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We study size-structured population models of general type which have the growth rate
depending on the size and time. The local existence and uniqueness of the solution
have been shown by Kato and Torikata (1997). Here, we discuss the positivity of the
solution and global existence as well as L∞ solutions.

1. Introduction

We are concerned with size-structured population models of general type with the
growth rate depending on the individual’s size and time. In [3], the local existence
and uniqueness of the solution have been investigated. In this paper, we discuss the
positivity and global existence of the solution as well as L∞ solutions.

As is explained in [3], the model in our mind is the population dynamics of plants in
forests or plantations. In this case, the growth rate may be influenced by the environment
such as the light, temperature, and nutrients. These must change with time. It is also
reasonable to think that the growth rate varies with the size because the size is important
to capture the light to grow. From these points, it is natural to consider the growth rate
depending on the size and time.

From the mathematical point of view, our results are the generalizations of G. Webb’s
results [5, Theorems 2.3, 2.4, 2.5, and 4.3] in the age-dependent case. Besides, we
investigate L∞ solutions.

Our results also have a close relation to the results of A. Calsina and J. Saldaña
[1], where they treated a nonlinear growth rate depending on the size and the total
population at each time, whereas the aging and birth functions have the special form of
the Gurtin-MacCamy type (see below). For other related works, we refer to [4], where
a finite number of structure variables are treated.
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In this paper, we study the following initial boundary value problem with nonlocal
boundary condition:

ut +
(
V (x, t)u

)
x

= G
(
u(·, t))(x), x ∈ [0, l),a ≤ t ≤ T ,

V (0, t)u(0, t) = C(t)+F
(
u(·, t)), a ≤ t ≤ T ,

u(x,a) = ua(x), x ∈ [0, l).
(1.1)

The unknown function u(x, t) stands for the density of the population of size x at
time t , so that the integral

∫ l

0 u(x, t)dx represents the total population at time t , where
l ∈ (0,∞] is the maximum size. The function V is the growth rate depending on the
size x and time t . The mappings F and G correspond to the birth and aging functions,
respectively. The typical and important example is the Gurtin-MacCamy type (cf. [2]),
that is,

F(φ) =
∫ l

0
β(x,Pφ)φ(x)dx, G(φ)(x) = −m(x,Pφ)φ(x), (1.2)

where Pφ = ∫ l

0 φ(x)dx. The function C represents the inflow of zero-size individuals
(that is, newborns) from an external source.

In Section 2, we state our assumptions and preliminary results. In Section 3, we study
the existence of a positive solution. Section 4 is devoted to study positive L∞ solutions.
We discuss the continuability and global existence of the solution in Sections 5 and 6.

2. Preliminaries

In this section, we state our general assumptions and the preliminary results. Let L1 :=
L1(0, l;R

n) be the Banach space of Lebesgue integrable functions from [0, l) to R
n

with norm ‖f ‖L1 := ∫ l

0 |f (x)|dx for f ∈ L1, where | · | denotes the norm of R
n

defined by |ξ | = ∑n
i=1 |ξi | for ξ = (ξ1, . . . , ξn). For T > a, let La,T := C([a,T ];L1)

be the Banach space of L1-valued continuous functions on [a,T ] with the supremum
norm ‖u‖La,T

:= supa≤t≤T ‖u(t)‖L1 for u ∈ La,T . Note that each element of La,T is
identified with an element of L1((0, l)×(a,T );R

n) by the relation [u(t)](x) = u(x, t)

for t ∈ [a,T ] a.e. x ∈ (0, l). See [5, Lemma 2.1].
Our general hypotheses are as follows.
(F0) F : L1 → R

n and there is an increasing function c1 : [0,∞) → [0,∞) such
that ∣∣F (

φ1
)−F

(
φ2

)∣∣ ≤ c1(r)
∥∥φ1 −φ2

∥∥
L1 (2.1)

for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r .
(G0) G : L1 → L1 and there is an increasing function c2 : [0,∞) → [0,∞) such

that ∥∥G(
φ1

)−G
(
φ2

)∥∥
L1 ≤ c2(r)

∥∥φ1 −φ2
∥∥
L1 (2.2)

for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r .
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(V0) V : [0, l)×[0,T ] → (0,∞) is a bounded function with upper bound V ∗ and
V (l, ·) = 0 if l < ∞. V (x, t) is differentiable with respect to x ∈ [0, l) and there is a
Lipschitz constant LV such that∣∣V (

x1, t
)−V

(
x2, t

)∣∣ ≤ LV

∣∣x1 −x2
∣∣ (2.3)

for all x1, x2 ∈ [0, l) and t ∈ [0,T ]. For each x ∈ [0, l), the mapping t �→ V (x, t) is
continuous.

(C0) C : [0,T ] → R
n is a continuous function.

Remark 2.1. We require the differentiability of x �→ V (x, t) at each x (not only a.e. x)
since it seems necessary even for the previous paper [3, Lemma 3.4]. Thus the partial
derivative Vx(x, t) satisfies |Vx(x, t)| ≤ LV for all x ∈ [0, l) and t ∈ [0,T ].

In order to define the characteristic curves, we extend the function V(x, t) on
(−∞,∞)× [0,T ] by defining V (x, t) := V (0, t) for (x, t) ∈ (−∞,0)× [0,T ] and
in case l < ∞, V (x, t) := 0 for (x, t) ∈ [l,∞)×[0,T ].

The characteristic curve ϕ(t; t0,x0) through (x0, t0) ∈ [0, l)×[0,T ] is defined by the
unique solution of the differential equation

x′(t) = V
(
x(t), t

)
, t ∈ [

t0,T
]

(2.4)

with the initial condition x(t0) = x0 ∈ [0, l). Let za(t) := ϕ(t;a,0) denote the charac-
teristic curve through (0,a) in the (x, t)-plane.

For (x, t) ∈ [0, l)× [0,T ] such that x < z0(t), define τ := τ(t,x) implicitly by
the relation

ϕ(t;τ,0) = x, or equivalently, ϕ(τ ; t,x) = 0, (2.5)

that is, τ is the initial time of the characteristic through (x, t). Define τ ∗
a by

τ ∗
a

(
t0,x0

) =
{
τ
(
t0,x0

)
for x0 < za

(
t0

)
,

a for x0 ≥ za
(
t0

)
.

(2.6)

Note that the characteristics x(t) = ϕ(t; t0,x0) satisfies the integral equation

ϕ
(
t; t0,x0

) = x0 +
∫ t

t0

V
(
ϕ
(
σ ; t0,x0

)
,σ

)
dσ for t ∈ [0,T ], (2.7)

and that 0 ≤ x(t) < l for every t ∈ [τ ∗
a (t0,x0),T ] provided that x0 ∈ [0, l). (In case of

l < ∞, the assumption V (l, ·) = 0 assures x(t) < l.)
We define a solution of (1.1) by the analogy of the age-dependent case [5, (1.49)].

See [3, Definition 2.1].

Definition 2.2. A function u ∈ La,T is called a solution of (1.1) on [a,T ] (with initial
value ua) if u satisfies

u(x, t) =



F̃τ

(
u(·,τ ))

V (0,τ )
+

∫ t

τ

G̃s

(
u(·, s))(ϕ(s;τ,0))ds a.e. x ∈ (

0,za(t)
)
,

ua
(
ϕ(a; t,x))+

∫ t

a

G̃s

(
u(·, s))(ϕ(s; t,x))ds a.e. x ∈ (

za(t), l
)
,

(2.8)
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where τ := τ(t,x) is given by (2.5), and for each t ∈ [a,T ], F̃t : L1 → R
n and

G̃t : L1 → L1 are given by

F̃t (φ) := C(t)+F(φ), (2.9)

G̃t (φ)(x) := G(φ)(x)−Vx(x, t)φ(x) a.e. x ∈ (0, l), (2.10)

for φ ∈ L1.

Here, we recall some properties of the characteristic curves which are needed in the
argument below. For the rest of properties, see Section 3 of [3].

Lemma 2.3 [3, Lemmas 3.3, 3.4]. (i) For any t ∈ [0,T ], put τt (x) := τ(t,x). Then
τt : [0,z0(t)] → [0, t] is continuous, decreasing and onto, and hence τt has the inverse
τ−1
t (·) which is continuous from [0, t] onto [0,z0(t)].

(ii) Let x = ϕ(t;τ,η). Then x is differentiable with respect to τ and

dx

dτ
= −V (η,τ )exp

(∫ t

τ

Vx
(
ϕ(σ ;τ,η),σ )

dσ

)
; (2.11)

and x is differentiable with respect to η and

dx

dη
= exp

(∫ t

τ

Vx
(
ϕ(σ ;τ,η),σ )

dσ

)
. (2.12)

3. Positive solutions

In this section, we show the existence of a positive solution of (1.1). Let L1+ := {f ∈
L1 | f (x) ∈ R

n+, a.e. x ∈ (0, l)}, where R
n+ is the usual positive cone in R

n and let
La,T ,+ := C([a,T ];L1+). By a positive solution, we mean the function u ∈ La,T ,+
which satisfies (2.8). We begin with some preliminary lemmas.

Lemma 3.1. For α ∈ R and u ∈ La,T , let

Kαu(x, t) =




e−α(t−τ)
F̃τ

(
u(·,τ ))

V (0,τ )

+
∫ t

τ

e−α(t−s)
[
G̃s +αI

](
u(·, s))(ϕ(s;τ,0))ds, a.e. x ∈ (

0,za(t)
)
,

e−α(t−a)ua
(
ϕ(a; t,x))

+
∫ t

a

e−α(t−s)
[
G̃s +αI

](
u(·, s))(ϕ(s; t,x))ds, a.e. x ∈ (

za(t), l
)
,

(3.1)
where τ := τ(t,x) is given by (2.5). Then for fixed (t,x) ∈ [0,T ]×[0, l), the function

wα(s) := Kαu
(
ϕ(s; t,x),s), a.e. s ∈ (

τ ∗
a ,T

)
(3.2)

is differentiable a.e. on (τ ∗
a ,T ) and satisfies

d

ds
wα(s) = −αwα(s)+(

G̃s +αI
)(
u(·, s))(ϕ(s; t,x)), a.e. s ∈ (

τ ∗
a ,T

)
, (3.3)

where τ ∗
a := τ ∗

a (t,x) is defined by (2.6).
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Proof. If ϕ(s; t,x) ∈ (0,za(t)), since τ ∗
a (s,ϕ(s; t,x)) = τ(s,ϕ(s; t,x)) = τ(s + h,

ϕ(s+h; t,x)), we have

1

h

[
Kαu

(
ϕ(s+h; t,x),s+h

)−Kαu
(
ϕ(s; t,x),s)]

= 1

h

[
Kαu

(
ϕ
(
s+h;s,ϕ(s; t,x)), s+h

)−Kαu
(
ϕ(s; t,x),s)]

= 1

h

[
e−α(s+h−τ)−e−α(s−τ)

] F̃τ (u(·,τ ))
V (0,τ )

+ 1

h

[∫ s+h

τ

e−α(s+h−η)
[
G̃η+αI

](
u(·,η))(ϕ(η;τ,0))dη

−
∫ s

τ

e−α(s−η)
[
G̃η+αI

](
u(·,η))(ϕ(η;τ,0))dη]

= 1

h

[
e−αh−1

]
e−α(s−τ)

F̃τ
(
u(·,τ ))

V (0,τ )

+ 1

h

[
e−αh−1

]∫ s

τ

e−α(s−η)
[
G̃η+αI

](
u(·,η))(ϕ(η;τ,0))dη

+e−αh 1

h

∫ s+h

s

e−α(s−η)
[
G̃η+αI

](
u(·,η))(ϕ(η;τ,0))dη

−→ −αKαu
(
ϕ(s; t,x),s)+[

G̃s +αI
](
u(·, s))(ϕ(s; t,x))

(3.4)

as h → 0. If ϕ(s; t,x) ∈ (za(t), l), then noting that τ ∗
a (s,ϕ(s; t,x)) = a and the relation

ϕ(η;s+h,ϕ(s+h; t,x)) = ϕ(η; t,x), we get

1

h

[
Kαu

(
ϕ(s+h; t,x),s+h

)−Kαu
(
ϕ(s; t,x),s)]

= 1

h

[
Kαu

(
ϕ
(
s+h;s,ϕ(s; t,x)), s+h

)−Kαu
(
ϕ(s; t,x),s)]

= 1

h

[
e−α(s+h)−e−αs

]
ua

(
ϕ(a; t,x))

+ 1

h

[∫ s+h

a

e−α(s+h−η)
[
G̃η+αI

](
u(·,η))(ϕ(η; t,x))dη

−
∫ s

a

e−α(s−η)
[
G̃η+αI

](
u(·,η))(ϕ(η; t,x))dη]

= 1

h

[
e−αh−1

]
e−αsua

(
ϕ(a; t,x))

+ 1

h

[
e−αh−1

]∫ s

a

e−α(s−η)
[
G̃η+αI

](
u(·,η))(ϕ(η; t,x))dη

+e−αh 1

h

∫ s+h

s

e−α(s−η)
[
G̃η+αI

](
u(·,η))(ϕ(η; t,x))dη

−→ −αKαu
(
ϕ(s; t,x),s)+[

G̃s +αI
](
u(·, s))(ϕ(s; t,x))

(3.5)

as h → 0. Thus the result holds. �
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Lemma 3.2. For α, β ∈ R and u ∈ La,T , we have

Kβu(x, t)=Kαu(x, t)+(α−β)

∫ t

τ∗
a

e−β(t−η)
[
Kαu

(
ϕ(η; t,x),η)−u

(
ϕ(η; t,x),η)]dη

(3.6)

Proof. By Lemma 3.1,

d

ds

(
wβ(s)−wα(s)

) = −β
(
wβ(s)−wα(s)

)+(α−β)
[
wα(s)−u

(
ϕ(s; t,x),s)]. (3.7)

Since

wβ
(
τ ∗
a

) = wα
(
τ ∗
a

) =



F̃τ

(
u(·,τ ))

V (0,τ )
a.e. x ∈ (

0,za(t)
)
,

ua(x) a.e. x ∈ (
za(t), l

)
,

(3.8)

we have

wβ(t)−wα(t) =
∫ t

τ∗
a

e−β(s−η)(α−β)
[
wα(η)−u

(
ϕ(η; t,x),η)]dη. (3.9)

This shows the desired equality (3.6). �

Corollary 3.3. Let α, β ∈ R. Suppose that u ∈ La,T and Kαu ∈ La,T . Then Kβu ∈
La,T .

Corollary 3.4. Let α, β ∈ R and u ∈ La,T . Then Kαu = u implies Kβu = u.

Our result concerning the local existence of a positive solution of (1.1) is the fol-
lowing one, which is the generalization of Theorem 2.4 in [5].

Theorem 3.5. In addition to (F0), (G0), and (V0), we assume the following hypotheses:
(F1) F(L1+) ⊂ R

n+.
(G1) There is an increasing function c3 : [0,∞) → [0,∞) such that if r > 0 and

φ ∈ L1+ with ‖φ‖L1 ≤ r , then G(φ)+c3(r)φ ∈ L1+.
(C1) C : [0,T ] → R

n+ is a continuous function.
Then for each r > 0, there exists δ > 0 such that for the initial value ua ∈ L1+ with

‖ua‖L1 ≤ r , there exists a unique solution u ∈ L
a,T̂ ,+ of (1.1) on [a, T̂ ] with T̂ := a+δ.

Proof. For each T > a, set

MT := {
u ∈ La,T ,+ | ‖u‖La,T

≤ 2r, u(·,a) = ua
}
. (3.10)

For u ∈ La,T ,+ and α = c3(2r)+LV , defineKαu(x, t) by (3.1). As is shown in the proof
of Theorem 2.1 in [3], K0u ∈ La,T , so that we find that Kαu ∈ La,T by Corollary 3.3.
Let CT := supa≤t≤T |C(t)| for given T > 0. Similar to the proof of Theorem 2.1 in [3],
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take δ1 > 0 so small that

eLV δ1
[
CT +(

c1(2r)+c2(2r)+LV +α
) ·2r+|F(0)|+‖G(0)‖L1

]
δ1 +reLV δ1 ≤ 2r.

(3.11)
Then for T1 = a+ δ1, we have ‖Kαu‖La,T1 ≤ 2r . By the hypotheses (F1), (G1), and
(C1), we have Kαu(·, t) ∈ L1+ and Kαu(·,a) = ua(·), so that Kα maps La,T1,+ into
itself. Further, again similar to the proof of Theorem 2.1 in [3], we find that Kα is a con-
traction by taking δ2 > 0 so small that eLV δ2 [c1(2r)+c2(2r)+LV +α]δ2 < 1. Thus for
T̂ = a+δ with sufficiently small δ > 0, there exists a unique function u ∈ C([a, T̂ ];L1+)
such that Kαu = u. By Corollary 3.4, we find that this u is a solution of (1.1) on
[a, T̂ ]. �

4. L∞ solutions

In this section, we show the existence of a positive L∞ solution of (1.1). Let L∞ :=
L∞(0, l;R

n) and for c ≥ 0, set

Dc := {
u ∈ L1+ ∩L∞ | ‖u‖L∞ ≤ c,‖u‖L1 ≤ c

}
. (4.1)

Concerning the L∞ solutions, we obtain the following.

Theorem 4.1. In addition to (F0), (G0), (V0), (F1), and (C1), assume the following
hypotheses:

(G2) There exist an increasing function c4 : [0,∞) → [0,∞) and a function c5 :
[0,∞) → [0,∞) such that φ ∈ Dr implies G(φ)+c4(r)φ ∈ Dc5(r).

Then for each r > 0, there exists δ > 0 such that for ua ∈ L1+∩L∞ with max{‖ua‖L1,

‖ua‖L∞} ≤ r , there exists a unique solution u ∈ L
a,T̂ ,+ ∩L∞((a, T̂ )× (0, l);R

n) of

(1.1) with T̂ = a+δ.

Proof. Let p(r) ≥ 2max{r, [Ca,T + c1(2r) · 2r + |F(0)|]/Va,T }, where Ca,T :=
supa≤t≤T |C(t)| and Va,T := mina≤t≤T V (0, t) > 0 for given T > a. For each T > a,
set

M∞
T := {

u ∈ La,T ,+ ∩L∞(
(a,T )×(0, l);R

n
) | ‖u‖La,T

≤ 2r,

‖u‖L∞((a,T )×(0,l);Rn) ≤ p(r), u(·,a) = ua
}
.

(4.2)

Note that M∞
T is a closed subset of La,T . For u ∈ La,T ,+ and β := c4(2r)+LV , define

Kβu(x, t) by (3.1). As in the proof of Theorem 3.5, we know that Kβu ∈ La,T ,+ and
for T1 = a+δ with small δ > 0 satisfying

eLV δ
[
Ca,T +(

c1(2r)+c2(2r)+LV +β
) ·2r+|F(0)|+‖G(0)‖L1

]
δ+reLV δ ≤ 2r,

(4.3)
we have ‖Kβu‖La,T1 ≤ 2r . Further, for T2 = a+δ with sufficiently small δ > 0 (which
may be different from the above one), we show that u ∈ M∞

T2
implies |Kβu(x, t)| ≤



198 Size-dependent population dynamics

p(r). Indeed, for x ∈ (0,za(t)),

∣∣Kβu(x, t)
∣∣ ≤ e−β(t−τ)

|C(τ)|+ ∣∣F (
u(·,τ ))∣∣

V (0,τ )

+
∫ t

τ

e−β(t−s)
∣∣(G+c4

(
p(r)

)
I
)(
u(·, s))(ϕ(s;τ,0))∣∣ds

+
∫ t

τ

e−β(t−s)
∣∣(LV −Vx

(
ϕ(s;τ,0),s))u(

ϕ(s;τ,0),s)∣∣ds
≤ Ca,T +c1(2r) ·2r+|F(0)|

Va,T
+[

c5
(
p(r)

)+2LV ·p(r)](t−τ)

≤ p(r)

2
+[

c5
(
p(r)

)+2LV ·p(r)](T −a),

(4.4)

and for x ∈ (za(t), l),∣∣Kβu(x, t)
∣∣ ≤ e−β(t−a)

∣∣ua(ϕ(a; t,x))∣∣
+

∫ t

a

e−β(t−s)
∣∣(G+c4

(
p(r)

)
I
)(
u(·, s))(ϕ(s; t,x))∣∣ds

+
∫ t

a

e−β(t−s)
∣∣(LV −Vx

(
ϕ(s; t,x),s))u(

ϕ(s; t,x),s)∣∣ds
≤ r+[

c5
(
p(r)

)+2LV ·p(r)](t−a)

≤ p(r)

2
+[

c5
(
p(r)

)+2LV ·p(r)](T −a).

(4.5)

Hence it is enough to take δ > 0 so small that

p(r)

2
+[

c5
(
p(r)

)+2LV ·p(r)]δ ≤ p(r). (4.6)

It is evident that Kβu(x,a) = ua(x), so we find that Kβ maps M∞
T into itself for

T = a+δ with sufficiently small δ > 0.
Similar to the proof of Theorem 2.1 in [3], we find that Kβ is a contraction by

taking δ > 0 so small that eLV δ[c1(2r)+ c2(2r)+LV + β]δ < 1. Consequently, for
T̂ = a+ δ with sufficiently small δ > 0, there exists a unique function u ∈ M∞

T̂
such

that Kβu = u. By Corollary 3.4, this u is a solution of (1.1). �

5. Continuability and global existence

By Theorem 2.1 of [3], (1.1) admits a unique local solution for the initial data u0 ∈ L1

under the assumptions (F0), (G0), (V0), and (C0). Let [0,Tu0) be the maximal interval of
existence of the solution, which means that for each T ∈ (0,Tu0), the solution u ∈ L0,T

of (1.1) on [0,T ] with initial value u0 exists. The following is the (1.1) version of
Theorem 2.3 in [5].

Proposition 5.1. Assume (F0), (G0), (V0), and (C0) hold. Let u0 ∈ L1 and let u be the
solution of (1.1) on [0,Tu0). If Tu0 < ∞, then we have lim supt↑Tu0

‖u(·, t)‖L1 = ∞.
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Proof. Suppose that lim supt↑Tu0
‖u(·, t)‖L1 < ∞. Then the norm ‖u(·, t)‖L1 is

bounded, namely, there exists r > 0 such that sup0≤t<Tu0
‖u(·, t)‖L1 ≤ r .

By the local existence result due to Theorem 2.1 of [3], there exists some δ > 0
depending only on r such that for 0 ≤ a < Tu0 , ûa ∈ L1 with ‖ûa‖L1 ≤ r , there exists
a unique solution u ∈ La,a+δ of (1.1) on [a,a+δ] with u(·,a) = ûa .

For a = Tu0 − δ/2 and ûa(·) = u(·,Tu0 − δ/2), since ‖ûa‖L1 ≤ r , there exists a
unique solution û ∈ LTu0 −δ/2,Tu0 +δ/2 of (1.1) on [Tu0 −δ/2,Tu0 +δ/2]. Define

ū(x, t) =



u(x, t), 0 ≤ t ≤ Tu0 − δ

2
,

û(x, t), Tu0 − δ

2
≤ t ≤ Tu0 + δ

2
.

(5.1)

Then by the uniqueness of the solution (see [3, Theorem 2.2]), we find that this ū be-
comes the solution of (1.1) on [0,Tu0 +δ/2] with the initial data u0. But this contradicts
the definition of Tu0 . �

We look for the condition which assures the global existence of a positive solution
of (1.1). The next result is the generalization of Theorem 2.5 in [5].

Theorem 5.2. Let (F0), (G0), (V0), (F1), (G1), and (C1) hold. Assume further that there
exist ω1 ∈ R and ω2 ∈ R satisfying

n∑
i=1

[
F(φ)i +

∫ l

0
G(φ)i(x)dx

]
≤ ω1 +ω2

n∑
i=1

∫ l

0
φi(x)dx, ∀φ ∈ L1+. (5.2)

Then for u0 ∈ L1+, we have Tu0 = ∞, that is, there exists a global solution of (1.1) on
[0,∞) with initial value u0 and the following estimate holds:

‖u(·, t)‖L1 ≤ e(ω2+2LV )(t−a)‖u(·,a)‖L1

+
∫ t

a

e(ω2+2LV )(t−s)
[|C(s)|+ω1

]
ds, t ≥ a (≥ 0).

(5.3)

Proof. Suppose that Tu0 < ∞ and let 0 ≤ a < T < Tu0 . Put α := c3(r)+LV with
r = sup0≤s<T ‖u(·, s)‖L1 . Let ua := u(·,a). Then we have

‖u(·, t)‖L1 =
n∑

i=1

∫ l

0
ui(x, t)dx

=
n∑

i=1

[∫ za(t)

0
e−α(t−τ)

Ci(τ )+Fi
(
u(·,τ ))

V (0,τ )
dx

+
∫ za(t)

0

∫ t

τ

e−α(t−s)
[(
G+c3(r)I

)
i

(
u(·, s))(ϕ(s;τ,0))

+(
LV −Vx

(
ϕ(s;τ,0),s))ui(ϕ(s;τ,0),s)

]
ds dx
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+
∫ l

za(t)

e−α(t−a)uai
(
ϕ(a; t,x))dx

+
∫ l

za(t)

∫ t

a

e−α(t−s)
[(
G+c3(r)I

)
i

(
u(·, s))(ϕ(s; t,x))

+(
LV −Vx

(
ϕ(s; t,x),s))ui(ϕ(s; t,x),s)]ds dx]

=:
n∑

i=1

[
I i1 +I i2 +I i3 +I i4

]
.

(5.4)

For I i1, by the change of variable ξ = τ(t,x), we have

I i1 =
∫ t

a

e−α(t−ξ)
[
Ci(ξ)+Fi

(
u(·,ξ))]e∫ t

ξ Vx(ϕ(σ ;ξ,0),σ )dσ
dξ

≤
∫ t

a

e−α(t−ξ)
[
Ci(ξ)+Fi

(
u(·,ξ))]eLV (t−ξ)dξ

=
∫ t

a

e−c3(r)(t−ξ)
[
Ci(ξ)+Fi

(
u(·,ξ))]dξ.

(5.5)

Next, I i2 +I i4 is estimated as follows:

I i2 +I i4 =
∫ t

a

∫ za(t)

τ−1
t (s)

e−α(t−s)
[(
G+c3(r)I

)
i

(
u(·, s))(ϕ(s;τ,0))

+(
LV −Vx

(
ϕ(s;τ,0),s))ui(ϕ(s;τ,0),s)]dx ds

+
∫ t

a

∫ l

za(t)

e−α(t−s)
[(
G+c3(r)I

)
i

(
u(·, s))(ϕ(s; t,x))

+(
LV −Vx

(
ϕ(s; t,x),s))ui(ϕ(s; t,x),s)]dx ds

=
∫ t

a

∫ l

0
e−α(t−s)

[(
G+c3(r)I

)
i

(
u(·, s))(η)+(

LV −Vx(η,s)
)
ui(η,s)

]
×e

∫ t
s Vx(ϕ(σ ;s,η),σ )dσ dηds

≤
∫ t

a

∫ l

0
e−c3(r)(t−s)[(G+c3(r)I

)
i

(
u(·, s))(η)+(

LV −Vx(η,s)
)
ui(η,s)

]
dηds.

(5.6)

Here we have used the notation τ−1
t (s) as the inverse of the decreasing function x �→

τ(t,x) for fixed t (see [3, Section 3]). For I i3, we have

I i3 =
∫ l

0
e−α(t−a)uai(η)e

∫ t
a Vx(ϕ(σ ;a,η),σ )dσ dη

≤
∫ l

0
e−(α−LV )(t−a)uai(η)dη =

∫ l

0
e−c3(r)(t−a)uai(η)dη.

(5.7)
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Therefore, using the hypothesis (5.2), we have

‖u(·, t)‖L1 ≤
n∑

i=1

[∫ t

a

e−c3(r)(t−s)
[
Ci(s)+Fi

(
u(·, s))]ds

+
∫ t

a

∫ l

0
e−c3(r)(t−s)

[(
G+c3(r)I

)
i

(
u(·, s))(η)

+(
LV −Vx(η,s)

)
ui(η,s)

]
dηds

+
∫ l

0
e−c3(r)(t−a)uai(η)dη

]

≤
∫ t

a

e−c3(r)(t−s)
n∑

i=1

Ci(s)ds+e−c3(r)(t−a)

∫ l

0

n∑
i=1

uai(η)dη

+
∫ t

a

e−c3(r)(t−s)
n∑

i=1

[
Fi

(
u(·, s))+

∫ l

0
Gi

(
u(·, s))(η)dη]ds

+
∫ t

a

e−c3(r)(t−s)

∫ l

0

(
c3(r)+LV −Vx(η,s)

) n∑
i=1

ui(η,s)dηds

≤
∫ t

a

e−c3(r)(t−s)|C(s)|ds+e−c3(r)(t−a)
∥∥ua∥∥L1

+
∫ t

a

e−c3(r)(t−s)

[
ω1 +ω2

n∑
i=1

∫ l

0
ui(η,s)dη

]
ds

+(
c3(r)+2LV

)∫ t

a

e−c3(r)(t−s)‖u(·, s)‖L1 ds.

(5.8)

Hence,

ec3(r)t‖u(·, t)‖L1 ≤
∫ t

a

ec3(r)s
[|C(s)|+ω1

]
ds+ec3(r)a

∥∥ua∥∥L1

+(
ω2 +2LV +c3(r)

)∫ t

a

ec3(r)s‖u(·, s)‖L1 ds.

(5.9)

By Gronwall’s lemma, we have

ec3(r)t‖u(·, t)‖L1 ≤
∫ t

a

ec3(r)se(ω2+2LV +c3(r))(t−s)|C(s)|ds

+ec3(r)ae(ω2+2LV +c3(r))(t−a)
∥∥ua∥∥L1 .

(5.10)

Rearranging this, we obtain

‖u(·, t)‖L1 ≤ e(ω2+2LV )(t−a)
∥∥ua∥∥L1 +

∫ t

a

e(ω2+2LV )(t−s)
[|C(s)|+ω1

]
ds (5.11)

for 0 ≤ a ≤ t ≤ T . Since T ∈ (0,Tu0) is arbitrary, we obtain the desired estimate (5.3)
for a ≤ t < Tu0 . From this, we find that lim supt↑Tu0

‖u(·, t)‖L1 < ∞, which contradicts
the result of Proposition 5.1, and hence we conclude Tu0 = ∞ and (5.3) holds. �
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Note that we do not infer from the estimate (5.3) that the norm of the solution is
bounded. The next theorem shows the condition for the solution to be L1-bounded
globally. It is the generalization of Theorem 4.3 in [5].

Theorem 5.3. Let (F0), (G0), (V0), (F1), (G1), and (C1) hold. Assume that C ∈ L∞
(0,∞;R

n) and there exists K > 0 such that

n∑
i=1

[
F(φ)i +

∫ l

0
G(φ)i(x)dx

]
+‖C‖L∞(0,∞;Rn)

≤ −LV

n∑
i=1

∫ l

0
φi(x),dx, ∀φ ∈ L1+, ‖φ‖L1 ≥ K.

(5.12)

Then for u0 ∈ L1+, we have Tu0 = ∞, that is, there exists a global solution of (1.1) on
[0,∞) with initial value u0 and the following estimate holds:

sup
t≥0

‖u(·, t)‖L1 ≤ max
{
K,

∥∥u0
∥∥
L1

}
. (5.13)

Proof. If (5.13) holds, then Tu0 = ∞ by Proposition 5.1. Consider the case ‖u0‖L1 ≤ K

and suppose the conclusion does not hold. Then there exists t ∈ (0,Tu0) and ε > 0 such
that ‖u(·, t)‖L1 > K + ε. Let t0 := inf{t ∈ [0,Tu0) : ‖u(·, t)‖L1 > K + ε}. Since the
mapping t �→ ‖u(·, t)‖L1 is continuous from [0,Tu0) to [0,∞), we have ‖u(·, t0)‖L1 ≥
K + ε > K . Hence there exists r > 0 such that ‖u(·, t)‖L1 > K for t ∈ [t0, t0 + r).
Similar to the proof of Theorem 5.2, we use (5.12) instead of (5.2) to conclude that

‖u(·, t)‖L1 ≤ ∥∥u(·, t0)∥∥L1, t ∈ [
t0, t0 +r

)
. (5.14)

Assume that t0 > 0. Then we have ‖u(·, t0)‖L1 = K+ε. Thus ‖u(·, t)‖L1 ≤ K+ε for
t ∈ [t0, t0 + r). This contradicts the definition of t0, and so t0 = 0. But then, K + ε ≤
‖u(·, t0)‖L1 = ‖u0‖L1 ≤ K , which is a contradiction. Hence (5.13) holds.

Next, consider the case ‖u0‖L1 > K . Assume that there exists t ∈ (0,Tu0) such
that ‖u(·, t)‖L1 > ‖u0‖L1 . Let t0 := inf{t ∈ (0,Tu0) : ‖u(·, t)‖L1 > ‖u0‖L1}. Then
‖u(·, t0)‖L1 = ‖u0‖L1 . Similar argument as above shows that there exists r > 0 such
that

‖u(·, t)‖L1 ≤ ∥∥u(·, t0)∥∥L1, t ∈ [
t0, t0 +r

)
. (5.15)

This contradicts the definition of t0, and hence (5.13) holds. �

Remark 5.4. We note that the solution of (1.1) defines an evolution operator in L1.
Suppose that for each φ ∈ L1, Tφ = ∞. Let u ∈ C([s,∞);L1) be the solution of (1.1)
on [s,∞) with u(·, s) = φ. Then putting

[U(t,s)φ](x) := u(x, t) (5.16)

defines a family {U(t,s) | 0 ≤ s ≤ t} of nonlinear operators. Recall that Theorem 2.2
in [3] tells that∥∥U(t,s)φ−U(t,s)φ̂

∥∥
L1 ≤ exp

[(
c1(r)+c2(r)+2LV

)
(t−s)

]∥∥φ− φ̂
∥∥
L1, (5.17)
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where ‖φ‖L1 , ‖φ̂‖L1 ≤ r . This estimate implies the continuity of φ �→ U(t,s)φ as well
as the uniqueness of the solution which assures the evolution property U(t,s)U(s,τ ) =
U(t,τ ) for 0 ≤ τ ≤ s ≤ t . U(s,s) = I is obvious. The continuity t �→ U(t,s)φ from
[s,∞) into L1 for each s ≥ 0 and φ ∈ L1 follows from the fact that u ∈ C([s,∞);L1).
Thus {U(t,s) | 0 ≤ s ≤ t} becomes a family of nonlinear evolution operators in L1.

6. Global existence for L∞ solution

We discuss the continuability of L∞ solution. Suppose that all the hypotheses in
Theorem 4.1 are satisfied. Let [0,T ∗

u0
) be the maximal interval of existence of the

solution u ∈ L0,T ,+ ∩L∞((0,T )×(0, l);R
n) (∀T ∈ (0,T ∗

u0
)) of (1.1) with initial value

u0 ∈ L1+ ∩L∞.
Note that T ∗

u0
≤ Tu0 , where Tu0 is the maximal existing time for the solution belong-

ing to L0,T ,+ (as defined in Section 5).

Proposition 6.1. Assume the hypotheses in Theorem 4.1. If T ∗
u0

< ∞, then either
lim supt↑T ∗

u0
‖u(·, t)‖L1 = ∞ or lim supt↑T ∗

u0
‖u(·, t)‖L∞ = ∞ holds.

Proof. Suppose for contradiction that both lim supt↑T ∗
u0

‖u(·, t)‖L1 < ∞ and

lim supt↑T ∗
u0

‖u(·, t)‖L∞ < ∞ hold. Then there exists some r > 0 such that

sup0≤t<T ∗
u0

‖u(·, t)‖L1 ≤ r and sup0≤t<T ∗
u0

‖u(·, t)‖L∞ ≤ r . By Theorem 4.1, there

exists δ > 0 depending only on r such that for 0 ≤ a < T ∗
u0

, ûa ∈ L1+ ∩L∞ with
‖ûa‖L1 ≤ r and ‖ûa‖L∞ ≤ r , there exists a unique solution u ∈ La,a+δ,+ ∩L∞((a,a+
δ)×(0, l);R

n) of (1.1) on [a,a+δ] with u(·,a) = ûa .
For a = T ∗

u0
− δ/2 and ûa(·) = u(·,T ∗

u0
− δ/2), since ‖ûa‖L1 ≤ r and ‖ûa‖L∞ ≤ r ,

there exists a unique solution û ∈ LT ∗
u0

−δ/2,T ∗
u0

+δ/2 of (1.1) on [T ∗
u0

− δ/2,T ∗
u0

+ δ/2].
Define

ū(x, t) =



u(x, t), 0 ≤ t ≤ T ∗

u0
− δ

2
,

û(x, t), T ∗
u0

− δ

2
≤ t ≤ T ∗

u0
+ δ

2
.

(6.1)

Then we find that ū belongs to u ∈ La,a+δ,+ ∩L∞((a,a+ δ)× (0, l);R
n) and, by the

uniqueness of the solution (see [3, Theorem 2.2]), ū becomes the solution of (1.1) on
[0,T ∗

u0
+δ/2] with the initial data u0. But this contradicts the definition of T ∗

u0
. �

Corollary 6.2. Assume the hypotheses in Theorem 4.1. Suppose either the hypotheses
in Theorem 5.2 or those in Theorem 5.3 hold. Then T ∗

u0
< ∞ implies that

lim supt↑T ∗
u0

‖u(·, t)‖L∞ = ∞.

Theorem 6.3. Assume all the hypotheses in Theorems 4.1 and 5.2 are satisfied. In
addition, assume the following hypothesis on G:

(G3) there exists a function c6 : [0,∞) → R such that for φ ∈ L1+ ∩ L∞ with
‖φ‖L1 ≤ r , we have c6(r)φ−G(φ) ∈ L1+.
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Then for each u0 ∈ L1+ ∩L∞, we have T ∗
u0

= ∞ and for each T ≥ 0 the following
estimate holds:

sup
0≤t≤T

‖u(·, t)‖L∞ ≤ e(LV +c6(rT ))T max
{
RT ,

∥∥u0
∥∥
L∞

}
, (6.2)

where rT := sup0≤t≤T ‖u(·, t)‖L1 andRT := [C0,T +c1(rT )rT +|F(0)|]/V0,T (C0,T :=
sup0≤t≤T |C(t)| and V0,T := min0≤t≤T V (0, t) are the ones appeared in the proof of
Theorem 4.1).

Proof. Suppose that T ∗
u0
< ∞. For each T ∈ (0,T ∗

u0
), we set β := c6(rT ). Let 0 ≤ t ≤ T .

Recall that by virtue of Corollary 3.4, the solution satisfies Kβu = u, where Kβ is
defined by (3.1). Then, for a.e. x ∈ (0,z0(t)), we have

|u(x, t)| =
n∑

i=1

ui(x, t)

=
n∑

i=1

{
eβ(t−τ)

[
Ci(τ )+Fi

(
u(·,τ ))]

V (0,τ )
dx

+
∫ t

τ

eβ(t−s)
[(
G−c6

(
rT

)
I
)
i

(
u(·, s))(ϕ(s;τ,0))]ds

−
∫ t

τ

eβ(t−s)Vx
(
ϕ(s;τ,0),s)ui(ϕ(s;τ,0),s)ds

}

≤ eβ(t−τ)

[
C0,T +∑n

i=1

[
Fi

(
u(·,τ ))−Fi(0)

]+|F(0)|]
V0,T

+LV

∫ t

τ

eβ(t−s)
n∑

i=1

ui
(
ϕ(s;τ,0),s)ds (

by
(
G3

))

≤ eβ(t−τ)
[
C0,T +c1

(
rT

)
rT +|F(0)|]

V0,T
+LV

∫ t

τ

eβ(t−s)‖u(·, s)‖L∞ ds.

(6.3)

For a.e. x ∈ (z0(t), l), we have

|u(x, t)| =
n∑

i=1

ui(x, t)

=
n∑

i=1

{
eβtu0i

(
ϕ(0; t,x))+∫ t

0
eβ(t−s)

[(
G−c6

(
rT

)
I
)
i

(
u(·, s))(ϕ(s; t,x))]ds

−
∫ t

0
eβ(t−s)Vx

(
ϕ(s; t,x),s)ui(ϕ(s; t,x),s)ds

}

≤ eβt
∥∥u0

∥∥
L∞ +LV

∫ t

0
eβ(t−s)‖u(·, s)‖L∞ ds.

(6.4)
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Therefore, we obtain

e−βt‖u(·, t)‖L∞ ≤ max
{
RT ,

∥∥u0
∥∥
L∞

}+LV

∫ t

0
e−βs‖u(·, s)‖L∞ ds. (6.5)

By Gronwall’s lemma, we have ‖u(·, t)‖L∞ ≤ e[LV +c6(rT )]t max{RT ,‖u0‖L∞}. Then
we obtain lim supt↑T ∗

u0
‖u(·, t)‖L∞ < ∞. This contradicts Corollary 6.2, and hence,

T ∗
u0

= ∞ and the estimate (6.2) holds. �

The following theorem shows the global boundedness of L∞-norm of the solution.

Theorem 6.4. Assume all the hypotheses in Theorems 4.1 and 5.3 are satisfied. Assume
(G3) holds with c6 such that c6(r) ≤ −LV for r ∈ [0,∞). In addition, assume the
following condition:

(V1) V (0, t) ≥ V∗ for some V∗ > 0.
Then for each u0 ∈ L1+ ∩L∞, we have T ∗

u0
= ∞ and the following estimate holds:

sup
0≤t<∞

‖u(·, t)‖L∞ ≤ max
{
R,

∥∥u0
∥∥
L∞

}
, (6.6)

where R := [‖C‖L∞(0,∞;Rn)+c1(r)r+|F(0)|]/V∗ and r := max{K,‖u0‖L1} with K

in (5.12).

Proof. By Theorem 5.3, sup0≤t<∞ ‖u(·, t)‖L1 ≤ r . Then the same argument as in
Theorem 6.3 leads to T ∗

u0
= ∞ and the desired estimate (6.6). �
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