well-known inequality for the Bochner integral (see [4, Theo-
rem 4, Section II.2]) and the Hölder inequality lead us to

εo(g) ≤
∫
�

∥∥hg(I −f0
)∥∥

Bλ
dµ

≤
(∫

�

∥∥h(I −f0
)∥∥2

Bλ
dµ

)1/2(∫
�

|g|2dµ
)1/2

= C‖g‖L2(�).

(3.25)

As we can see, we get a bound for εo(g) that depends on the norm ‖g‖L2(�) and a
constant C that depends on the function h(I −f0). A direct calculation shows that

C =
(∫

�

∥∥h(I −f0
)∥∥2

Bλ
dµ

)1/2

=
(

n∑
i=1

∥∥ei∥∥2
Bλ

∫
Ai

(
I −f0

)2
dµ

)1/2

. (3.26)

4. Error-invariant perturbations on the original function g

In this section, we find a subspace S of L2(�) that satisfies that, if g is the original
function and g1 ∈ S, then εs(g + g1) = εs(g) and εo(g + g1) = εo(g). We need one
more definition. Suppose as in Section 3 that we work in the context of a particular
λ-approximation structure. We use the same notation.

Definition 4.1. Let V be a subspace of L2(�). Then we define the following subset
of L2(�),

V λ =
{
f ∈ L2(�) :

∫
�

fgdλ = 0,∀g ∈ V

}
. (4.1)

It is easy to see that V λ is a (closed) subspace of L2(�).
The following result give the right range of application of our geometric arguments.

As a corollary, we characterize which are the perturbations g1 on the original function
g such that the measure that minimizes the symmetry and orthogonal errors for g also
minimizes these errors for g+g1.

Theorem 4.2. Let S = span{f1, . . . ,fn}+span{I,f1, . . . ,fn}λ. Then

(1) The sum of subspaces in the definition of S is a direct sum.
(2) For each g1 ∈ S, εo(g1) = 0, and εs(g1) = 0.

Proof. First we show (1). If f ∈ span{f1, . . . ,fn}∩ span{I,f1, . . . ,fn}λ, we can write
it as f =∑n

i=1αifi . Moreover, for each i = 1, . . . ,n we have∫
�0

ffi dλ = αi

∫
�0

f 2
i dλ = 0. (4.2)

Thus, since
∫
�0

f 2
i dλ is not the null vector, we get f = 0.
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To prove (2), let g1 ∈ S. Then g1 = ga +gb, where ga ∈ span{f1, . . . ,fn} and gb ∈
span{I,f1, . . . ,fn}λ. We just need to show that εs(ga) = εs(gb) = εo(ga) = εo(gb) = 0.
We write ga =∑n

i=1αifi . Obviously, for each vector v, Pv(ga) = ga , and

∫
�0

(
Pv

(
ga
)−gaf0

)
dλ =

∫
�0

(
n∑

i=1

αifi −
n∑

i=1

αif
2
i

)
dλ = 0, (4.3)

and then εs(ga) = 0. Moreover, εo(ga) = 0, since∫
�0

ga
(
I −f0

)
dλ =

n∑
i=1

αi

∫
�0

(
fi −f 2

i

)
dλ = 0. (4.4)

For gb, we get for each vector v that Pv(gb) = 0, since 〈v,∫
�0

gbfi dλ〉 = 0 for all
i = 1, . . . ,n. Moreover,

∫
�0

gbf0dλ = 0. Then∫
�0

(
Pv

(
gb
)−gbf0

)
dλ = 0 (4.5)

and εs(gb) = 0. Since (I −f0) ∈ span{I,f1, . . . ,fn}, it is obvious that εo(gb) = 0. �

Corollary 4.3. If g ∈ L2(�) and g1 ∈ S, then εs(g+g1) = εs(g) and εo(g+g1) =
εo(g).

5. Some examples

In this section, we apply the decomposition of the error bound (3.7) to show some
possibilities of our λ-approximation structures. We want to find the best vector v that
makes zero the symmetry error for a function g, εs(g), that gives also a small value of
the orthogonality error, εo(g). In the following examples we will see the adequation of
a λ-approximation structure to find a good approximation for three different functions.
In Example 5.1, we see that the basis is good enough, but if we want to improve the
result by selecting a special vector v, the right solution gives a nonpositive measure.
In Example 5.2, we show that the best vector v is the one that defines the canonical
Lebesgue measure in the set �. However, we see in Example 5.3 that, if we introduce
a little perturbation in the original function, the symmetric result that we got for the
function in Example 5.2 does not preserve the area under the function in the special
sets of the definition in the vector measure.

We select � as the interval [0,6]. The λ-approximation structure is constructed with
six functions f1, . . . ,f6 and six intervals [i−1, i], i = 1, . . . ,6.

The vector measure λ is defined as

λ(A) =
6∑

i=1

eiµ
(
A∩[i−1, i]), (5.1)

where µ(A) = ∫
A
dx, and A ∈ �. We construct each one of the six functions as a

polynomial of degree 2 defined in one of the interval and a polynomial of degree 4
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defined in the consecutive interval. Following the definition of our λ-structures, all
these functions fi must satisfy ∫

�

f 2
i dλ =

∫
�

fi dλ, (5.2)

and of course they must be (vector) orthogonal,∫
�

fifj dλ = 0 ∀i �= j. (5.3)

We have chosen the following functions f1, . . . ,f6 satisfying the above conditions.

f1(x) = 5x(1−x)χ[0,1] +3(2−x)(x−1)
(
14x2 −42x+31

)
χ[1,2],

f2(x) = 3x(1−x)
(
14x2 −14x+3

)
χ[0,1] +5(2−x)(x−1)χ[1,2],

f3(x) = 5(3−x)(x−2)χ[2,3] +3(4−x)(x−3)
(
14x2 −98x+171

)
χ[3,4],

f4(x) = 3(3−x)(x−2)
(
14x2 −70x+87

)
χ[2,3] +5(4−x)(x−3)χ[3,4],

f5(x) = 5(5−x)(x−4)χ[4,5] +3(6−x)(x−5)
(
14x2 −154x+423

)
χ[5,6],

f6(x) = 3(5−x)(x−4)
(
14x2 −126x+283

)
χ[4,5] +5(6−x)(x−5)χ[5,6].

(5.4)

Plots of functions f1 and f2 are given in Figures 5.1 and 5.2. The functions f3 and
f5 are translations of f1 to the intervals [2,4] and [4,6], respectively. The functions f4

and f6 are defined as translations of f2 to the intervals [2,4] and [4,6].

0 1 2 3 4 5 6

f1(x) ——

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.1. Plot of function f1 of the λ-approximation structure.
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0 1 2 3 4 5 6

f2(x) ——

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.2. Plot of function f2 of the λ-approximation structure.

Now, we need to calculate the matrix of the product 〈·, ·〉Bλ with respect to the
canonical basis. The (canonical) coordinates of the vectors

∫
[0,6]f

2
i dλ are

∫
[0,6]

f 2
1 dλ =

∫
[0,6]

f1 dλ =
(

5

6
,

1

10
,0,0,0,0

)
,

∫
[0,6]

f2 dλ =
(

1

10
,

5

6
,0,0,0,0

)
,

∫
[0,6]

f3 dλ =
(

0,0,
5

6
,

1

10
,0,0

)
,

∫
[0,6]

f4 dλ =
(

0,0,
1

10
,

5

6
,0,0

)
,

∫
[0,6]

f5 dλ =
(

0,0,0,0,
5

6
,

1

10

)
,

∫
[0,6]

f6 dλ =
(

0,0,0,0,
1

10
,

5

6

)
.

(5.5)
Therefore, (B)C is the 6×6 block diagonal matrix

BC =

D1

D2

D3


 (5.6)

with three 2×2 blocks of the form

Di =




5

6

1

10

1

10

5

6


 . (5.7)

The Gram matrix of the scalar product is (((B)−1
C )T )(B)−1

C , which has the same struc-
ture as (B)C .

Example 5.1. In this example, we study the approximation to the function g(x) =
sin3(πx) in the interval [0,6] with the former λ-approximation structure. As we can
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see in Figure 5.3, this is a good structure to approximate the function g(x). The direct
calculation of the orthogonality error gives

εo(g) =
∥∥∥∥
∫

[0,6]
g
(
I −f0

)
dλ

∥∥∥∥
Bλ

= 0.0238. (5.8)

This is a small value that can be accepted for this error. For the calculation of
the symmetry error, we need the (canonical) coordinates of the vector integral of the
functions fig, i = 0, . . . ,6 (f0 is defined as

∑n
i=1fi , as in the former sections).

0 1 2 3 4 5 6

Exact ——
Approximate

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.3. Plot of the function g(x) and the approximation Pv(g)(x).

These values are∫
[0,6]

f0gdλ = (0.4173,−0.4173,0.4173,−0.4173,0.4173,−0.4173),∫
[0,6]

f1gdλ = (0.4778,0.0605,0,0,0,0),∫
[0,6]

f2gdλ = (−0.0605,−0.4778,0,0,0,0),∫
[0,6]

f3gdλ = (0,0,0.4778,0.0605,0,0),∫
[0,6]

f4gdλ = (0,0,−0.0605,−0.4778,0,0),∫
[0,6]

f5gdλ = (0,0,0,0,0.4778,0.0605),∫
[0,6]

f6gdλ = (0,0,0,0,−0.0605,−0.4778).

(5.9)
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Now, we compute the whole set of commutators that define the coefficients of the
commutator matrix Acom. We get the 6×6 block diagonal matrix

Acom =

A1

A2

A3


 (5.10)

with the following 2×2 blocks

Ai =
(

0.0039 −0.0039
0.0039 −0.0039

)
. (5.11)

An element of the kernel of this commutator matrix is (1,−1,1,−1,1,−1). This
vector does not define a positive measure and it cannot be associated to an approximation
from the Hilbert space point of view. Nevertheless, we can calculate the coefficients
αi(v) with this vector, and we get a good approximation Pv(g)(x) to the function

Pv(g)(x) = 0.569
(
f1(x)+f3(x)+f5(x)

)−0.569
(
f2(x)+f4(x)+f6(x)

)
. (5.12)

Of course, in this case the symmetry error is 0. The fact that the matrix Acom

has small coefficients means that εs will be (nonzero but) small even in the case that
we get another vector for the calculus of the coefficients (e.g., the canonical measure
(1,1,1,1,1,1)).

The conclusion of this example is therefore that we can get a good result for this
function g with our λ-approximation structure easily. If we take the exact solution
v = (1,−1,1,−1,1,−1), a bound for the error is∥∥∥∥∥

∫
[0,6]

6∑
i=1

αi(v)fi dλ−
∫

[0,6]
gdλ

∥∥∥∥∥
Bλ

≤ 0.0238+0. (5.13)

The values of the integrals
∫
[i−1,i] g(x)dµ and

∫
[i−1,i]Pv(g)(x)dµ will be almost the

same for each i = 1, . . . ,6.

Example 5.2. In this example, we use the same λ-approximation structure to obtain an
approximation for the function

g(x) =√|sin(2πx)|χ[0,2] −
√|sin(2πx)|χ[2,4] +

√|sin(2πx)|χ[4,6]. (5.14)

After the calculation of all the integrals
∫
[0,6]fig dλ, i = 0, . . . ,6, we get the 6×6

block diagonal matrix

Acom =

A1 0 0

0 A2 0
0 0 A3


 (5.15)

with the following 2×2 blocks

A1 =
(−0.02885 0.02885

0.02885 −0.02885

)
, A2 = −A1, A3 = A1. (5.16)
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An exact solution to this problem is given by the vector v = (1,1,1,1,1,1), that
defines the canonical measure. The calculation of the coefficients αi(v) gives the ap-
proximation

Pv(g)(x) = 0.8140
(
f1(x)+f2(x)−f3(x)−f4(x)+f5(x)+f6(x)

)
. (5.17)

The symmetry error is then 0. The orthogonality error takes the value εo(g) = 0.0077.
Therefore, the canonical solution gives in this case a good approximation in area, which
means that the integrals of g and Pv(g)(x) are very similar in each subinterval [i−1, i],
i = 1, . . . ,6. As we can see in Figure 5.4, it does not mean that we have what we usually
call “a good approximation.” The functions g and Pv(g)(x) are in fact rather different.

0 1 2 3 4 5 6

Exact ——
Approximate

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5.4. Plot of the function g(x) and the approximation Pv(g)(x) for Ex-
ample 5.2.

Example 5.3. We are going to introduce a perturbation in the function g(x) of the
former example. Suppose that g(x) is a signal that is affected by a new term of the
form

r(x) = 5

3
(x−1)xχ[0,1]. (5.18)

Thus, we want to find the best measure for the function k(x) = g(x)+ r(x). The
orthogonality error is the same in this case as in the former one, εo(k) = 0.0077, since
r(x) is λ-orthogonal to the function (I −f0). However, the symmetry error is not the
same. The matrix Acom is again a block diagonal matrix with the same structure as
(5.15) with the blocks

A1 =
(−0.02885 0.02885

0.06943 −0.06943

)
, A2 =

(
0.02885 −0.02885

−0.02885 0.02885

)
, A3 = −A2.

(5.19)
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A vector of the kernel of Acom is (1,0.41558,1,1,1,1). The vector that we got in
the former example is not good in this case. If we obtain the coordinates of this vector
in the canonical basis and we normalize it to get a measure in the interval [0,6], we
obtain the solution

v1 = (1.0385,0.5298,1.1079,1.1079,1.1079,1.1079). (5.20)

Using this measure to calculate the coefficients αi(v1), we obtain the approximation

Pv1(k)(x) = 0.4759f1(x)+0.8547f2(x)−0.8141
(
f3(x)+f4(x)

)
+0.8141

(
f5(x)+f6(x)

)
.

(5.21)

The solution that we get for the canonical measure v2 = (1,1,1,1,1,1) is

Pv2(k)(x) = 0.5165f1(x)+0.8141
(
f2(x)−f3(x)−f4(x)+f5(x)+f6(x)

)
. (5.22)

In Figure 5.5, we show the plots of the functions k(x), Pv1(k)(x), and Pv2(k)(x)

in the subinterval [0,2]. We can see that the approximation is not very good in any
case, and the difference between Pv1(k) and Pv2(k) does not seem to be very im-
portant. Anyway, Pv1(k) is a good approximation in area (the integral distance is
small in each subinterval [i, i − 1], i = 1, . . . ,6) to the function k and Pv2(k) is not.
To show this, we compute in the following the values of the integral of the dif-
ferences between the function k and the approximations Pv1(k) and Pv2(k) in the
subintervals [0,1] and [1,2]. We also calculate the relative error in each case (the
integral of the difference divided by the value of the integral of k(x) in each
subinterval).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

k(x) ——
Pv1(k)
Pv2(k)
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0.8
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Figure 5.5. Plot of the functions k(x), Pv1(k)(x), and Pv2 (k)(x) for Example 5.3.
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We obtain the following results:∫
[0,1]

(
Pv1(k)(x)−k(x)

)
dµ = −0.0029 Error = 0.6%,∫

[0,1]
(
Pv2(k)(x)−k(x)

)
dµ = −0.0268 Error = 5.5%,∫

[1,2]
(
Pv1(k)(x)−k(x)

)
dµ = −0.0029 Error = 0.4%,∫

[1,2]
(
Pv2(k)(x)−k(x)

)
dµ = −0.0327 Error = 4.3%.

(5.23)

The conclusion of Example 5.3 is that, we must use the measure obtained with our
procedure (the vector v1) if we have a signal as g that is affected by a perturbation
as r(x) and we are interested in the control of the area in the subintervals [i − 1, i],
i = 1, . . . ,6. The approximation Pv1(k) is not better than Pv2(k) if we look at the global
behavior of the function, but Pv1(k) is a better approximation to the function g than
Pv2(k) from an integral distance point of view.

Moreover, the main result of this paper, Theorem 4.2, states that we can use the same
measure—the one defined by the vector v1—if we want to study any other function as
h(x) = k(x)+g1(x), where g1(x) ∈ S = span{f1, . . . ,f6}+ span{I,f1, . . . ,f6}λ, and
we get the same value for both εo and εs for k(x). This means that we can use the same
structure for the related Hilbert space defined by the vector v1 for the approximation of
functions as h(x). We get good results (as good as in the case of k(x)) from the integral
distance point of view.

6. Conclusions

We have developed a procedure to obtain different approximations to a function g in
a basis. This basis belongs to a structure that we have defined and we denote by λ-
approximation structure. We have shown how we can use the properties of the family
of norms that are defined in a λ-approximation structure in order to get a particular
property of the approximation. The approximation we get in this way preserves the
area in certain subsets Ai of the support of the function, that is, the integral distance
between the approximation and the original function in the sets Ai is small.

Of course, it would be possible to use a procedure based on the minimization of
a function of several variables (the error that we get in Section 3) to solve the stated
problem. However, the results of Section 4 states that we can use the same vector that
minimizes the symmetry error for the function g in the case of a function g+g1, where
g1 ∈ S. This means that we can fix a particular metric for a Hilbert space and use it
to find good approximations (with small integral distance) for each perturbation of g

as g+g1. If we study our problem as a several variables problem we cannot get this
general result.

We also would get a good approximation from the integral distance point of view
by enlarging the finite set of orthonormal functions. In particular, if we define a λ-
approximation structure with N functions {f1, . . . ,fn} and N disjoint measurable sets
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{Ai : i = 1, . . . ,n}, we would define another basis with functions of the set {fiχAj
:

i,j = 1, . . . ,n}. However, in this case we would find two problems.
(1) We cannot control the behavior of the approximated functions in the cohesion of

the disjoint sets Ai . For instance, we cannot impose continuity to the approximation.
Our method works with functions defined in the whole set �.

(2) Our procedure needs N functions. The use of the above mentioned set would
give basis of N2 functions.

Our technique may be used in several problems of function approximations and curve
fitting. For example, it can be useful when we get a fit of a signal and we need to preserve
the area of the original function in the channels defined for the signal. These kinds of
problems are common in several experimental disciplines, as physical-chemistry, spec-
troscopy and nuclear physics. Further developments extending this theory to the discrete
case can be used to fit histograms of experimental data to probability density functions.
In this case,“preserving area” properties of the approximation is of clear interest.
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