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We study the problem of existence of positive, spherically symmetric strong solutions
of quasilinear elliptic equations involving p-Laplacian in the ball. We allow simulta-
neous strong dependence of the right-hand side on both the unknown function and its
gradient. The elliptic problem is studied by relating it to the corresponding singular or-
dinary integro-differential equation. Solvability range is obtained in the form of simple
inequalities involving the coefficients describing the problem. We also study a poste-
riori regularity of solutions. An existence result is formulated for elliptic equations on
arbitrary bounded domains in dependence of outer radius of domain.

1. Introduction

The aim of this paper is to study existence of weak and strong solutions of the following
quasilinear elliptic problem:

−�pu=G(|x|,u, |∇u|) in B \{0},
u= 0 on ∂B,

u(x) spherically symmetric and decreasing,

(1.1)

where we assume strong dependence on both the unknown and the gradient, see
(1.2). Here B = BR(0) is the ball of radius R in R

N , N ≥ 1, 1 < p < ∞, �pv =
div(|∇v|p−2∇v) is the p-Laplace operator. The Lebesgue measure (volume) of B in
R
N is denoted by |B|, and the volume of the unit ball is denoted by CN . The conjugate

exponent of p is defined by p′ = p/(p−1). Also, we denote R+ = [0,∞). Weak so-
lution of (1.1) is defined as u ∈W 1,p

0 (B)∩L∞(B) satisfying (1.1) in the weak sense in
B. By a strong solution of (1.1) we mean u ∈ C2(B \{0})∩C(B̄) which satisfies (1.1)
pointwise. We also consider weak solutions of quasilinear elliptic equations modelled
on general bounded domains.
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This paper represents a continuation of Korkut, Pašić, and Žubrinić [8, 12], where
strong dependence on the variable x and on the gradient is allowed on the right-hand
side of elliptic equation. Here we allow arbitrary growth rate also in the unknown
function. Of course, this requires some additional conditions for solvability, which we
find out as a sort of nonresonance conditions.

Similar problems on general bounded domains have been treated by Rakotoson [10],
Boccardo, Murat, and Puel [2], Cho and Che [3], Ferone, Posteraro, and Rakotoson
[6], see also the references therein. In this paper, we extend the existence result of
Rakotoson [10, Theorem 1] to nonlinearities which do not have to satisfy sign condi-
tion η ·F(x,η,ξ) ≥ 0. In Ferone, Posteraro, and Rakotoson [6] the authors consider
nonlinearity F which is bounded in the variable η, while we allow stronger dependence
in η (however, they allow weaker dependence of F in x, see Remark 2.3 below). We
also generalize existence result of Cho and Che [3, Theorem 2.2] by allowing more
general nonlinearities. Moreover, we allow arbitrary growth rate in the gradient. It is
possible to obtain a posteriori regularity of solutions; depending on the value of co-
efficients, certain solutions may be in C2(B̄ \ {0})∩C1(B̄), or even in C2(B̄), that is,
we have classical solutions. In Section 4, we consider quasilinear elliptic problems in
general bounded domains, and formulate existence results which involve geometry of
domain together with the structure of the right-hand side.

We impose the following conditions on the right-hand side of (1.1):

0 ≤G(r,η,ξ)≤ g̃0r
m+ h̃0η

q+ f̃0ξ
e0 ,

∀a > 0, ∃r ∈ (0,a), ∀η ∈ R+, ∀ξ ∈ R+, G(r,η,ξ) > 0.
(1.2)

The first condition in (1.2) is growth condition on the right-hand side of (1.1). We
assume that the constants g̃0, h̃0, and f̃0 are positive real numbers, and m ≤ 0, that
is, the right-hand side of (1.1) may be singular. The role of the second condition in
(1.2) is to secure that there is a solution which is positive in B. We are interested in
finding a solvability range of (1.1), that is, a set of triplets (g̃0, h̃0, f̃0) such that the
corresponding problem (1.1) is solvable.

The main result of this paper is stated in Theorem 2.4(b). As an illustration, we first
state its consequence in the case when p = 2, q = 1, and e0 = 2. We consider an elliptic
equation with quadratic dependence on the gradient

−�u= g̃0|x|m+ h̃0 ·u+ f̃0|∇u|2 in B \{0},
u= 0 on ∂B,

u(x) spherically symmetric and decreasing.

(1.3)

The following corollary of Theorem 2.4(b) shows that the solvability region of elliptic
equation (1.3) is related to the spectrum of −�, see Remark 1.3.

Corollary 1.1. Let N ≥ 2, −2<m≤ 0, and

0< h̃0 <
N(m+2)

R2
. (1.4)
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Assume that g̃0 and f̃0 are positive real numbers such that

g̃0 · f̃0 ≤ (m+N)(2m+N+2)

4Rm+2
·
(

1− R2h̃0

N(m+2)

)2

. (1.5)

Then (1.3) possesses a positive weak solution u ∈ C∞(B̄ \{0})∩C(B̄)∩H 1
0 (B).

Remark 1.2. If m= 0, then we can prove existence of a classical positive solution u ∈
C2(B̄) in Corollary 1.1, see Theorem 3.2. Note that we do not claim that all solutions
are classical in this case. The case when h̃0 = 0 in (1.3) is treated in [8].

Remark 1.3. It is worth noting that condition (1.4) implies that

h̃0 < λ1, (1.6)

where λ1 is the first eigenvalue of −� with zero boundary data. In other words, (1.4)
is in fact a nonresonance condition. To show (1.6) recall that

λ1 = µ2
1N

R2
, (1.7)

where µ1N is the first positive zero of the Bessel function of the first kind JN/2−1(x),
see, for example, Dautray and Lions [4, page 747]. Next, for µ1N there holds the
following inequality:

µ2
1N > 2N. (1.8)

To see this, we use [11, inequality (1), page 485], which in our notation reads as
µ1N > N/2−1. This yieldsµ2

1N > (N/2−1)2 ≥ 2N for allN ≥ 12. ForN = 1, . . . ,11,
(1.8) is verified directly using tables of zeros of Bessel functions. Exploiting (1.4)
together with (1.7) and (1.8), we obtain (1.6)

h̃0 <
N(m+2)

R2
≤ 2N

R2
<
µ2

1N

R2
= λ1. (1.9)

It would be interesting to find solvability conditions for the elliptic problem (1.3)
involving arbitrary h̃0. For example, we do not know anything about solvability of (1.3)
when N(m+2)/R2 ≤ h̃ < λ1.

Remark 1.4. Corollary 1.1 holds also for (1.3) with g(|x|) instead of g̃0|x|m on the
right-hand side, such that 0 ≤ g(r) ≤ g̃0r

m, and for any a > 0 there exists r ∈ (0,a)
such that g(r) > 0.

2. A singular ordinary integro-differential equation

We study solvability of the elliptic problem (1.1) by means of solutions of a suitable
singular ordinary integro-differential equation. We follow mainly the approach of [8].
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It is convenient to introduce the following constants:

α = p′
(

1− 1

N

)
, β = 1

p−1
, T = |B|, (2.1)

γ = 1+ m
N
, δ = e0

p−1
, ε = δ

(
1− 1

N

)
, (2.2)

g0 = g̃0

C
(m+p)/N
N Np−1(m+N)

, h0 = h̃0

NpC
p/N
N

, f0 = f̃0

Np−e0C
(p−e0)/N
N

.

(2.3)

It is possible to obtain existence of strong solutions of (1.1) by studying solutions of
the corresponding singular integro-differential equation

dω

ds
=Gω(s), s ∈ (0,T ], (2.4)

where we define

Gω(s)= 1

NpC
p/N
N

G

((
s

CN

)1/N

,

∫ T

s

ω(σ )β

σα
dσ,NC

1/N
N

(
ω(s)δ

sε

)1/p
)
. (2.5)

Note that since we have an integral term, then the mapping ω �→Gω is not a Nemytzki
operator. We obtain solutions of (2.4) as fixed points of the following nonlinear operator:

K :D(K)⊂ C([0,T ])−→ C
([0,T ]),

Kϕ(t)=
∫ t

0
Gϕ(s)ds,

(2.6)

with its domain defined by

D(K)= {
ϕ ∈ C([0,T ]) : 0 ≤ ϕ(t)≤Mtγ }, (2.7)

where M > 0 is a constant which does not depend on ϕ. Throughout this section we
have fixed constants m, p, N , q, e0, f̃0, g̃0, and h̃0. The corresponding constants α, β,
γ , δ, ε, and T are then defined by (2.1) and (2.2), while f0, g0, and h0 are defined by
(2.3). Once we have a fixed point ω of K , we can generate the corresponding solution
of (1.1) using the following lemma. Its proof is analogous to that of Lemma 1 in [8],
and therefore we omit it.

Lemma 2.1. Let f̃0 and g̃0 be given positive real numbers. Assume that 1 < p <∞,
m>−N , and let condition (1.2) be satisfied. Then for any solution ω ∈D(K) of (2.4)
with T = |B|, we have that the corresponding function u(x) defined by

u(x)=
∫ |B|

CN |x|N
ω(t)β

tα
dt, x ∈ B̄, (2.8)
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is a strong solution of the quasilinear problem (1.1). Furthermore, the following relation
holds for all r ∈ (0,R]:

u′(r)= −|∇u| = −NC1/N
N

(
ω(t)

t1−1/N

)1/(p−1)

, t = CN |x|N, (2.9)

where u(x) is identified with u(r), r = |x|.

We deal with strong solutions of (1.1) generated by ω ∈ D(K) as described in
the above lemma. In the following theorem we say that a function g : R

N → R is
nondecreasing if for any ξ1,ξ2 ∈ R

N such that ξ1 ≤ ξ2 componentwise, we have that
g(ξ1)≤ g(ξ2).

Theorem 2.2 (existence of solutions). Let 1< p <∞,

max{−p,−N}<m≤ 0, (2.10)

q > 0, and let g̃0, h̃0, and f̃0 be positive real numbers. Assume that G ∈ Ck((0,R]×
R

2+), where k ∈ εN∪{0}, and let G satisfies conditions (1.2). If G is such that

∃M > 0, g0 ≤M−h0
MβqT q(βγ−α+1)+1−γ

(βγ −α+1)q
−f0

MδT γ (δ−1)−ε+1

γ δ−ε+1
, (2.11)

then quasilinear elliptic problem (1.1) possesses at least one strong solution u ∈
Ck+2(B̄ \{0}) ∩ C(B̄). If e0 = p, then u is also the weak solution in W 1,p

0 (B). If
G(r,η,ξ) is nondecreasing in η and ξ , then there exists a strong solution which can be
obtained constructively using monotone iterations.

Remark 2.3. It is easy to see that condition −p < m≤ 0 in Theorem 2.2 implies that

g̃0|x|m ∈ Ls(B) ∀s > N
p
, (2.12)

which appears in [6, page 113]. This shows that our growth condition on the nonlinearity
G with respect to |x| is stronger than in [6] (while it is weaker with respect to the
unknown and its gradient).

Note that the existence condition (2.11) is fulfilled if the volume T = |B| of the ball
is sufficiently small, assuming that the remaining coefficients m, p, q, N , g̃0, h̃0, and
f̃0 are fixed.

Proof of Theorem 2.2. (a) Using Ascoli’s theorem we show that the operatorK is com-
pact. Note that since m > −N , then γ > 0 in (2.7). To prove that the family of func-
tions R(K) is equicontinuous, take any a,b ∈ [0,T ], a < b, and ϕ ∈D(K). Note that
(1.2) implies

1

NpC
p/N
N

·G
((

s

CN

)1/N

,

∫ T

s

ϕ(σ )β

σα
dσ,NC

1/N
N

(
ϕ(s)δ

sε

)1/p
)

≤ g0γ s
γ−1 +h0

[∫ T

s

ϕ(σ )β

σα
dσ

]q
+f0

ϕ(s)δ

sε
.

(2.13)
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Therefore,

∣∣Kϕ(b)−Kϕ(a)∣∣≤ g0
∣∣bγ −aγ ∣∣+h0

∫ b

a

[∫ T

s

(
Mσγ

)β
σα

dσ

]q
ds+f0

∫ b

a

(
Msγ

)δ
sε

ds

≤ |b−a|
(
g0γ b

γ−1 + h0M
βqT q(βγ−α+1)

(βγ −ε+1)q

)

+ f0M
δ

γ δ−ε+1

[
bγ δ−ε+1 −aγ δ−ε+1].

(2.14)

Since α < βγ + 1 and γ δ − ε + 1 ≥ γ > 0 (which is a consequence of m >

max{−p,−N}), it follows that the family R(K) is equicontinuous. To show uniform
boundedness of the family of functions R(K), we proceed in the similar way:

Kϕ(t)≤ g0t
γ + h0M

βqT q(βγ−α+1)

(βγ −ε+1)q
· t+ f0M

δ

γ δ−ε+1
· tγ δ−ε+1. (2.15)

Note that γ ≤ 1 (i.e., m ≤ 0) implies that t ≤ T 1−γ tγ , and γ δ− ε+ 1 ≥ γ implies
tγ δ−ε+1 ≤ T γ (δ−1)−ε+1tγ . Using this together with (2.11) we conclude that for all
ϕ ∈D(K),

Kϕ(t)≤Mtγ . (2.16)

Therefore, the operator K is compact and R(K)⊂D(K). From Schauder’s fixed point
theorem we conclude that K possesses at least one fixed point ω ∈D(K). The second
condition in (1.2) and ω =Kω imply that ω(t) is increasing on [0,T ], and therefore u
defined by (2.8) is a decreasing strong solution of (1.1).

Assume that G is of class C1, that is, k = 1. Since a fixed point ω of K is
in C1((0,T ]), then Kω is in C2((0,T ]). Now (2.8) and ω = Kω imply that u ∈
C3(B\{0}). IfG is of classCk , k ≥ 2, then we proceed in the same way using induction.

The fact that for e0 = p, the function u is a weak solution of (1.1) contained in
W

1,p
0 (B) follows from m > max{−p,−N} in the same way as in the proof of Propo-

sition 11 of [8].
(b) If the function G(r,η,ξ) is nondecreasing with respect to η and ξ , then the

operator K is nondecreasing in the sense that if ϕ ≤ ψ in D(K) then Kϕ ≤ Kψ . It
is clear that 0 ∈ D(K) is subsolution of K , that is, 0 ≤ K(0) while ϕ̄(t) = Mtγ is
supersolution of K , that is, Kϕ̄ ≤ ϕ̄, see (2.16). Since 0 and ϕ̄ are ordered subsolution
and supersolution and K is compact, the claim follows from Amann [1, Theorem 6.1]:
the sequence of monotone iterations ϕk in D(K) defined by ϕk = Kϕk−1, ϕ0 = 0,
converges to a fixed point ω of K in the uniform topology. �

We formulate a consequence of Theorem 2.2 in which conditions have more ex-
plicit form.

Theorem 2.4 (existence of solutions). Let max{−p,−N}<m≤ 0, and let g̃0, h̃0, and
f̃0 be positive real numbers. Assume that G ∈ Ck([0,R]×εR2+), where k ∈ εN∪{0},
and let G satisfy conditions (1.2) and G(0,0,ξ) > 0 for all ξ > 0.
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(a) If q < p−1 and e0 < p−1, then (1.1) possesses a strong solution u ∈ Ck+2(B̄ \
{0})∩C(B̄) for any positive f̃0, g̃0, and h̃0.

(b) Assume that e0 > q = p−1, and let f̃0, g̃0, and h̃0 satisfy the following condi-
tions, see (2.1), (2.2), and (2.3):

h0 <
1

a
, gδ−1

0 f0 ≤ b(1−ah0
)δ
, (2.17)

where we define

a = T q(βγ−α+1)+1−γ

βγ −α+1
, b = (δ−1)δ−1

δδ
· γ δ−ε+1

T γ (δ−1)−ε+1
. (2.18)

Then quasilinear elliptic problem (1.1) possesses at least one strong solution u ∈
Ck+2(B̄ \{0})∩C(B̄). If e0 = p then the solution is also weak, contained in W 1,p

0 (B).

It is clear that solvability conditions (2.17) have the form

h̃0 <
1

C2
, g̃

e0(p
′−1)−1

0 f̃0 ≤ C1 ·(1−C2h̃0
)e0(p

′−1)
, (2.19)

with explicit positive constants C1 and C2 depending on m, N , p, q, and e0. Note
that we have a > 0 and b > 0 in Theorem 2.4, since inequalities βγ −α+1 > 0 and
γ δ−ε+1> 0 follow from m>−N and m>−p.

Proof of Theorem 2.4. (a) Since βq < 1 and δ < 1, there existsM1 > 0 such that (2.11)
holds for all M >M1, and the claim follows from Theorem 2.2.

(b) It suffices to show that the envelope of the family of planes in R
3 defined by

(2.11), parametrized byM > 0, is the surface defined by (2.17). To this end we have to
eliminate M from the system

g0 =M−MβqA−MδB, (2.20)

0 = 1−βqMβq−1A−δMδ−1B, (2.21)

where the values of A and B can be easily seen from (2.11). Relation (2.21) is obtained
after differentiating (2.20) with respect to M . From βq = 1 and q = p−1 we easily
get M = ((1−A)/δB)δ′−1. Note that we cannot have B = 0, since this would imply
f̃0 = 0 which is impossible by the first condition in (1.2) and G(0,0,ξ) > 0 for ξ > 0.
Therefore, system (2.20) and (2.21) yields gδ−1

0 f0 = b(1−ah0)
δ . Note that the surface

h0 = h0(g0,f0) in R
3 defined by h0 = (1/a)[1−g1/δ′

0 (f0/b)
1/δ] is convex for g0 > 0,

f0 > 0, since d2h0(g0,f0) > 0. We omit the details. �

Proof of Corollary 1.1. Here we use Theorem 2.4(b) together with p = e0 = 2, q = 1,
and relations (2.1) and (2.2). �

Remark 2.5. Similarly as in Remark 1.3, we believe that the constant C2 is such that
C2 < λ1, where λ1 is the first eigenvalue of −�p. In other words, condition (2.17)
seems to be a nonresonance condition, more precisely, it implies h̃0 < λ1.
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Remark 2.6. Assuming that max{−p,−N} < m ≤ 0, G ∈ Ck([0,R] × εR2+), k ∈
εN∪{0}, and if G satisfies conditions (1.2), we can also treat some of the remaining
cases not covered by Theorem 2.4. Indeed, using (2.11) we easily obtain existence of
strong solutions of (1.1) if we assume that g̃0, h̃0, and f̃0 are positive coefficients such
that any of the following three conditions is satisfied:

(i) q = p−1, e0 < p−1, g̃0 > 0, f̃0 > 0, and

h0 <
(βγ −α+1)q

T q(βγ−α+1)+1−γ ; (2.22)

(ii) q < p−1, e0 = p−1, g̃0 > 0, h̃0 > 0, and

f0 <
γδ−ε+1

T γ (δ−1)−ε+1
; (2.23)

(iii) q = p−1, e0 = p−1, g̃0 is arbitrary and there hold conditions (2.22) and (2.23).

Now we formulate a nonexistence result for quasilinear elliptic equations with strong
dependence on the gradient.

Theorem 2.7 (nonexistence). Assume that m>max{−p,−N}, e0 > p−1 and let the
function G ∈ C([0,R]×R

2+) satisfy the condition

G(r,η,ξ)≥ g̃0r
m+ f̃0ξ

e0 . (2.24)

Let f̃0 and g̃0 be positive numbers such that

gδ−1
0 f0 ≥




[γ (δ−1)−ε+1]δδ′
(δ−1)T γ (δ−1)−ε+1

for ε < 1,

γ δδ
′

T γ (δ−1)−ε+1
for ε ≥ 1.

(2.25)

Then problem (1.1) has no strong solutions. If e0 = p, then (1.1) has no weak solutions
in W 1,p

0 (B)∩L∞(B).

This nonexistence result for quasilinear elliptic problem (1.1) is proved analogously
as in [12] and therefore we omit it, see also [8]. As we see, if g̃0 and f̃0 are large enough,
then condition (2.25) is fulfilled, and there is no strong solution. Since existence and
nonexistence regions with respect to (g̃0, h̃0, f̃0), described by (2.17) and (2.25), are
disjoint, we have b(1−ah0)

δ < ρ, where by ρ we denote the right-hand side of (2.25).

Remark 2.8. In Theorem 2.4 we have obtained existence of solutions of (1.1). Since
these solutions have integral representation (2.8) with 0 ≤ ω(t)≤Mtγ , it is of interest
to know an upper bound ofM expressed in terms of the coefficients appearing in elliptic
equation (1.1). To this end we use the following elementary lemma, see [13, Lemma 5].
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Lemma 2.9. Let c and d be positive real numbers and δ > 1. Then the condition

∃M > 0, c+d ·Mδ ≤M (2.26)

holds if and only if

c ·dδ′−1 ≤ δ−1

δδ
′ . (2.27)

Under condition (2.27) property (2.26) is fulfilled with

M0 =
[

c

d(δ−1)

]1/δ

. (2.28)

Assume that conditions of Theorem 2.4(b) are satisfied. By Lemma 2.9, condition
(2.17) is equivalent to (2.11). Since qβ = 1, from (2.11) we obtain that

g0

1−A+ B

1−A ·Mδ ≤M, (2.29)

where A and B are from the proof of Theorem 2.4(b). Using Lemma 2.9 again we
obtain that we can take

M0 = δ

(δ−1)1/δ

(
bg0

f0

)1/δ

. (2.30)

Note also that we can reprove Theorem 2.4(b) using Lemma 2.9 and Theorem 2.2,
since (2.17) follows from (2.27) with c = g0/(1−A) and d = B/(1−A).

Remark 2.10. We have proved the existence of strong solutions of (1.1) in Theorem 2.2
using integral representation (2.8). As we have seen, it is not difficult to see that for
e0 = p these solutions, as well as the corresponding ones from Theorem 2.4 and in
Corollary 1.1, are also weak solutions of (1.1), contained in W 1,p

0 (B) ∩ L∞(B). It
suffices to use the same procedure as in Proposition 11 of [8]. However, it is possible
to cover the case of general e0 > 0. For example, if in addition to the assumptions of
Theorem 2.2 or 2.4 we assume that e0 > 0, e0 �= p−1, and m>−1− (N(p−1)/e0),
then solutions from proofs of Theorems 2.2 and 2.4 are weak. The argument can be
seen in Theorem 5 of [12] using obvious modifications.

3. A posteriori regularity of solutions

We discuss regularity of solutions that have been obtained in the proof of Theorem 2.2.
Note that the following regularity result refers only to solutions of (1.1) that have
been obtained by means of integral representation (2.8). That is why we speak about
a posteriori regularity. Throughout this section, we assume that the right-hand side of
(1.1) has the form

G
(|x|,u, |∇u|)= g̃0|x|m+ h̃0 ·uq+ f̃0|∇u|p. (3.1)

Note that we consider equations with the natural growth in the gradient, that is, e0 = p.
First we study the behaviour of solutions at the origin.
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Lemma 3.1. Let all conditions of Theorem 2.2 be satisfied with (3.1). Let u be a solution
of quasilinear elliptic problem (1.1), obtained in the proof of Theorem 2.2 via integral
representation (2.8). Then

(a) u ∈ C∞(B̄ \{0})∩C(B̄)∩W 1,p
0 (B) is both weak and strong solution of (1.1).

(b)

lim
r→0

u′(r)
r(m+1)/(p−1)

= −
(

g̃0

m+N
)p′/p

,

lim
r→0

u′′(r)
r(m−p+2)/(p−1)

= −m+1

p−1

(
g̃0

m+N
)p′/p

.

(3.2)

Proof. (a) Since u(x) has integral representation (2.8), (1.1) reduces to (see
Lemma 2.1):

dω

dt
= g0γ t

γ−1 +h0

[∫ T

t

ω(σ )β

σα
dσ

]q
+f0

ω(t)δ

tε
, (3.3)

where t = CN |x|N and the coefficients are defined by (2.2). This enables to justify the
containment u ∈ Ck(B̄ \ {0}) inductively with respect to k. It is easy to see that (2.8),
0 ≤ ω(t) ≤Mtγ , and m > −p imply that u(0) <∞, therefore u ∈ C(B̄). Finally, we
can show that u ∈W 1,p

0 (B) and that u is a weak solution of (1.1) in the same way as
in the proof of Proposition 11 in [8].

(b) Dividing (3.3) by γ tγ−1, we have

ω′(t)
γ tγ−1

= g0 +Q1(t)+Q2(t), (3.4)

where Q1(t) = h0γ
−1t1−γ [∫ T

t
(ω(σ )β/σα)dσ ]q , Q2(t) = f0γ

−1t1−γ−εω(t)δ . We
show that there exists Q1(0) := limt→0Q1(t), and Q2(t) → 0 as t → 0. Using
0 ≤ ω(t)≤Mtγ and βγ −α+1> 0 (which follows from m>−p) we obtain that

∫ T

0

ω(σ)β

σα
dσ <∞. (3.5)

From m ≤ 0 we obtain that 1 − γ ≥ 0, hence there exists Q1(0). Also, we have
Q2(t) ≤ c · tγ (δ−1)−ε+1 → 0, since the exponent at t is positive, which follows again
from m>−p. This proves that

lim
t→0

ω(t)

tγ
= lim
t→0

ω′(t)
γ tγ−1

= g0 +Q1(0), (3.6)

where we have used L’Hospital’s rule. Now we can proceed in the same way as in the
proof of Lemma 8(b) in [8] with g0 +Q1(0) instead of g0. �

An immediate consequence is the following regularity result.
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Theorem 3.2 (a posteriori regularity). Let all the conditions of Theorem 2.2 be satisfied
with (3.1), and let u be a solution of quasilinear elliptic problem (1.1), obtained in the
proof of Theorem 2.2 using integral representation (2.8).

(a) If m<−1, then limr→0u
′(r)= −∞. In particular, u /∈ C1(B̄).

(b) If m= −1, then

lim
r→0

u′(r)= −
(

g̃0

m+N
)p′/p

. (3.7)

As in case (a), we have u /∈ C1(B̄).
(c) If −1<m< p−2, then

lim
r→0

u′(r)= 0, lim
r→0

u′′(r)= −∞. (3.8)

In particular, u ∈ C1(B̄) and u /∈ C2(B).
(d) If m≥ p−2, then limr→0u

′(r)= 0 and

lim
r→0

u′′(r)=




−m+1

p−1

(
g̃0

m+N
)p′/p

for m= p−2,

0 for m> p−2.
(3.9)

In particular, u is a classical solution, u ∈ C2(B̄).

Using lower oscillation estimate from [9] or [7], it is possible to obtain a priori
estimate of u(0) from below for any solution of (1.1) obtained in Theorem 2.2. They
have precisely the same form as in Proposition 7 of [8], but with m ≤ 0. We omit the
proof.

Proposition 3.3 (estimates of u(0)). (a) Let u be any solution of quasilinear elliptic
equation (1.1) obtained in the proof of Theorem 2.2 with the right-hand side equals to
(3.1). Then we have the following a posteriori estimate:

u(0)≤N p−1

m+p ·C(m+p)/(N(p−1))
N R(m+p)/(p−1)M

p′−1
0 , (3.10)

where M0 is defined by (2.30).
(b) For any weak solution u of (1.1) satisfying (3.1), we have the following a priori

estimate:

u(0)≥




1

(2p)p
′

(
Rm+pg̃0

2N −1

)p′−1

for m< 0,

(
c(p,N)Rpg̃0

pp

)p′−1

for m= 0,

(3.11)

where

c(p,N)= sup
t∈(0,1/2)

tp
[
(1− t)N − tN ]

1+ tN −(1− t)N . (3.12)
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In particular, when p = 2, N = 2, m = 0, we obtain the following lower bound for
weak solutions of (1.1):

u(0)≥ 1

64
R2g̃0. (3.13)

4. Quasilinear elliptic problems on general bounded domains

It is possible to extend our solvability results for quasilinear equations defined on balls
to arbitrary bounded domains : in R

N . We consider

−�pu= F(x,u,∇u) in :, u ∈W 1,p
0 (:)∩L∞(:). (4.1)

Here F :× R × R
N → R is a Carathéodory function (i.e., F(x,η,ζ ) is measurable

with respect to x for fixed η and ζ , and continuous with respect to η and ζ for a.e. x),
satisfying the following growth property (note that e0 = p):

−g̃0
∣∣x−x0

∣∣m0 − h̃0|η|q0 − f̃0|ζ |p ≤ F(x,η,ζ )≤ g̃1
∣∣x−x1

∣∣m1 + h̃1|η|q1 + f̃1|ζ |p,
(4.2)

where x0 and x1 are given points in R
N , and g̃i , h̃i , and h̃i are positive coefficients. We

introduce constants αi , βi analogously as in (2.1), γi , δi , εi as in (2.2), and gi , hi , fi as
in (2.3).

For a given x1 ∈ R
N it is convenient to define outer radius of : with respect to x1:

R
(
x1,:

)= max
x∈∂:d

(
x1,x

)
. (4.3)

In other words, R(x1,:) is the smallest radius R such that : is contained in the ball
BR(x1). We also denote T1 = |BR(x1,:)(x1)|. In the following theorem we do not require
that either x0 or x1 be in :̄.

We now state an existence result for quasilinear elliptic equations with natural growth
in the gradient on general domains. Note that the requirement that p be a quotient of
even and odd integers includes the case of p = 2.

Theorem 4.1 (existence of solutions). Let p be a quotient of even and odd integers,
1 < p < ∞, max{−p,−N} < mi ≤ 0, qi > 0, and let f̃i , g̃i , h̃i be positive real
numbers, i = 0,1. Assume that F [0,R]× R × R

N → R is a Carathéodory function
satisfying condition (4.2). Assume that the following property holds:

∃Mi > 0, gi ≤Mi−hi M
βiqi
i T

qi(βiγi−αi+1)+1−γi
i

βiγi−αi+1
−fi M

δi
i T

γi(δi−1)−εi+1
i(

γiδi−εi+1
)γi , (4.4)

for both i = 0,1. Then quasilinear elliptic problem (4.1) possesses at least one weak
solution u ∈W 1,p

0 (:)∩L∞(:).

Proof. It suffices to find a negative subsolution ψ0 and a positive supersolution ψ1 in
W

1,p
0 (:) ∩ L∞(:), since then we can use [2, Theorem 3.1]. To obtain a negative
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subsolution of (4.1) we consider an auxilliary elliptic equation defined in the ball
B0 = BR(x0,:)(x0) containing ::

−�pu0 = −g̃0
∣∣x−x0

∣∣m0 − h̃0
∣∣u0
∣∣q0 − f̃0

∣∣∇u0
∣∣p,

u0 ∈W 1,p
0

(
B0
)∩L∞(B0

)
.

(4.5)

We seek a solution u0(x) of this problem in the following form:

u0(x)=
∫ |B0|

CN |x−x0|N
ω(t)β0

tα0
dt (4.6)

with

ω ∈D0(K)=
{
ϕ ∈ C([0,T0

]) : 0 ≥ ϕ(t)≤ −M0t
γ0
}
, (4.7)

for some positive constant M0 independent of ϕ. Therefore, (1.1) reduces to

dω

dt
= −g0γ0t

γ0−1 −h0

∣∣∣∣
∫ T0

t

ω(σ )β0

σα0
dσ

∣∣∣∣
q0

−f0
ω(t)δ0

tε0
, (4.8)

with the coefficients defined as in (2.2) and (2.3). Although ω(t)≤ 0 for all t ∈ [0,T0],
the expression ω(t)p

′−1 appearing in (4.6) is well defined since p = 2k/(2l−1), and
therefore u0 < 0 in B0. Now we proceed similarly as in the proof of Theorem 2.2 to
obtain existence of a negative solution u0 of (4.1). The desired negative subsolution of
(4.1) is then ψ0 = u0|:. Analogously, we find a positive supersolution ψ1 = u1|: of
(4.1), by considering an auxiliary elliptic equation

−�pu1 = −g̃1
∣∣x−x1

∣∣m1 − h̃1
∣∣u1
∣∣q1 − f̃1

∣∣∇u1
∣∣p,

u1 ∈W 1,p
0 (B1)∩L∞(B1

)
,

(4.9)

where B1 = BR(x1,:)(x1). �

From Theorem 4.1 we can derive the following result analogously as in the proof of
Theorem 2.4.

Theorem 4.2 (existence of solutions). Let p be a quotient of even and odd integers,
1< p <∞, max{−p,−N}<mi ≤ 0, and let g̃i , h̃i , and f̃i be positive real numbers,
i = 1,2. Assume that F [0,R]× R × R

N → R is a Carathéodory function satisfying
condition (4.2).

(a) If qi < p−1 and ei < p−1, then (4.1) possesses a weak solution u ∈W 1,p
0 (:)∩

L∞(:) for any positive g̃0, h̃0, and f̃0.
(b) Assume that ei > qi = p−1, and let g̃i , h̃i , and f̃i satisfy the following condi-

tions:

hi <
1

ai
, g

δi−1
i fi ≤ bi

(
1−aihi

)δi , (4.10)
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where we define

ai = T
qi(βiγi−αi+1)+1−γi
i

βiγi−αi+1
, bi =

(
δi−1

)δi−1

δ
δi
i

· γiδi−εi+1

T
γi(δi−1)−εi+1
i

. (4.11)

Then quasilinear elliptic problem (4.1) possesses at least one weak solution u ∈
W

1,p
0 (:)∩L∞(:).

In the following result we need the notion of outer radius of domain :, which is
defined by

R(:)= inf
{
r > 0 ∃x1 ∈ R

N,:⊆ Br
(
x1
)}
. (4.12)

Note that the outer radius and diameter of : are related by R(:) ≥ (1/2)diam:. A
solvability result involving outer radius of :, with the right-hand side in (1.1) which
does not depend on the gradient, can be seen in El Hachimi and Gossez [5].

Corollary 4.3. Let N ≥ 2, −2<mi ≤ 0, and

h̃i <
N
(
mi+2

)
R
(
xi,:

)2 , i = 0,1, (4.13)

where R(xi,:) is defined by (4.3). Assume that F [0,R] × R × R
N → R is a

Carathéodory function satisfying condition (4.2), and let g̃i and f̃i be positive real
numbers such that

g̃i · f̃i ≤
(
mi+N

)(
2mi+N+2

)
4R
(
xi,:

)mi+2
·
(

1− R
(
xi,:

)2
h̃i

N
(
mi+2

)
)2

, i = 0,1. (4.14)

Then elliptic problem (4.1) with p = 2 possesses a weak solution u ∈H 1
0 (:)∩L∞(:).

In particular, if mi = 0 for i = 0 or i = 1, then the corresponding R(xi,:) can be
changed to outer radius R(:) in the above conditions.

Remark 4.4. Note that in Corollary 4.3, condition (4.13) is also a nonresonance condi-
tion, since :⊆ Bi := BR(xi ,:)(xi) implies that, see (1.9):

h̃i <
N
(
mi+2

)
R2
i

< λ1
(
Bi
)≤ λ1(:), (4.15)

where λ1(:) is the first eigenvalue of the operator D on : with zero boundary data.
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