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We consider quasilinear strongly resonant problems with discontinuous right-hand side.
To develop an existence theory we pass to a multivalued problem by, roughly speaking,
filling in the gaps at the discontinuity points. We prove the existence of at least three
nontrivial solutions. Our approach uses the nonsmooth critical point theory for locally
Lipschitz functionals due to Chang (1981) and a generalized version of the Ekeland
variational principle. At the end of the paper we show that the nonsmooth Palais-Smale
(PS)-condition implies the coercivity of the functional, extending this way a well-known
result of the “smooth” case.

1. Introduction

In [16, 17], we studied quasilinear elliptic problems at resonance and near resonance
with discontinuous right-hand side. In [16], we investigated the resonant problem and
using a variational approach, we proved the existence of a nontrivial solution. In [17],
we considered problems near resonance with the parameter λ approaching from the left
the first eigenvalue λ1 of the p-Laplacian. For such problems we prove the existence
of at least three nontrivial solutions. At the end of that paper, we mention, as an open
problem, the existence of multiple nontrivial solutions for the resonant equation. The
aim of this work is to give a solution to this open problem. Contrary to what we
had in [16], here we assume that the potential function F (z,x) = ∫ x

0 f (z,r)dr has a
finite limit for a.a. z ∈ Z as x → ±∞. In this respect our work is similar to that of
Thews [21], Bartolo et al. [8], and Ward [23]. In [8], this case was termed “strongly
resonant.” The case where limx→±∞F (z,x) is infinite for all z ∈ E± with |E±| > 0
(here we denote by | · | the Lebesgue measure on R

N ) was considered by Ahmad
et al. [3] and Rabinowitz [19] while a mixed situation with limx→∞F (x) = 0 and
limx→−∞F (x) = +∞ was studied by Costa and Silva [12]. All the aforementioned
works deal with semilinear equations which have a continuous right-hand side and
prove the existence of one nontrivial solution. Multiple solutions for semilinear resonant
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problems with a continuous f , were proved by Ahmad [2], Goncalves and Miyagaki
[13, 14], and Landesman et al. [18]. The first multiplicity result for the quasilinear
resonant problem was obtained recently by Alves et al. [4], who studied an equation with
the p-Laplacian and a continuous right-hand side. To our knowledge, our theorem is the
first multiplicity result for strongly resonant quasilinear problems with discontinuities.
We hope that our work here will motivate further research on the problem which
will improve our result by relaxing some of our hypotheses and by obtaining new
multiplicity results.

Our approach combines the critical point theory for nonsmooth locally Lipschitz
functionals due to Chang [10] with a recently obtained extension of the Ekeland vari-
ational principle due to Zhong [24]. We make use of a weak form of the nonsmooth
Palais-Smale condition, originally due to [9] (for smooth problems) which has been
exploited by Bartolo et al. [8] (again in the context of smooth problems). We show that
the quasilinear discontinuous resonant problem has at least three nontrivial solutions.
In Section 4, we show that the usual nonsmooth Palais-Smale condition, introduced
by Chang [10] implies the coercivity of the functionals. This allows us to extend the
well-known result in the “smooth” context to the present case.

2. Preliminaries

Let X be a Banach space and let X∗ be its topological dual. A function f : X → R

is said to be “locally Lipschitz,” if for every x ∈ X there exists a neighbourhood
U of x and a constant k > 0 depending on U such that |f (z)− f (y)| ≤ k‖z− y‖
for all z,y ∈ U . From convex analysis we know that a proper, convex, and lower
semicontinuous function g : X → R̄ = R∪ {+∞} is locally Lipschitz in the interior
of its effective domain dom g = {x ∈ X : g(x) < +∞}. For a locally Lipschitz f , we
define the “generalized directional derivative” at x ∈X in the direction h ∈X by

f 0(x;h)= lim
x′→x,
λ↓0

f
(
x′ +λh

)−f
(
x′

)
λ

. (2.1)

It is easy to check that h→ f 0(x;h) is sublinear, continuous (in fact |f 0(x;h)| ≤
k‖h‖, hence f 0(x; ·) is Lipschitz continuous). So from the Hahn-Banach theorem, we
know that f 0(x; ·) is the support function of a nonempty, convex and w∗-compact set
defined by

∂f (x)= {
x∗ ∈X∗ : (x∗,h

)≤ f 0(x;h) ∀h ∈X
}
. (2.2)

The set ∂f (x) is called the “generalized (or Clarke) subdifferential” of f (·) at x.
If f,g : X → R are locally Lipschitz functions, then ∂(f + g)(x) ⊆ ∂f (x)+ ∂g(x)

and ∂(λf )(x) = λ∂f (x) for all λ ∈ R. Moreover, if f : X → R is also convex, then
the generalized subdifferential and the subdifferential in the sense of convex analysis
coincide. If f is strictly differentiable at x (in particular, if f is continuously Gateaux
differentiable at x), then ∂f (x) = {f ′(x)}. A point x ∈ X is a “critical point” of f

if 0 ∈ ∂f (x). It is easy to see that if x ∈ X is a local minimum or maximum, then
0 ∈ ∂f (x). For details we refer to Clarke [11].
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It is well known that the classical critical point theory for smooth functions, uses
a compactness condition known as the “Palais-Smale condition” ((PS)-condition). In
the present nonsmooth context this condition takes the following form: we say that f

satisfies the “nonsmooth (PS)-condition,” if any sequence {xn}n≥1 ⊆ X along which

{f (xn)}n≥1 is bounded and m(xn)=min{‖x∗‖ : x∗ ∈ ∂f (xn)} n→∞−−−→ 0, has a strongly
convergent subsequence. If f ∈ C1(X), then since ∂f (xn) = {f ′(xn)}, we see that the
above definition coincides with the classical (PS)-condition (see Rabinowitz [19]).

A weaker form of the (PS)-condition was introduced for smooth functions by Ce-
rami [9]. Cerami’s condition for a locally Lipschitz functional R : X → R in the
present nonsmooth setting has the following form: “Any sequence {xn}n≥1 ⊆ X such

that |R(xn)| ≤ M , n ≥ 1, and (1+‖xn‖)m(xn)
n→∞−−−→ 0, has a strongly convergent

subsequence.” We call this condition “nonsmooth C-condition.” It was proved in the
smooth case by Bartolo et al. [8, Theorem 1.3], that this weaker compactness condi-
tion suffices in order to have the deformation theorem and from that derive minimax
principles. The same can be done in the nonsmooth case, where we can obtain the
deformation theorem of Chang [10, Theorem 3.1] by simple modifications of the proof
of Bartolo et al. [8] based on Chang [10, Lemmas 3.1–3.4], and then have the non-
smooth minimax principles. An alternative approach, avoiding the deformation theo-
rem, can be based in the recent generalization of the Ekeland variational principle due to
Zhong [24] (see also Theorem 2.2 below). Evidently the nonsmooth (PS)-condition im-
plies the nonsmooth C-condition. We say that a locally Lipschitz functional R :X→ R

satisfies the “nonsmooth C-condition at level c” (respectively, the “nonsmooth (PS)-

condition at level c”), if any sequence {xn}n≥1 ⊆ X satisfying R(xn)
n→∞−−−→ c and

(1+‖xn‖)m(xn)
n→∞−−−→ 0 (respectively, m(xn)

n→∞−−−→ 0) has a convergent subsequence.
If these are true for every c ∈ R, then we have the previously introduced “global” def-
initions.

The next theorem is due to Chang [10] and extends to a nonsmooth setting the
well-known “mountain pass theorem” due to Ambrosetti and Rabinowitz [5].

Theorem 2.1. If X is a reflexive Banach space, R : X → R is locally Lipschitz, there
exist y ∈X and r > 0 with ‖y‖> r such that max{R(0),R(y)}< inf[R(x) : ‖x‖ = r],
c = inf� max0≤t≤1 R(γ (t)), where � = {γ ∈ C([0,1],X) : γ (0) = 0,γ (1) = y} and
R(·) satisfies the nonsmooth C-condition at level c, then c ≥ inf[R(x) : ‖x‖ = r] and
there exists x ∈X such that 0 ∈ ∂R(x),R(x)= c.

Let Z ⊆ R
N be a bounded domain. Consider the following nonlinear eigenvalue

problem:

−div
(‖Dx(z)‖p−2Dx(z)

)= λ|x(z)|p−2x(z) a.e. on Z, x|� = 0. (2.3)

The least real number for which problem (2.3) has a nontrivial solution, is the first eigen-
value of the negative p-Laplacian −�px =−div(‖Dx‖p−2Dx) with Dirichlet bound-

ary conditions (i.e., of (−�p,W
1,p

0 (Z))) and is denoted by λ1. This first eigenvalue λ1
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is positive, isolated, and simple (i.e., the associated eigenfunctions are constant mul-
tiples of each other). Moreover, we have the following variational characterization of
λ1 > 0 via a Rayleigh quotient, namely

λ1 =min

[
‖Dx‖p

p

‖x‖p
p

: x ∈W
1,p

0 (Z), x �= 0

]
. (2.4)

This minimum is realized at the normalized eigenfunction u1. Note that if u1 mini-
mizes the Rayleigh quotient, then so does |u1| and so we infer that the first eigenfunction
u1 does not change sign on Z. In fact we can show that u1 �= 0 a.e. on Z and so we
may assume that u1(z) > 0 a.e. on Z (note that when the boundary of Z is smooth, by
nonlinear elliptic regularity theory, u ∈ C

1,β

loc (Z), 0 < β < 1; see Tolksdorf [22]). The
first work on the properties of λ1 when Z ⊆ R

N is a bounded domain of Holder class
C2,a was obtained by Anane [6]. His result was extended to general bounded domains
by Lindqvist [21].

The Ljusternik-Schnirelmann theory gives, in addition to λ1, a whole strictly in-
creasing sequence of positive real numbers 0 < λ1 < λ2 < λ3 < · · · < λk < · · ·
for which there exist nontrivial solutions of the nonlinear eigenvalue problem (2.3).
In other words, the spectrum σ(−�p) of (−�p,W

1,p

0 (Z)) contains at least these
points {λk}k≥1. Nothing is known about the possible existence of other points in
σ(−�p) ⊆ [λ1,∞) ⊆ R+. However, if X = 〈u1〉 = Ru1 and V is a topological

complement (i.e., W
1,p

0 (Z) = X ⊕ V ), then because λ1 > 0 is isolated we
have

λ̂2V = inf

[
‖Dv‖p

p

‖v‖p
p

: v ∈ V, v �= 0

]
> λ1, λ̂2 = sup

V

λ̂2V . (2.5)

Concerning λ̂2 we have the important recent work of Anane and Tsouli [7], who proved
that λ̂2 is the second eigenvalue of (−�p,W

1,p
o (Z)). Finally, we recall the following

generalization of the Ekeland variational principle due to Zhong [24] which we will
need in what follows.

Theorem 2.2. If h : R+ → R+ is a continuous nondecreasing function such that∫∞
0 1/(1+ h(r))dr = +∞, (Y,d) is a complete metric space, x0 ∈ Y is fixed, φ :

Y → R̄ = R∪{+∞} is a lower semicontinuous function not identically +∞ which is
bounded from below then for any given λ > 0, ε > 0, and y ∈ Y such that φ(y) ≤
infY φ+ε, we can find x ∈ Y such that

(a) φ(x)≤ φ(y);
(b) φ(x)≤ (φ(u)+ε/(λ(1+h(d(x0,x)))))d(u,x) for all u ∈ Y ; and
(c) d(x,x0) ≤ d(y,x0)+ r̄ , where r̄ > 0 is such that

∫ d(y,x0)+r̄

d(y,x0) 1/(1+ h(r))dr

≥ λ.

Remark 2.3. If h(r) ≡ 0 and x0 = y, then we recover Ekeland’s variational principle
(cf. Hu and Papageorgiou [15]).
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Now we are ready to start studying our problem. So let Z ⊆ R
N be a bounded domain

with a C1-boundary �. We consider the following quasilinear resonant problem:

−div
(‖Dx(z)‖p−2Dx(z)

)−λ1|x(z)|p−2x(z)= f
(
z,x(z)

)
a.e. on Z, x|� = 0,2 ≤ p <∞.

(2.6)

We do not assume that f (z, ·) is continuous and so problem (2.6) need not have a
solution. To be able to develop a reasonable existence theory, we pass to a multivalued
version of (2.6) by, roughly speaking, filling in the gaps at the discontinuity points of
f (z, ·). More precisely, we introduce the following two functions:

f1(z,x)= lim
x′→x

f
(
z,x′

)= lim
δ↓0

ess inf
|x′−x|<δ

f
(
z,x′

)
,

f2(z,x)= lim
x′→x

f
(
z,x′

)= lim
δ↓0

esssup
|x′−x|<δ

f
(
z,x′

)
.

(2.7)

Using them we define the multifunction f̂ (z,x)= {y ∈ R : f1(z,x)≤ y ≤ f2(z,x)}.
Then instead of (2.6) we study the following quasilinear resonant elliptic inclusion:

−div
(‖Dx(z)‖p−2Dx(z)

)−λ1|x(z)|p−2x(z) ∈ f̂
(
z,x(z)

)
a.e. on Z, x|� = 0, 2 ≤ p <∞.

(2.8)

By a solution of (2.8) we mean a function x∈W
1,p

0 (Z) such that div(‖Dx(·)‖p−2Dx(·))
∈ L1(Z) and −div(‖Dx(z)‖p−2Dx(z)) − λ1|x(z)|p−2x(z) = u(z) a.e. on Z with
u ∈ L1(Z),f1(z,x(z)) ≤ u(z) ≤ f2(z,x(z)) a.e. on Z. We show that (2.8) has at
least three distinct nontrivial solutions. For this purpose we introduce the following
hypotheses on f (z,x).

(H) f : Z×R→ R is a measurable function such that

(i) f1,f2 are N -measurable functions (i.e., for every x : Z → R measurable
function, z → f1(z,x(z)) and z → f2(z,x(z)) are measurable functions;
superpositional measurability);

(ii)

|f (z,x)| ≤
{

a1(z) for a.a. z ∈ Z, all x < 0,

a2(z)+c2|x|σ−1 for a.a. z ∈ Z, all x ≥ 0,
(2.9)

where a1,a2 ∈ L∞(Z),c2 > 0, and 1≤ σ ≤ p∗,p∗ =Np/(N−p);

(iii) there exist F± ∈ L1(Z) such that F (z,x)
x→−∞−−−−→ F−(z) and F (z,x)

x→∞−−−→
F+(z) uniformly for a.a. z ∈ Z

(iv) for a.a. z ∈ Z and all x ∈ R, pF (z,x)≤ (λ̂2−λ1)|x|p;
(v) there exist constants η,γ > 0 such that for a.a. z ∈ Z and all x ≥ η > 0

we have (xu∗−pF (z,x))/|u∗|1+1/r ≥ γ > 0 for all u∗ ∈ f̂ (z,x) and with
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1≤ r ≤ p∗−1. Further if {xn}n≥1 ⊆W
1,p

0 (Z) is such that |xn(z)| n→∞−−−→∞
a.e. on Z, then

∫
Z

fi(z,xn(z))xn(z)dz
x→∞−−−→ 0 for i = 1,2;

(vi) limx→0(pF (z,x)/|x|p) <−λ1 uniformly for a.a. z ∈ Z;
(vii) there exist ξ− < 0 < ξ+ such that

∫
Z

F (z,ξ±u1(z))dz > 0 and
∫

Z
F (z,

ξ±u1(z))dz >
∫

Z
F±(z)dz.

Remark 2.4. Hypothesis (H)(i) is satisfied if f is independent of z ∈ Z or if for a.a.
z ∈ Z, f (z, ·) is monotone nondecreasing. Indeed, in the first case the N -measurability
of f1 and f2 follows from the fact that f1 is lower semicontinuous, while f2 is up-
per semicontinuous. In the second case note that f1(z,x) = limn→∞f (z,x − 1/n)

and f2(z,x) = limn→∞f (z,x + 1/n), hence both functions f1 and f2 are measur-
able, thus N -measurable too. Hypothesis (H)(iii) is the “strong resonance” condi-
tion since for a.a. z ∈ Z,F± are finite. Evidently by virtue of hypothesis (H)(vi),
the growth condition imposed in (H)(iv) is automatically satisfied in a neighbourhood
of zero. Note that hypothesis (H)(iv) is analogous to hypothesis H∞ of Goncalves
and Miyagaki [14] and hypothesis (g5) of Costa and Silva [12]. The first part of hy-
pothesis (H)(v) is a variant of the well-known Ambrosetti and Rabinowitz condition
(see Ambrosetti and Rabinowitz [5] or Rabinowitz [19]). It is consistent with hy-
pothesis (H)(ii), (iii), (iv) and it implies that for x ≥ η > 0 we have F (z,x) < 0.

If for i = 1,2, fi(z,x)x
|x|→∞−−−−→ 0 uniformly for all z ∈ Z, then the second part

of hypothesis (H)(v) is satisfied. Because of hypothesis (H)(vii), we do not need
the second part of hypothesis (H)(v) for the proof of the existence of two solu-
tions. Hypothesis (H)(vi) is needed in order to be able to apply Theorem 2.1 and
have a third nontrivial solution. Without it we cannot guarantee that the third so-
lution (which in this case is obtained via the mountain pass theorem) is nontriv-
ial.

3. Auxiliary results

Let R :W 1,p

0 (Z)→ R be the energy functional defined by

R(x)= 1

p
‖Dx‖p

p− λ1

p
‖x‖p

p−
∫

Z

F
(
z,x(z)

)
dz. (3.1)

Because of hypothesis (H)(iii) and since W
1,p

0 (Z) is embedded continuously in
Lσ (Z) (Sobolev embedding theorem), from Chang [10] we have that R(·) is locally
Lipschitz. In this section, we prove a series of auxiliary results which determine the
properties of R(·).

Proposition 3.1. If hypotheses (H) hold, then R(·) is bounded below.

Proof. Using hypothesis (H)(iii), we can find M > 0 such that for a.a. z ∈ Z we have∣∣F (z,x)−F−(z)
∣∣≤ 1 ∀x ≤−M,∣∣F (z,x)−F+(x)
∣∣≤ 1 ∀x ≥M.

(3.2)
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Also by virtue of (H)(ii), we see that for a.a. z ∈ Z and all |x|< M, |F (z,x)| ≤ â(z)

with â ∈ L∞(Z). Then for every x ∈W
1,p

0 (Z) we have

R(x)= 1

p
‖Dx‖p

p− λ1

p
‖x‖p

p−
∫
{|x(z)|<M}

F
(
z,x(z)

)
dz

−
∫
{x(z)<−M}

F
(
z,x(z)

)
dz−

∫
{x(z)>M}

F
(
z,x(z)

)
dz (3.3)

≥−∥∥â
∥∥

1−
∥∥F−

∥∥
1−

∥∥F+
∥∥

1−2|Z|. �

Recall that W
1,p

0 (Z) = X⊕V with X = 〈u1〉 = Ru1 and V a topological comple-
ment.

Proposition 3.2. If hypotheses (H) hold, then R|V ≥ 0.

Proof. Using hypothesis (H)(iv) and (2.5), for every v ∈ V we have

R(v)= 1

p
‖Dv‖p

p− λ1

p
‖v‖p

p−
∫

Z

F
(
z,v(z)

)
dz

≥ 1

p
‖Dv‖p

p− λ1

p
‖v‖p

p− 1

p

(
λ̂2−λ1

)‖v‖p
p

≥ 1

p
‖Dv‖p

p− λ1

p
‖v‖p

p− 1

p
‖Dv‖p

p+ λ1

p
‖v‖p

p = 0.

(3.4)

�

Recalling that ‖Du1‖p
p = λ1‖u1‖p

p (see Section 2) and using hypothesis (H)(vii), we
have the following propositions.

Proposition 3.3. If hypotheses (H) hold, then R(ξ±u1) < 0.

Proposition 3.4. If hypotheses (H) hold, then R(·) satisfies the nonsmooth C-condition
at level c �= −∫

Z
F±(z)dz.

Proof. Let {xn}n≥1⊆W
1,p

0 (Z) be a sequence such that R(xn)
n→∞−−−→c, c �=−∫

Z
F±(z)dz

and (1+‖xn‖1,p)m(xn)
n→∞−−−→ 0 where for every x ∈W

1,p

0 (Z), m(x)= inf{‖x∗‖ : x∗ ∈
∂R(x)} (see Section 2). Let x∗n ∈ ∂R(xn), n ≥ 1, be such that ‖x∗n‖ = m(xn). Its exis-
tence follows from the fact that ∂R(xn) is weakly compact in W−1,q(Z) and from the
weak lower semicontinuity of the norm functional. Since x∗n ∈ ∂R(xn), we have

x∗n = A
(
xn

)−λ1J
(
xn

)−u∗n, n≥ 1, (3.5)

where A : W
1,p

0 (Z) → W−1,q(Z)(1/p + 1/q = 1) is defined by 〈A(x),y〉 =∫
Z
‖Dx(z)‖p−2(Dx(z),Dy(z))RN dz, J (xn)(·) = |xn(·)|p−2xn(·), and u∗n ∈ ∂ψ(xn),

where ψ(x) = ∫
Z

F (z,x(z))dz for all x ∈ W
1,p

0 (Z). Note that by 〈·, ·〉 we denote

the duality brackets for the pair (W
1,p

0 (Z),W−1,q(Z)). From Chang [10] we know
that f1(z,xn(z)) ≤ u∗n(z) ≤ f2(z,xn(z)) a.e. on Z. Also it is easy to check that A is
monotone, demicontinuous, hence maximal monotone (see Hu and Papageorgiou [15]).
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Claim. {xn}n≥1 ⊆W
1,p

0 (Z) is bounded.
Suppose not. Then by passing to a subsequence if necessary, we may assume that

‖xn‖ n→∞−−−→ ∞,‖xn‖ �= 0 for all n ≥ 1. From the choice of the sequence {xn}n≥1,
we have

pR
(
xn

)= ∥∥Dxn

∥∥p

p
−λ1

∥∥xn

∥∥p

p
−pψ

(
xn

)≤ pM1 for some M1 > 0, (3.6)∣∣〈x∗n,xn

〉∣∣≤ εn with εn ↓ 0. (3.7)

From (3.7) we have

−〈
A

(
xn

)
,xn

〉+λ1
(
J
(
xn

)
,xn

)
qp
+(

u∗n,xn

)
σ ′σ ≤ εn, (3.8)

where by (·, ·)qp we denote the duality brackets for the pair (Lq(Z),Lp(Z)),1/p+
1/q = 1 and by (·, ·)σ ′σ the duality brackets for the pair (Lσ ′(Z),Lσ (Z)),1/σ +1/σ ′
= 1. Note that by the Sobolev embedding theorem W

1,p

0 (Z) is embedded continuously
in Lp(Z) and in Lσ (Z), hence xn ∈ Lp(Z)∩Lσ (Z) for all n≥ 1, while J (xn) ∈ Lq(Z)

and u∗n ∈ Lσ ′(Z) (see hypothesis (H)(iii)). So we have

−∥∥Dxn

∥∥p

p
+λ1

∥∥xn

∥∥p

p
+

∫
Z

u∗n(z)xn(z)dz ≤ εn. (3.9)

Adding (3.6) and (3.9), we obtain

−pψ
(
xn

)+∫
Z

u∗n(z)xn(z)dz ≤ pM1+c3 for some c3 > 0,

#⇒
∫
{xn<0}

(
u∗n(z)xn(z)−pF

(
z,xn(z)

))
dz

+
∫
{xn≥0}

(
u∗n(z)xn(z)−pF

(
z,xn(z)

))
dz ≤ pM1+c3.

(3.10)

Because of hypothesis (H)(ii), we have∣∣∣∣
∫
{xn<0}

(
u∗n(z)xn(z)−pF

(
z,xn(z)

))
dz

∣∣∣∣≤ c4
∥∥xn

∥∥
1,p

for some c4 > 0. (3.11)

Using (3.11) in (3.10), we obtain∫
{xn≥0}

(
u∗n(z)xn(z)−pF

(
z,xn(z)

))
dz

≤ c5+c4
∥∥xn

∥∥
1,p

(with c5 = pM1+c3).

(3.12)

Dividing by ‖xn‖1+1/r

1,p , we have

∫
{xn≥0}

u∗n(z)xn(z)−pF
(
z,xn(z)

)
∥∥xn

∥∥1+1/r

1,p

dz ≤ c5∥∥xn

∥∥1+1/r

1,p

+ c4∥∥xn

∥∥1/r

1,p

#⇒ lim
n→∞

∫
{xn≥0}

u∗n(z)xn(z)−pF
(
z,xn(z)

)
∥∥xn

∥∥1+1/r

1,p

dz= 0.

(3.13)
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Note that in concluding the last equality (and not only the inequality ≤ 0), we have
used hypothesis (H)(v). Also from the same hypothesis, we see that for a.a. z ∈ Z, if
xn(z)≥ η > 0, then u∗n(z) �= 0. So we can write that

∫
{0≤xn}

u∗n(z)xn(z)−pF
(
z,xn(z)

)
∥∥xn

∥∥1+1/r

1,p

dz=
∫
{0≤xn<η}

u∗n(z)xn(z)−pF
(
z,xn(z)

)
∥∥xn

∥∥1+1/r

1,p

dz

+
∫
{xn≥η}

u∗n(z)xn(z)−pF
(
z,xn(z)

)
∣∣u∗n(z)

∣∣1+1/r

∣∣u∗n(z)
∣∣∥∥xn

∥∥1+1/r

1,p

dz.

(3.14)

Because of hypothesis (H)(ii) we have for some c6 > 0

∣∣∣∣
∫
{0≤xn<η}

u∗n(z)xn(z)−pF
(
z,xn(z)

)
∥∥xn

∥∥1+1/r

1,p

dz

∣∣∣∣≤ c6∥∥xn

∥∥1/r

1,p

n→∞−−−→ 0,

#⇒
∫
{xn≥η}

u∗n(z)xn(z)−pF
(
z,xn(z)

)
∣∣u∗n(z)

∣∣1+1/r

×
∣∣u∗n(z)

∣∣1+1/r∥∥xn

∥∥1+1/r

1,p

dz
n→∞−−−→ 0 (from (3.13)and (3.15)),

#⇒
∫
{xn≥η}

∣∣u∗n(z)
∣∣1+1/r∥∥xn

∥∥1+1/r

1,p

dz
n→∞−−−→ 0 (see hypothesis (H)(v)).

(3.15)

Moreover, using once again hypothesis (H)(ii) and the fact that f1(z,xn(z)) ≤
u∗n(z)≤ f2(z,xn(z)) a.e. on Z, we have

∫
{0≤xn<η}

∣∣u∗n(z)
∣∣1+1/r∥∥xn

∥∥1+1/r

1,p

dz
n→∞−−−→ 0. (3.16)

Finally since |u∗n(z)| ≤ a1(z) a.e. on {xn < 0} and a1 ∈ L∞(Z) (see hypothesis
(H)(ii)), we have

∫
{xn<0}

∣∣u∗n(z)
∣∣1+1/r∥∥xn

∥∥1+1/r

1,p

dz ≤
∫
{xn<0}

a1(z)1+1/r∥∥xn

∥∥1+1/r

1,p

dz
n→∞−−−→ 0,

#⇒ u∗n∥∥xn

∥∥
1,p

n→∞−−−→ 0 in L1+1/r (Z).

(3.17)

If θ = 1+ 1/r , then θ ′ = r + 1 ≤ p∗, (1/θ + 1/θ ′ = 1), and so by the Sobolev
embedding theorem we have that W

1,p

0 (Z) is embedded continuously in Lθ ′(Z), hence

Lθ (Z)= Lθ ′(Z)∗ is embedded continuously in W−1,q(Z)=W
1,p

0 (Z)∗. So u∗n/‖xn‖1,p
n→∞−−−→ 0 in W−1,q(Z).
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Let yn = xn/‖xn‖1,p, n≥ 1. Since ‖yn‖1,p = 1, n≥ 1, by passing to a subsequence

if necessary, we may assume that yn
w−−→ y in W

1,p

0 (Z), yn → y in Lp(Z) (because

W
1,p

0 (Z) is embedded compactly in Lp(Z)), yn
w−−→ y in Lθ ′(Z) (because W

1,p

0 (Z) is

embedded continuously in Lθ ′(Z)), yn(z)→ y(z) a.e. on Z as n→∞ and |yn(z)| ≤
h(z) a.e. on Z with h ∈ Lp(Z).

Recall that m(xn)→ 0 and so〈
A

(
xn

)
,yn−y

〉−λ1
(
J
(
xn

)
,yn−y

)
pq
− 〈

u∗n,yn−y
〉≤ εn

∥∥yn−y
∥∥

1,p
, n≥ 1. (3.18)

Dividing by ‖xn‖p−1
1,p , we obtain

〈
A

(
yn

)
,yn−y

〉−λ1
(
J
(
yn

)
,yn−y

)
pq
−

〈
u∗n∥∥xn

∥∥
1,p

,
yn−y∥∥xn

∥∥p−2
1,p

〉
≤ εn∥∥xn

∥∥p−1
1,p

∥∥yn−y
∥∥

1,p
.

(3.19)
We know that u∗n/‖xn‖1,p

n→∞−−−→ 0 in W−1,q(Z), so 〈u∗n/‖xn‖1,p, (yn−y)/‖xn‖p−2
1,p 〉

n→∞−−−→ 0. Moreover, (J (yn),yn−y)pq
n→∞−−−→ 0. Thus finally we have

lim
〈
A

(
yn

)
,yn−y

〉≤ 0. (3.20)

But A being maximal monotone, is generalized pseudomonotone (cf. Hu and Papageor-
giou [15, Definition III.6.2 and Remark III.6.3, page 365]). So we have

A
(
yn

) w−−→ A(y) in W−1,q(Z) as n−→∞ (3.21)

and 〈A(yn),yn〉 → 〈A(y),y〉 ⇒ ‖Dyn‖p →‖Dy‖p.

Since Dyn
w−−→Dy in Lp(Z,R

N ) and the latter is uniformly convex, from the Kadec-
Klee property we infer that Dyn →Dy in Lp(Z,R

N ), hence yn → y in W
1,p

0 (Z) and
so ‖y‖1,p = 1; that is, y �= 0 (an alternative proof of this can be based on the continuity
of A−1).

Again from the choice of the sequence {xn}n≥1, we have that for every u ∈
W

1,p

0 (Z) ∣∣∣∣〈A(
xn

)
,u

〉−λ1
(
J
(
xn

)
,u

)
pq
−

∫
Z

u∗n(z)u(z)dz

∣∣∣∣≤ εn‖u‖1,p. (3.22)

Dividing by ‖xn‖p−1
1,p , we obtain

∣∣〈A(
yn

)
,u

〉−λ1
(
J
(
yn

)
,u

)
pq
−

∫
Z

u∗n(z)∥∥xn

∥∥
1,p

u(z)∥∥xn

∥∥p−2
1,p

dz

∣∣∣∣∣∣≤
εn∥∥xn

∥∥p−1
1,p

‖u‖1,p

#⇒ 〈A(y),u〉 = λ1
(
J (y),u

)
pq

∀u ∈W
1,p

0 (Z)

#⇒
∫

Z

‖Dy(z)‖p−2(Dy(z),Du(z)
)
RN dz

= λ1

∫
Z

|y(z)|p−2y(z)u(z)dz ∀u ∈W
1,p

0 (Z)

#⇒ 〈−div
(‖Dy‖p−2Dy

)
,u

〉= λ1
(|y|p−2y,u

)
pq

∀u ∈W
1,p

0 (Z).

(3.23)
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(Note that div(‖Dy‖p−2Dy) ∈ W−1,q(Z); recall the representation theorem for
the elements in W−1,q(Z) = W

1,p

0 (Z)∗, see, for example, Adams [1, Theorem 3.10,
page 50].) So we infer

−div
(‖Dy(z)‖p−2Dy(z)

)= λ1|y(z)|p−2y(z) a.e. on Z, y|� = 0

#⇒ y =±u1.
(3.24)

Suppose without any loss of generality that y = u1 (the proof for the case y =−u1

is similar). Since u1(z) > 0 for all z ∈ Z, we have that xn(z)
n→∞−−−→ ∞ a.e. on Z.

Recall that∣∣〈x∗n,xn

〉∣∣≤ εn (see (3.7))

#⇒−εn ≤
〈
A

(
xn

)
,xn

〉−λ1
(
J
(
xn

)
,xn

)
pq
−

∫
Z

u∗n(z)xn(z)dz ≤ εn

#⇒−εn ≤
∥∥Dxn

∥∥p

p
−λ1

∥∥xn

∥∥p

p
−

∫
Z

u∗n(z)xn(z)dz ≤ εn.

(3.25)

By virtue of hypothesis (H)(v) we have that
∫

Z
u∗n(z)xn(z)dz

n→∞−−−→ 0. So we infer

that ‖Dxn‖p
p−λ1‖xn‖p

p
n→∞−−−→ 0. From the choice of the sequence {xn}n≥1 ⊆W

1,p

0 (Z),

we have that R(xn)
n→∞−−−→ c. So given ε > 0 we can find n0 = n0(ε) ≥ 1 such that for

n≥ n0 we have

c−ε ≤ R
(
xn

)≤ c+ε

#⇒ c−ε ≤ 1

p

∥∥Dxn

∥∥p

p
− λ1

p

∥∥xn

∥∥p

p
−

∫
Z

F
(
z,xn(z)

)
dz ≤ c+ε.

(3.26)

Passing to the limit as n→∞, we obtain

c−ε ≤−
∫

Z

F+(z)dz ≤ c+ε. (3.27)

Let ε ↓ 0 to conclude that c =−∫
Z

F+(z)dz, a contradiction. This proves the claim.

Because of the claim and by passing to a subsequence if necessary, we may assume
that xn

w−−→ x in W
1,p

0 (Z) as n→∞. Also since f1(z,xn(z)) ≤ u∗n(z) ≤ f2(z,xn(z))

a.e. on Z, by virtue of hypothesis (H)(ii) we have that {u∗n}n≥1 ⊆ Lσ ′(Z) is bounded.
Therefore,〈

A
(
xn

)
,xn−x

〉= 〈
x∗n,xn−x

〉−λ1
(
J
(
xn

)
,xn−x

)
pq
−(

u∗n,xn−x
)
σσ ′

#⇒ lim
〈
A

(
xn

)
,xn−x

〉= 0.
(3.28)

But A being maximal monotone, is generalized pseudomonotone (see Hu and
Papageorgiou [15, Definition III.6.2 and Remark III.6.3, page 365]). So we have

〈A(xn),xn〉 n→∞−−−→ 〈A(x),x〉 ⇒ ‖Dxn‖p
n→∞−−−→ ‖Dx‖p. On the other hand, we know

that Dxn
w−−→ Dx in Lp(Z,R

n) and Lp(Z,R
N ) has the Kadec-Klee property (being

uniformly convex). So Dxn
n→∞−−−→ Dx in Lp(Z,R

N ), hence xn
n→∞−−−→ x in W

1,p

0 (Z).
�
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The next proposition allows the use of Theorem 2.1 (see also Proposition 3 of Kouro-
genis and Papageorgiou [16]).

Proposition 3.5. If hypotheses (H) hold, then we can find β1,β2 > 0 and p < ν ≤ p∗
such that R(x)≥ β1‖x‖p

1,p−β2‖x‖ν
1,p for all x ∈W

1,p

0 (Z).

Proof. By virtue of hypothesis (H)(vi) we can find µ < −λ1 and δ > 0 such that for
almost all z ∈ Z and all |x| ≤ δ, we have

F (z,x)≤ 1

p
µ|x|p. (3.29)

On the other hand, from hypothesis (H)(ii) we have

|F (z,x)| ≤ a3(z)|x|+ c2

p
|x|σ a.e. on Z ∀x ∈ R, (3.30)

with a3(z)=max{a1(z),a2(z)} ∈ L∞(Z).
Therefore, we can find γ > 0 large enough and p < ν ≤ p∗ such that the inequality

F (z,x)≤ 1

p
µ|x|p+γ |x|ν a.e. on Z ∀x ∈ R (3.31)

holds.
Then for every x ∈W

1,p

0 (Z) we have

R(x)= 1

p
‖Dx‖p

p− λ1

p
‖x‖p

p−
∫

Z

F
(
z,x(z)

)
dz

≥ 1

p
‖Dx‖p

p− λ1

p
‖x‖p

p− 1

p
µ‖x‖p

p−γ ‖x‖ν
ν

≥ 1

p
‖Dx‖p

p− 1

p

(
λ1+µ

)‖x‖p
p−γ ‖x‖ν

ν

≥ 1

p

(
− µ

λ1

)
‖Dx‖p

p−γ ‖x‖ν
ν.

(3.32)

Note that (1/p)(−µ/λ1) = β̂1 > 0. From Poincaré’s inequality and since W
1,p

0 (z) is
continuously embedded in Lν(Z) (recall that ν ≤ p∗), we can find β1,β2 > 0 such that

R(x)≥ β1‖x‖p

1,p−β2‖x‖ν
1,p ∀x ∈W

1,p

0 (Z). (3.33)

�

4. Multiplicity result

Now we have the necessary tools to state and prove a multiplicity theorem for prob-
lem (2.8).
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Theorem 4.1. If hypotheses (H) hold, then problem (2.8) has at least three nontrivial
solutions.

Proof. Let U± = {x ∈ W
1,p

0 (Z) : x = ± tu1+ v, t > 0, v ∈ V }. We show that R(·)
attains its infimum on both open sets U+ and U−. To this end let m+ = inf[R(x) : x ∈
U+] = inf[R(x) : x ∈ Ū+] (since R(·) is locally Lipschitz). Let

R̄(x)=
{

R(x) if x ∈ Ū+,

+∞ otherwise.
(4.1)

Evidently R̄(·) is a lower semicontinuous function which is bounded below (see
Proposition 3.1). Apply Theorem 2.2 with x0 = 0, h(r) = r , ε = ε2

n, where εn ↓ 0 and
λ= εn. Then noting Propositions 3.2 and 3.3, we can produce a sequence {xn}n≥1 ⊆ U+
such that R(xn) ↓m+ (minimizing sequence) and

R̄
(
xn

)≤ R̄(u)+ εn(
1+∥∥xn

∥∥
1,p

)∥∥xn−u
∥∥

1,p
∀u ∈W

1,p

0 (Z)

#⇒− εn(
1+∥∥xn

∥∥
1,p

)∥∥xn−u
∥∥

1,p
≤ R̄(u)− R̄

(
xn

)
.

(4.2)

Let u = xn+ tw, with t > 0 and w ∈W
1,p

0 (Z). Because xn ∈ U+ and U+ is open,
we can find δ > 0 such that for 0 ≤ t ≤ δ we have xn+ tw ∈ U+. Hence we have

− εn(
1+∥∥xn

∥∥
1,p

)‖w‖1,p ≤ R
(
xn+ tw

)−R
(
xn

)
t

for 0 < t ≤ δ

#⇒− εn(
1+∥∥xn

∥∥
1,p

)‖w‖1,p ≤ R0(xn;w
)
.

(4.3)

Let ψn(w)= ((1+‖xn‖1,p)/εn)R0(xn;w). Then ψn(·) is sublinear, continuous with

ψn(0) = 0 and −‖w‖1,p ≤ ψn(w) for all w ∈W
1,p

0 (Z). We can apply Lemma 1.3 of
Szulkin [20] and obtain y∗n ∈ W−1,q(Z), n ≥ 1, such that ‖y∗n‖ ≤ 1 and 〈y∗n,w〉 ≤
ψn(w) for all w ∈ W

1,p

0 (Z) and all n ≥ 1. Then if x∗n = εn/(1+ ‖xn‖1,p)y∗n , we

have 〈x∗n,w〉 ≤ R0(xn;w) for all w ∈ W
1,p

0 (Z), hence x∗n ∈ ∂R(xn), n ≥ 1. We have

(1+ ‖xn‖1,p)m(xn) ≤ (1+ ‖xn‖)‖x∗n‖ ≤ εn‖y∗n‖ ≤ εn
n→∞−−−→ 0. Note that because

of hypothesis (H)(vii), m+ < −∫
Z

F+(z)dz. So we can use Proposition 3.4 and as-

sume that xn → y1 in W
1,p

0 (Z) with y1 ∈ Ū+. Then R(xn)
n→∞−−−→ R(y1) = m+. If

y1 ∈ ∂Ū+ = V , by Propositions 3.2 and 3.3 we have

0 ≤ R
(
y1

)=m+ < 0, (4.4)

a contradiction. So y1 ∈ U+, hence is a local minimum of R(·). This means that
0 ∈ ∂R(y1). Similarly, working on Ū− we obtain y2 ∈ U− such that 0 ∈ ∂R(y2).
Clearly y2 �= y1.
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By virtue of Proposition 3.5 we can find 0 < ρ < min{ξ+,ξ−} such that R|∂Bρ
> 0 >

m±. Thus we can apply Theorem 2.1 (with y = ξ+u1 or y = ξ−u1) and obtain y3 �= y1,
y3 �= y2, y3 �= 0 such that 0 ∈ ∂R(y3).

Finally let y = yk,k = {1,2,3}. Since 0 ∈ ∂R(y), we have

A(y)−λ1|y|p−2y−u∗ = 0, (4.5)

for some u∗ ∈ ∂ψ(y) (hence f1(z,y(z)) ≤ u∗(z) ≤ f2(z,y(z)) a.e. on Z). Thus for
every u ∈ C∞0 (Z) we have

〈A(y),u〉−λ1
(
J (y),u

)
pq
−(

u∗,u
)
σσ ′ = 0

#⇒
∫

Z

‖Dy(z)‖p−2(Dy(z),Du(z)
)
RN dz

=
∫

Z

(
u∗(z)+λ1|y(z)|p−2y(z)

)
u(z)dz.

(4.6)

Using the definition of the distributional derivative and since div(‖Dy‖p−2Dy) ∈
W−1,q(Z) (see Adams [1, Theorem 3.10, page 50]), we have〈−div

(‖Dy‖p−2Dy
)
,u

〉−λ1
(
J (y),u

)
pq
−(

u∗,u
)
σσ ′ = 0 ∀u ∈ C∞0 (Z). (4.7)

Since C∞0 (Z) is dense in W
1,p

0 (Z), we conclude that

−div
(‖Dy(z)‖p−2Dy(z)

)−λ1|y(z)|p−2y(z)= u∗(z)

a.e. on Z, y|� = 0, 2 ≤ p <∞,
(4.8)

with u∗(z) ∈ f̂ (z,y(z)) a.e. on Z. So y is a solution of (2.8). Therefore y1,y2, and y3

are three distinct nonzero solutions of (2.8). �

Remark 4.2. If we drop hypothesis (H)(vi), we can still have a third solution y3, via the
nonsmooth saddle point theorem (see Chang [10, Theorem 3.3, page 118]), provided
ξ+ = |ξ−|. Indeed Propositions 3.2, 3.3, and 3.4 allow the use of the nonsmooth saddle
point theorem. However, in general we cannot guarantee that y3 �= 0.

We conclude this paper with a result which highlights the difference between the
nonsmooth (PS)-condition and the nonsmooth C-condition and also extends to the
present nonsmooth setting a result well known for “smooth” functions.

It has been observed that in the differentiable case, the (PS)-condition implies co-
ercivity for a functional which is bounded below. This was proved by Costa and Silva
[12] (for a Frechet differentiable functional) and by Calkovic et al. [6] (for a Gateaux
differentiable functional which is also lower semicontinuous). In the next proposition,
we extend this result to the present nonsmooth case.

Proposition 4.3. If Y is a Banach space, φ : Y → R is locally Lipschitz and bounded
below and c = lim‖y‖→∞φ(y) is finite, then there exists a sequence {xn}n≥1 ⊆ Y such
that ‖xn‖→∞, φ(xn)→ c, and m(xn)→ 0 as n→∞.
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Proof. We can find {yn}n≥1 ⊆ Y such that

φ
(
yn

)≤ c+ 1

n
,

∥∥yn

∥∥≥ 2n. (4.9)

Let η = inf[φ(y) : y ∈ Y ]. Because φ(·) is bounded below, η is finite. Apply
Theorem 2.2 with h(r) = 0, x0 = yn, ε = εn = c+ 1/n− η and λ = λn = n. We
can find xn ∈ Y , n≥ 1, such that

φ
(
xn

)≤ φ
(
yn

)≤ c+ 1

n
,

φ
(
xn

)≤ φ(u)+ εn

n

∥∥xn−u
∥∥ ∀u ∈ Y,∥∥xn−yn

∥∥≤ n ∀n≥ 1.

(4.10)

Let u= xn+ tv with t > 0 and v ∈ Y . Then we have

−ξn‖v‖ ≤ φ
(
xn+ tv

)−φ
(
xn

)
t

, (4.11)

where ξn = (εn/n) ↓ 0 as n→∞. Letting t ↓ 0 we obtain

−ξn‖v‖ ≤ φ0(xn;v
) ∀n≥ 1 and all v ∈ Y. (4.12)

Let ψn(v)= (1/ξn)φ0(xn;v). Then ψ(·) is sublinear, continuous with ψ(0)= 0 and
−‖v‖ ≤ ψn(v) for all v ∈ Y . Invoking Lemma 1.3 of Szulkin [20], we can find y∗n ∈ Y ∗,
n ≥ 1, such that ‖y∗n‖ ≤ 1 and (y∗n,v) ≤ ψn(v) for all n ≥ 1 and all v ∈ Y . Then if
x∗n = ξny∗n , we have

(
x∗n,v

)≤ φ0(xn,v
) ∀n≥ 1 and all v ∈ Y,

#⇒ x∗n ∈ ∂φ
(
xn

) ∀n≥ 1.
(4.13)

Hence m(xn)≤ ‖x∗n‖ ≤ ξn
n→∞−−−→ 0. Also

∥∥xn

∥∥≥ ∥∥yn

∥∥−∥∥xn−yn

∥∥≥ 2n−n= n−→+∞
#⇒ φ

(
xn

) n→∞−−−→ c.
(4.14)

Therefore {xn}n≥1 ⊆ Y is the desired sequence. �

An immediate consequence of this proposition is the following corollary.

Corollary 4.4. If Y is a Banach space, φ : Y → R is locally Lipschitz, bounded below
and satisfies the nonsmooth (PS)-condition, then φ(·) is coercive.
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