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We prove the existence of global compact attractors for differential inclusions and obtain
some results concerning the continuity and upper semicontinuity of the attractors for
approximating and perturbed inclusions. Applications are given to a model of regional
economic growth.

1. Introduction

The theory of multivalued dynamical systems is motivated by differential equations for
which it is not known whether the solution corresponding to each initial data is unique
or not. In such a case it is not possible to define a semigroup of operators. However, by
taking the union of all solutions belonging to a certain class we can define a multivalued
semiflow and study in this way the asymptotic behavior of the trajectories. We will recall
some results of the abstract theory of attractors for multivalued semiflows developed in
[11, 13, 14] (see also [3, 5]).

Denote by X a complete metric space with the metric ρ and by 2X (β(X);
Cv(X);comp(X)) the family of all (nonempty bounded; nonempty, bounded, closed,
convex; nonempty compact) subsets ofX. As usual, dist(A,B)= supy∈A infx∈B ρ(y,x)
and distH (A,B)=max{dist(A,B),dist(B,A)}, A,B ∈ β(X), is the Hausdorff metric.
Let Bε(A)= {y ∈X | dist(y,A)≤ ε} be an ε-neighborhood of the set A⊂X.

A multivalued mapF :X→ 2X is said to bew-upper semicontinuous if ∀x0 ∈D(F),
∀ε > 0, ∃δ > 0 such that F(x)⊂ Bε(F (x0)), ∀x ∈ Bδ(x0), where D(F)= {x | F(x) ∈
P(X)}. It is said to be upper semicontinuous if ∀x0 ∈ D(F) and any neighborhood
O(F(x0)) there exists δ > 0 such that F(x)⊂O(F(x0)), ∀x ∈ Bδ(x0). Obviously, any
upper semicontinuous map is w-upper semicontinuous, the converse being valid if F
has compact values [1, page 45].

A multivalued map G : R+ ×X → P(X) is said to be a multivalued semiflow
(m-semiflow for short) if G(0, ·) = Id and G(t1 + t2,x) ⊂ G(t1,G(t2,x)), ∀t1, t2 ∈
R+,∀x ∈ X. The set � is called a global attractor of G if � ⊂ G(t,�), ∀t ∈ R+, and
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dist(G(t,B),�)
t→∞−−−→, ∀B ∈ β(X). It is said to be invariant if �=G(t,�),∀t ∈ R+.

If � is compact then it is the minimal closed set attracting all bounded sets.
The m-semiflow G is called point dissipative if there exists B0 ∈ β(X) such that

dist(G(t,x),B0)
t→∞−−−→ 0, ∀x ∈X.

Theorem 1.1 (see [14, Theorem 3 and Proposition 1]). Let for any t ∈ R+, G(t, ·) :
X → C(X) be upper semicontinuous. Suppose that G is point dissipative and that
for some t0 > 0 the operator G(t0, ·) is compact. Then G has the global compact
attractor �.

Concerning the dependence of attractors on a parameter from the proof of [11,
Theorem 4] it follows the following theorem.

Theorem 1.2. Let � be a metric space, λ0 be a non-isolated point and Gλ : R+×X→
P(X), λ ∈�, be a family of m-semiflows satisfying:

(1) for each λ ∈�, Gλ has a global attractor �λ and ∪λ∈��λ ∈ β(X);
(2) the map λ �→ Gλ(t,�), � = ∪λ∈��λ, is w-upper semicontinuous at λ0 for

large t .

Then dist(�λ,�λ0)→ 0, as λ→ λ0.

Other approaches to the problem of non-uniqueness is the construction of the so-
called trajectory attractors (see [8, 15, 18]) or multivalued semiflows via the non-
standard framework [7].

Whereas in [4, 21] are considered differential inclusions generating a semigroup
of operators in this paper we study, as in [14], inclusions generating a multivalued
semiflow. This paper is organized as follows. In Section 2, we extend the results of [14]
on existence of a global compact attractor � for the differential inclusion

dy

dt
∈ −∂φ(y)+F(y), t ∈ [0;T ],

y(0)= y0,

(1.1)

where F : H → 2H is a multivalued map in a Hilbert space H . In Sections 3 and 4,
we prove that for a certain class of approximating maps Fn of the multivalued right-
hand side F the corresponding attractors �n converge in the Hausdorff metric to �.
Finally, in Section 5 we prove the upper semicontinuity of the global attractor under a
small perturbation of the map F , Fε = F +εS, ε > 0. All these results are applied to
boundary value problems and in particular to a model of regional economic growth.

2. Existence of the global attractor

Let H be a real separable Hilbert space, (·, ·), ‖·‖ be the scalar product and norm in H ,
respectively, φ :H �→ (−∞,+∞] be a proper, convex, lower semicontinuous function
and let ∂φ :D(∂φ)⊂H �→ 2H be its subdifferential.
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Consider the problem

dy

dt
∈ −∂φ(y)+F(y), t ∈ [0;T ],

y(0)= y0 ∈H,
(2.1)

where F :H → 2H and satisfy the properties:

(G1) F :H → Cv(H);
(G2) ∃D1,D2 ≥ 0 such that supu∈F(v) ‖u‖ ≤D1+D2‖v‖, ∀v ∈H ;
(G3) F is w-upper semicontinuous;
(G4) ∃δ > 0, M > 0 such that ∀u ∈D(∂φ), ‖u‖>M , ∀y ∈ −∂φ(u)+F(u),

(y,u)≤−δ; (2.2)

(G5) ∀R > 0 the set MR = {u ∈H | ‖u‖ ≤ R,φ(u)≤ R} is compact in H .

Further we denote X =D(φ).

Definition 2.1. The continuous function y : [0,T ] → X is called an integral solution
of problem (2.1) if y(0)= y0 and there exists f ∈ L1([0,T ],X), f (τ) ∈ F(y(τ)), a.e.
τ ∈ (0,T ), such that ∀u ∈D(∂ϕ), ∀v ∈ −∂ϕ(u),

‖y(t)−u‖2 ≤ ‖y(s)−u‖2+2
∫ t

s

(
f (τ)+v,y(τ )−u

)
dτ, t ≥ s. (2.3)

Further we shall denote each integral solution by y(·) = I (y0)f (·). The integral
solution y(·) is called a strong one if it is absolutely continuous on (0,T ) and dy/dt ∈
−∂φ(y(τ))+f (τ), a.e. on (0,T ).

According to [20, Theorem 2.1] ∀x0 ∈X, ∀T > 0, there exists an integral solution of
(2.1), x(·)= I (x0)f (·), x(0)= x0. Moreover, the set of all integral solutions on [0,T ]
starting from the point x0 (denoted by -T

F (x0)) is a connected compact set in the space
C(0,T ;X) and the map x �→ -T

F (x) is w-upper semicontinuous [20, Theorems 2.1
and 4.3].

Lemma 2.2. Under condition (G2) each integral solution of (2.1) is a strong solution.

Proof. According to [6, page 189] it is sufficient to prove that any selection f (·) ∈
F(y(·)), where y(·) = I (u0)f (·), belongs to L2(0,T ;X). It follows from (G2) that
‖f (t)‖ ≤D1+D2‖y(t)‖, but y(·) ∈ C(0,T ;X), so that f (·) ∈ L2(0,T ;X). �

Now in the same way as in [14] we define the m-semiflow G : R+×X→ P(X),
G(t,y0)= {y(t) | y(·) is a strong solution of (2.1), y(0)= y0}. Following [14, Lemma
6] we can prove that G(t1+ t2,x)=G(t1,G(t2,x)), ∀x ∈X,∀t1, t2 ∈ R+.

Theorem 2.3. Let (G1)–(G5) hold. Then G has the global compact invariant attrac-
tor �, which is the minimal closed set attracting all bounded sets.



36 Attractors of multivalued semiflows generated by differential inclusions . . .

Proof. We obtain some properties of G. First we prove that ∀t ≥ 0, ∀x ∈ X, G(t,x)
is compact in X. Indeed, from the fact that -T

F (x) is compact in C(0,T ;X) we have
that ∀{yn(·)} ⊂ -T

F (x) there exist a subsequence and y(·) ∈ -T
F (x) such as yn →

y in C(0,T ;X). Hence, yn(t) → y(t), ∀t ∈ [0,T ], in X. It follows that G(t,x) is
compact ∀t ∈ [0,T ]. On the other hand, we obtain that G(t, ·) : X→ P(X) is upper
semicontinuous. Indeed, from the fact that x �→-T

F (x) is w-upper semicontinuous, we
have that ∀ε > 0, ∀x ∈X, ∃δ > 0 such that ‖x−x0‖< δ implies-T

F (x)⊂ Bε(-
T
F (x0)),

that is, for an arbitrary y(·) ∈ -T
F (x), ∃y0(·) ∈ -T

F (x0) such that maxt∈[0,T ] ‖y(t)−
y0(t)‖ ≤ ε and then ∀t ∈ [0,T ], ‖y(t)−y0(t)‖ ≤ ε. Thus G(t,x) ⊂ Bε(G(t,x0)) and
by virtue of the compactness of G(t,x) the upper semicontinuity is proved.

Let B0 = {u ∈ X | ‖u‖ ≤M+ε}, ε > 0. We show that G(t,B0) ⊂ B0, ∀t ≥ 0. Let
x0 ∈ B0, x(·) ∈-T

F (x0) be such that ∃t > 0 for which x(t) /∈ B0, that is, ‖x(t)‖>M+ε.
As x(·) is continuous, then there exists t0 such that ‖x(t0)‖ =M+ε, ‖x(τ)‖ ≥M+ε,
∀τ ∈ [t0, t]. Therefore, using (G4) and the fact that x(·) is a strong solution of (2.1), in a
standard way we obtain that (1/2)(d/dτ)‖x(τ)‖2 ≤−δ, ∀τ ∈ [t0, t], so that ‖x(t)‖2 ≤
‖x(t0)‖2− 2δ(t − t0), which is a contradiction. Hence, G(t,B0) ⊂ B0, ∀t ≥ 0. Thus,
repeating the proof of [14, Theorem 7], we obtain that ∀x ∈ X, ∃tx > 0 such that
G(t,x) ⊂ B0, ∀t ≥ tx . In the same way we also prove that G(t,BN) ⊂ BN , ∀N >M ,
∀t ≥ 0, where BN = {u ∈ X | ‖u‖ ≤ N}. Therefore, G is pointwise dissipative and⋃

τ≥0G(τ,B) ∈ β(X), ∀B ∈ β(X).
Now we prove that G(t,B) is precompact in X for any t > 0 and B ∈ β(X).

According to (G5) it is sufficient to prove that ∃R = R(t,B) such that G(t,B)⊂MR .
First we shall show that the set M(B,T )= {f (·) | y(·)= I (y0)f (·),y ∈-T

F (y0), y0 ∈
B} is bounded in L2(0,T ;X). Indeed, there exists N for which G(t,B)⊂ BN , ∀t ≥ 0,
and then maxt∈[0,T ] ‖y(t)‖ ≤ N , ∀y(·) ∈ -T

F (B). By virtue of (G2), ‖f (t)‖ ≤ D1+
D2‖y(t)‖ ≤ D1+D2N , ∀f (·) ∈M(B,T ). Thus M(B,T ) is bounded in L2(0,T ;X).
So, repeating the proof of [14, Theorem 8] we obtain that ∀t > 0, ∃R = R(t,B) such
that G(t,B)⊂MR . Therefore G(t,B) is precompact in X.

Hence, it follows from Theorem 1.1 that there exists the global compact attractor �.
Moreover, by [14, Remarks 5 and 8], �=G(t,�), ∀t ≥ 0, and the minimality property
holds. �

Remark 2.4. Theorem 2.3 generalizes Theorem 9 from [14], in which F is supposed
to be Lipschitz in the multivalued sense.

Consider the application of the previous result to the problem

∂y

∂t
∈ �y+f (y)+h, on 1×(0,T ),

y|∂1 = 0,

y(x,0)= y0(x), x ∈1,
(2.4)

where h ∈ L2(1), 1 ⊂ R
n is a bounded open domain with smooth boundary ∂1 and

f : R→ 2R satisfies:

(H1) f : R→ Cv(R);
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(H2) ∃D1,D2 ≥ 0 such that supy∈f (s) |y| ≤D1+D2|s|, ∀s ∈ R;
(H3) f is w-upper semicontinuous;
(H4) ∃M ≥ 0, α > 0 such that ∀s ∈ R, ∀y ∈ f (s), ys ≤ (λ1−α)|s|2+M , where λ1

is the first eigenvalue of −3 in H 1
0 (1).

To come to problem (2.1), we define F :H → 2H , H = L2(1),

F(y)= {
ξ+h | ξ ∈H,ξ(x) ∈ f (

y(x)
)

a.e. x ∈1}
. (2.5)

It is well known that −3 is the subdifferential of the proper convex lower semicon-
tinuous function φ(u)= ∫

1
(1/2)|∇u|2dx with D(φ)=H 1

0 (1) and (G5) holds [6].

Proposition 2.5. The map F satisfies (G1)–(G4).

Proof. Condition (H4) in a standard way [14, Theorem 10] provides that (G4) holds.
The map f has compact values and then it is upper semicontinuous, so that it is
measurable [2, Proposition 8.2.1]. Hence, there exists a measurable selection g(s) ∈
f (s), s ∈ R [2, Theorem 8.1.3]. Then for any y ∈H , g(y(x)) is a measurable selection
of f (y(x)). In view of (H2), we have that ∀y ∈ H , ∀(ξ + h) ∈ F(y), ‖ξ + h‖ ≤√∫

1
|ξ(x)|2dx+‖h‖ ≤

√∫
1
(D1+D2|y(x)|)2dx+‖h‖ ≤ D̃1+D̃2‖y‖, so that F(y) �=

∅, ∀y ∈H , and (G2) holds. Following [14, Lemma 11] we obtain that F :H → Cv(H).
Now we prove that if f : R → Cv(R) is upper semicontinuous and satisfies (H2)

then F is upper semicontinuous on H . Since the map f is upper semicontinuous, is
upper hemicontinuous [1, page 60]. We prove that F is also hemicontinuous, that is,
from un → u in H and σn(p) := σ(F (un),p) = supv∈F(un)(p,v)→ σ0(p),∀p ∈ H ,
it follows that σ(F (u),p) ≥ σ0(p). Indeed, ∀p ∈ H , ∀n ≥ 1 ∃vn ∈ F(un) such that
(p,vn) > σn(p)− 1/n. Moreover, by virtue of (G2) with accuracy to a subsequence
vn → v weakly in H . Now we can use [16, Chapter 3, Theorem 6], taking X =
Y = R, p = q = 2. Since (un(x),vn(x)) ∈ graph (f ) for a.e. x ∈ 1, un → u in H ,
vn → v weakly in H , all the conditions of the mentioned theorem hold and we have
v(x) ∈ f (u(x)) for a.e. x ∈1. Then passing to the limit in the last inequality we have
(p,v) ≥ σ0(p), v ∈ F(u). Thus, supv∈F(u)(p,v) = σ(F (u),p) ≥ σ0(p) and hence
F : H → Cv(H) is hemicontinuous. For arbitrary u0 ∈ H conditions (G1)–(G2) hold,
so that F(u0) is weakly compact and convex in H and hence according to [16, Chapter
3, Theorem 10] F is upper semicontinuous at u0. Therefore, G3 is satisfied. �

Now, Theorem 2.3 implies the following theorem.

Theorem2.6. Let (H1)–(H4) hold. The semiflow generated by (2.4) has the global com-
pact invariant attractor �, which is the minimal closed set attracting all bounded sets.

Example 2.7. A model of regional economic growth.

Consider a closed economy on a bounded domain 1 ⊂ R
n and the following vari-

ables: y(x, t) is the stock of available capital; u(x, t) is the rate of investment. From
the local conservation of capital it follows, as a particular case, that the equation (see
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[17, page 603]):

∂y

∂t
=�y+ω(y)+g(y)+u, on 1×(0,T ),

y|∂1 = 0,

y(x,0)= y0(x), x ∈1,
0 ≤ u(x, t)≤ θ

(
y(x, t)

)
, on 1×(0,T ),

(2.6)

where −ω(y), ω being non-decreasing, represents a recursive depreciation of capital
and −g(y) is the nonlinear rate of demand. The Dirichlet boundary conditions imply
the fact that the economy is closed. We assume that the functions ω,g : R → R,
θ : R→ R+ are continuous and have at most linear growth.

Define the multivalued map f : R→ 2R,

f (s)= {
ω(s)+g(s)+ξ | 0 ≤ ξ ≤ θ(s)

}
. (2.7)

It is straightforward to check that (H1)–(H3) hold. If we assume that(
ω(s)+g(s)+θ(s)

)
s ≤ (

λ1−α
)
s2+M, ∀s ≥ 0,(

ω(s)+g(s)
)
s ≤ (

λ1−α
)
s2+M, ∀s ≤ 0,

(2.8)

then (H4) is also satisfied. Therefore, equation (2.6) is a particular case of (2.4) and
Theorem 2.6 holds.

3. Approximation of the attractor

Now we are interested in the possibility of the approximation of the attractor �. For
this we assume that the following stronger conditions hold instead of (G2) and (G4):

(G2*) ∃C > 0 such that supu∈F(v) ‖u‖ ≤ C, ∀v ∈H ;
(G4*) ∃γ > 0 such that (∂ϕ(y),y)≥ γ ‖y‖2, ∀y ∈D(∂ϕ).
Conditions (G2∗), (G4∗) imply (G2), (G4). Indeed, for any ξ ∈ −∂ϕ(y)+ F(y)

we have (ξ,y) ≤ −γ ‖y‖2 + supu∈F(y) ‖u‖‖y‖ ≤ −γ ‖y‖2 +C‖y‖. Hence (ξ,y) ≤
‖y‖(−γ ‖y‖+ C) and condition (G4) holds for δ =M = (1/γ )(C+1). Due to condi-
tion (G2∗) we can use [20, Theorem 1.1] and construct the sequence {Fn :H �→ Cv(H)}
such that ∀u ∈H , F(u)=⋂∞

n=1Fn(u), Fn+1(u)⊂ Fn(u), Fn are locally Lipschitz (in
the multivalued sense) and have locally Lipschitz selections and for each Fn condition
(G2∗) holds with the same constant C. Moreover, dist(Fn(u),F (u))→ 0, ∀u ∈H . By
Fn we construct in the same way as before the m-semiflows Gn, since (G1)–(G4) are
satisfied for the maps Fn. From Theorem 2.3 it follows the existence of the compact
global invariant attractor �n for each Gn, n≥ 1. The maps Fn are more regular than F ,
so it is interesting to consider whether the attractors �n converge to � in the Hausdorff
metric.

Theorem 3.1. Let (G1), (G2∗), (G3), (G4∗) hold. Then distH (�,�n)→ 0, as n→∞.

Proof. We note that � = G(t,�) ⊂ Gn(t,�) ⊂ Bε(�n), ∀ε > 0, t ≥ T (ε), and since
the sets �n are compact, we have � ⊂ �n, ∀n ≥ 1. Analogously, �n+1 ⊂ �n. Hence,
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n=1�n∪�=⋃∞

n=1�n =�1. We must show that ∀ε > 0, ∃N such that �n ⊂ Bε(�),
∀n≥N . In view of Theorem 1.2 we have to prove that

⋃∞
n=1�n ∈ β(H) (but we have

already shown that such a set is compact) and for large t the next property holds:
∀ε > 0, ∃N such that Gn(t,�1) ⊂ Bε(G(t,�1)), ∀n ≥ N . Now we prove it. On the
set � = {n,n ≥ 1,+∞} we introduce the metric ρ(m,n) = |1/m−1/n| (1/∞= 0).
Hence (�,ρ) is a metric compact space. Let λ0 := +∞. Now it is sufficient to verify
that the map � � λ �→ Gλ(t,�1) is upper semicontinuous at λ0. Since Gλ(t,�1) is
compact for any λ ∈� (this follows from the fact that the map Gλ(t, ·) is upper semi-
continuous and have compact values [1, page 42]), (�,ρ) is a compact metric space
and Gλ ⊂G1, ∀λ ∈�, it is sufficient to prove that its graph on � is compact in �×H
[2, Proposition 1.4.8], that is, the set D = {(λ,u) | λ ∈ �, u ∈ Gλ(t,�1)} is compact
in �×H . Let {(λn,un)} ⊂ D. Hence λn → λ0 and we have to prove that there exists
u1 ∈ Gλ0(t,�1) such that un → u1 in H (with accuracy to a subsequence). We have
un = un(t), un(·) = I (ηn)fn(·), un(0) = ηn ∈ �1. Hence, there exists η0 ∈ �1 and a
subsequence such that ηn→ η0. We consider zn(·)= I (η0)fn(·). Let σ −L1(0,T ;H)

be the space L1(0,T ;H) endowed with the weak topology. In view of the inequality
‖fn(τ)‖ ≤ C, a.e. τ ∈ (0,T ), for a subsequence fn → f in σ −L1(0,T ;H). Since
{fn} are uniformly integrable and the semigroup S(t, ·) generated by −∂φ is compact
(this follows from (G5) [10, page 1398]), there exist a subsequence {zn(·)} such that
zn → z in C(0,T ;H) [9, Theorem 2.3]. Hence, zn → z in C(0,T ;H), fn → f in
σ−L1(0,T ;H) and z(·)= I (η0)f (·) [19, Lemma 1.3]. Therefore maxt∈[0,T ] ‖un(t)−
z(t)‖ ≤maxt∈[0,T ] ‖I (ηn)fn(t)−I (η0)fn(t)‖+maxt∈[0,T ] ‖I (η0)fn(t)−I (η0)f (t)‖ ≤
‖ηn−η0‖+maxt∈[0,T ] ‖zn(t)− z(t)‖ → 0, n→∞. Thus un(t)→ z(t), ∀t ∈ [0,T ],
z(0)= η0 ∈�1. We prove the fact that f (t) ∈ F(z(t)) for a.e. t ∈ [0,T ]. First we note
that fn(t) ∈ Fn(zn(t)), a.e. t ∈ [0,T ]. We prove that ∃N such that ∀n ≥ N , f (t) ∈
B1/n(Fn(z(t))), a.e. on (0,T ). Indeed, let it not be so. Then ∀N ≥ 1, ∃ n ≥ N such
that f (t) /∈ B1/n(Fn(z(t))). On the other hand, from the w-semicontinuity and the facts
proved above ∀n ≥ 1, ∃m(n) ≥ n such that Fn(zk(t)) ⊂ B1/2n(Fn(z(t))), ∀k ≥ m(n).
So

⋃
k≥m(n) Fn(zk(t)) ⊂ B1/2n(Fn(z(t))). As k ≥ m(n) ≥ n, so

⋃
k≥m(n) Fk(zk(t)) ⊂

B1/2n(Fn(z(t))). Hence, by virtue of the convexity ofFn(z)we have co
⋃

k≥m(n) fk(t)⊂
B1/n(Fn(z(t))) and therefore f (t) /∈ co

⋃
k≥m(n) fk(t). From [19, Proposition 1.1]

we obtain a contradiction. Thus ∀n ≥ N , ∃gn ∈ Fn(z(t)) such that ‖gn − f (t)‖ ≤
1/n. Hence gn → f (t) in H and from Fn+1(z(t)) ⊂ Fn(z(t)) it follows that f (t) ∈
Fn(z(t)), ∀n ≥ N . Thus f (t) ∈ F(z(t)), a.e. on (0,T ), and un = un(t)→ z(t)= u1 ∈
Gλ0(t,�1). �

Remark 3.2. Theorem 3.1 holds for inclusion (2.4) if we assume that D2 = 0 in condi-
tion (H2). (G2∗) and (G4∗) will be satisfied with C =D1(µ(1))

1/2 and γ = λ1.

4. Dependence on a parameter

Now we are interested in the continuous dependence on a parameter. Consider the
sequence of problems (2.1) with right-hand sides Fn satisfying:

(R1) Fn :H → Cv(H);∀u ∈H,∀n≥ 1;
(R2) Fn+1(u)⊂ Fn(u), ∀n≥ 1;
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(R3) ∃D1,D2 ≥ 0 such that supv∈F1(u)
‖v‖ ≤D1+D2‖u‖,∀u ∈H ;

(R4) Fn are w-upper semicontinuous ∀n≥ 1;
(R5) ∀u ∈H, ⋂∞

n=1Fn(u) �= ∅ andF(u)=⋂∞
n=1Fn(u) isw-upper semicontinuous;

(R6) ∃δ > 0,M > 0 such that ∀u ∈D(∂φ), ‖u‖>M , ∀n≥ 1, ∀y ∈ −∂φ(u)+Fn(u),

(y,u)≤−δ. (4.1)

As before we assume that (G5) holds. Since F(u)⊂ Fn(u), Fn+1(u)⊂ Fn(u), ∀u ∈
H , ∀n≥ 1, conditions (G1)–(G4) hold for all Fn, F (with the same constants D1,D2).
Let Gn,G be the semiflows corresponding to Fn,F . Then in view of Theorem 2.3 there
exist the global compact attractors �n,� corresponding to Gn,G, respectively.

Theorem 4.1. Let (R1)–(R6) and (G5) hold. Then distH (�n,�)→ 0, as n→∞.

Proof. As in Theorem 1.2, �⊂ ·· · ⊂�n+1 ⊂�n ⊂ ·· · ⊂�1, ∀n ≥ 1, and the desired
result will be obtained if we show that for any sequence un ∈ Gn(t,�1) there exists
u1 ∈G(t,�1) such that un→ u1 inH (with accuracy to a subsequence). From the proof
of Theorem 2.3 it follows thatG(t,BN)⊂ BN ,Gn(t,BN)⊂ BN , ∀n≥ 1,∀N >M . Let
un = un(t), un(·) = I (ηn)fn(·), un(0) = ηn ∈ �1, ‖ηn‖ ≤ N , ∀n ≥ 1, where N >M .
Then maxt∈[0,T ] ‖un(t)‖ ≤N . Hence, ‖fn(t)‖ ≤D1+D2N , a.e. on (0,T ), and we can
use the same arguments as in the final part of the proof of Theorem 1.2. �

Remark 4.2. We note that conditions (R1)–(R5) do not imply that dist(Fn(u),F (u))→
0, as n→∞.

Proof. Consider the space H = l2 = {y = (y1,y2, . . .) | ∑∞
i=1 |yi |2 < ∞} and the

sequence of constant maps Fn(u)≡ Yn = {y ∈ l2 | y1 = ·· · = yn = 0,‖y‖ ≤ 1}, n ≥ 1.
The sets Yn are nonempty, bounded, closed and convex and F(u)= ∩∞n=1Fn(u)= {0}.
It is obvious that the maps Fn,F are w-upper semicontinuous and satisfy (R2)–(R3)

(with D1 = 1,D2 = 0). We take ξn = (
n times

0, . . . ,0︸ ︷︷ ︸,1,0, . . .) ∈ Fn. Since ‖ξn−0‖ = 1, we

have dist(Fn(u),F (u))≥ 1, ∀n≥ 1. �

Consider the sequence of problems

∂y

∂t
∈ �y+fn(y)+h, 1×(0,T ),

y|∂1 = 0,

y(x,0)= y0(x), x ∈1,
(4.2)

where h ∈ L2(1), 1 ⊂ R
n is a bounded open domain with smooth boundary ∂1 and

fn : R→ 2R satisfy:
(L1) fn : R→ Cv(R), fn+1(t)⊂ fn(t), ∀t ∈ R, ∀n≥ 1;
(L2) ∃D1,D2 ≥ 0 such that supy∈f1(s)

|y| ≤D1+D2|s|, ∀s ∈ R;
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(L3) fn are w-upper semicontinuous ∀n≥ 1;
(L4) ∃M ≥ 0, α > 0 such that ∀s ∈ R, ∀n≥ 1, ∀y ∈ fn(s), ys ≤ (λ1−α)|s|2+M .
Define Fn,F :H → 2H , H = L2(1),

Fn(y)=
{
ξ+h | ξ ∈H, ξ(x) ∈ fn

(
y(x)

)
a.e. x ∈1}

,

F (y)= {
ξ+h | ξ ∈H, ξ(x) ∈ ∩∞n=1fn

(
y(x)

)
a.e. x ∈1}

.
(4.3)

Proposition 4.3. The maps F,Fn satisfy (R1)–(R6).

Proof. Condition (L4) in a standard way [14, Theorem 10] provides that (R6) holds. It
follows from (L1)–(L4) and Proposition 2.5 that the maps Fn satisfy (R1)–(R4).

(L1)–(L3) imply that all fn are upper semicontinuous (because they are compact-
valued) and for any t ∈ R, a > 0, map the ball Ba(t) into subsets of some compact
set in R. As {fn(t)} is a centered family of compacts, so

⋂∞
n=1fn(t) �= ∅ and in view

of [12, page 60] f (·) =⋂∞
n=1fn(·) is upper semicontinuous at t . It follows now from

(L1)–(L4) that f satisfies (H1)–(H4). Then using again Proposition 2.5 we obtain that
(R5) holds. �

Let �n,� be the global attractors corresponding to fn,f , respectively. As a conse-
quence of Theorem 4.1 we have the following theorem.

Theorem 4.4. Let (L1)–(L4) hold. Then distH (�n,�)→ 0, as n→∞.

Example 4.5. A model of regional economic growth.

Consider in (2.6) a sequence of functions θn such that θn+1(s)≤ θn(s), ∀n≥ 1,∀s ∈
R, and θ1 satisfies (2.8). Then (L1)–(L4) hold and Theorem 4.4 takes place.

5. Perturbed differential inclusions

We are now interested in the upper semicontinuity of the global attractor for inclusion
(2.1) under small perturbations. Consider the family of differential inclusions

du

dt
∈ −∂ϕ(u)+F(u)+εS(u),

u(0)= u0,

(5.1)

where ε ≥ 0 is a small parameter and S,F :H → 2H are multivalued maps satisfying
(G1)–(G3) and

(G4**) there exist ε0 > 0, δ > 0, M > 0 such that ∀ε ≤ ε0, ∀u ∈D(∂ϕ), ‖u‖>M ,
∀y ∈ −∂ϕ(u)+F(u)+εS(u),

(y,u)≤−δ. (5.2)

Lemma 5.1. The maps Sε(u)= F(u)+εS(u) are w-upper semicontinuous.
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Proof. Let η > 0 be arbitrary and γ > 0 be such that γ + εγ ≤ η. In view of the
w-upper semicontinuous of F,S there exists δ > 0 such that if ‖u−u0‖ ≤ δ then

dist
(
Sε(u),Sε

(
u0

))≤ dist
(
F(u),F

(
u0

))+ε dist
(
S(u),S

(
u0

))≤ η. (5.3)

�

On the other hand, it is evident that Sε satisfy (G1) and (G2) with D1ε = εDS
1 +DF

1 ,
D2ε = εDS

2 +DF
2 , where DS

i ,D
F
i are the constants in condition (G2) corresponding to

S and F , respectively. If condition (G5) is also satisfied then in view of Theorem 2.3
for each ε ≤ ε0 inclusion (5.1) generates the multivalued semiflow Gε : R+×D(ϕ)→
Comp(D(ϕ)) which has the global compact invariant attractor �ε .

Define the set-valued map R(u)= ∪0≤ε≤ε0εS(u).

Lemma 5.2. The map R satisfies (G1)–(G3) and (G4∗∗) replacing εS by R.

Proof. It is clear that the setR(u) is nonempty and bounded. Let yn∈R(u), yn n→∞−−−→ y.
Then yn = εnzn, zn ∈ S(u). If there exists a subsequence εn′ → 0 then y = 0 ∈ R(u).
In another case there exists n0 such that εn ∈ [δ,ε0], ∀n ≥ n0, for some δ > 0. Take a
converging subsequence εn′ → ε1 ∈ [δ,ε0]. It follows that zn′ = yn′/εn′ → y/ε1 = z ∈
S(u), since S(u) is closed. Hence, y = ε1z ∈ R(u), so that R(u) is closed. Further, let
εy,ε1z ∈ R(u) be arbitrary. Suppose that ε ≤ ε1. Then for any α ∈ [0,1],

αεy+(1−α)ε1z= ε2
(
α′y+(1−α′)z

)= ε2v, (5.4)

where ε2 = αε+ (1−α)ε1, α′ = α(ε/ε2) ∈ [0,1]. Since S(u) is convex, v ∈ S(u) and
then R(u) is convex. Therefore, R(u) ∈ Cv(H) and (G1) holds.

Let us check (G3). Let u be arbitrary. Since S is w-upper semicontinuous, for any
γ > 0 there exists δ > 0 such that if ‖u−v‖ ≤ δ, then S(v)⊂Oγ (S(u)). Let εy ∈ R(v)
be arbitrary. We take h ∈ S(u) such that dist(y,R(u))= ‖y−h‖. Then

dist
(
εy,R(u)

)≤ ‖εy−εh‖ ≤ ε0γ. (5.5)

It follows that dist(R(v),R(u)) ≤ ε0γ , if ‖u−v‖ ≤ δ, so that R is w-upper semicon-
tinuous.

Finally, it is evident that R satisfies (G2) with DR
1 = ε0D

S
1 , DR

2 = ε0D
S
2 , and also

that (G4∗∗) holds. �

Theorem 5.3. Let the maps F,S satisfy (G1)–(G3), (G4∗∗) and (G5) hold. Then
dist(�ε,�0)→ 0, as ε→ 0+.

Proof. From Theorem 1.2 it follows that it is sufficient to check that ∪ε≤ε0�ε ∈
β(D(ϕ)) and that the map ε �→ Gε(t,∪ε≤ε0�ε) is w-upper semicontinuous at ε = 0
for any t ≥ 0.

First, we note that for any ε ≤ ε0, �ε belongs to the ball Bα = {u ∈ H | ‖u‖ ≤
M + α}, where α > 0. To prove this fact we shall use that for any γ > 0 and u ∈
D(ϕ) there exists T (u,ε) such that Gε(T ,u) ∈ Bγ and also that Gε(t,B

γ ) ⊂ Bγ ,
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∀t ≥ 0,∀ε ≤ ε0 (see the proof of Theorem 2.3). Let γ < α. Since Gε(T , ·) is upper
semicontinuous (see again Theorem 2.3), for any u ∈ �ε we can find a neighborhood
O(u) such thatGε(T ,O(u))⊂ Bα . Since�ε is compact, from the covering∪u∈�εO(u)

we can obtain a finite subcovering ∪ni=1O(ui). Hence, �ε ⊂Gε(t,�ε)⊂ Bα (we take
t ≥maxi{T (ui,ε)}), as required. Hence, ∪ε≤ε0�ε ∈ β(D(ϕ)).

In order to check the second property we shall prove first that the set K0 = ∪ε≤ε0�ε

is compact. Let GR be the semiflow generated by inclusion (5.1) if we replace the map
εS by R. Since εS(u) ⊂ R(u), ∀ε ≤ ε0, it is clear that Gε(u) ⊂ GR(u), ∀u ∈ D(ϕ),
∀ε ≤ ε0. From Theorem 2.3 and Lemma 5.2 it follows that GR has a compact global
attractor �R . Obviously, �R is a globally attracting set for each Gε , ε ≤ ε0. Hence,
since �ε is the minimal closed set that attracts any bounded set for Gε , it follows that
�ε ⊂�R , ∀ε ≤ ε0. Therefore, K0 is compact.

Suppose that the map ε �→Gε(t,∪ε≤ε0�ε) is not w-upper semicontinuous at ε = 0
for some t > 0. Then there exists a γ -neighborhood Oγ of G0(t,K0) and a sequence
uεn ∈ Gεn(t,K0), εn → 0+, such that uεn /∈ Oγ . Then uεn = uεn(t), where uεn(·) =
I (u0

εn
)fεn(·), u0

εn
∈K0, and fεn(τ ) ∈ F(uεn(τ ))+εnS(uεn(τ )), a.e. τ ∈ (0, t). Arguing

as in Theorems 3.1, 4.1 we obtain the existence of a subsequence (denoted again by εn)
and functions f,u such that fεn → f in σ −L1([0, t],H), u0

εn
→ u0 ∈ K0, uεn → u

in C([0, t],H) and u(·) = I (u0)f (·). We have to prove that f (τ) ∈ F(u(τ)), a.e.
τ ∈ (0, t).

In view of [19, Proposition 1.1] for a.a. τ ∈ (0, t), f (τ) ∈ ∩∞m=1co∪n≥mfεn(τ ). Fix
τ ∈ (0, t). Since F is w-upper semicontinuous and using condition (G2) for the map S,
we obtain that for any δ > 0 there exists n > 0 such that ∀k ≥ n,

dist
(
F

(
uεk (τ )

)+εkS
(
uεk (τ )

)
,F

(
u(τ)

))
≤ dist

(
F

(
uεk (τ )

)+εkS
(
uεk (τ )

)
,F

(
uεk (τ )

))+dist
(
F

(
uεk (τ )

)
,F

(
u(τ)

))
≤ εk

(
DS

1 +DS
2

∥∥uεk (τ )∥∥)+ δ

2
≤ δ.

(5.6)

Since F(u(τ)) is convex, this implies that co∪k≥n fεk (τ ) ⊂ Oδ(F (u(τ))). Hence,
since F(u(τ)) is closed, f (τ) ∈ F(u(τ)), a.e. t ∈ (0, t). Then uεn → u(t) ∈G0(t,K0),
which is a contradiction. �

Consider now the family of boundary value problems

∂u

∂t
∈3u+f (u)+εj (u)+h, on 1×(0,T ),

u |∂1= 0,

u(0)= u0,

(5.7)

where h ∈ L2(1), ε ≥ 0 is small, f,j : R→ 2R satisfy (H1)–(H3) and f satisfies (H4).
Define the maps F,S :H → 2H , H = L2(1), by

F(u)= {
y ∈H | y(x) ∈ f (

u(x)
)+h(x), a.e. on 1

}
,

S(u)= {
y ∈H | y(x) ∈ j(u(x)), a.e. on 1

}
.

(5.8)
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It follows from Proposition 2.5 that the maps F,S satisfy (G1)–(G3).

Lemma 5.4. Condition (G4∗∗) holds.

Proof. Since f satisfies (H4) and (G2) holds for S, we have that ∀u ∈ D(∂ϕ), ∀y ∈
−∂ϕ(u)+F(u)+εS(u),

(y,u)≤−λ1‖u‖2+(
λ1−α

)‖u‖2+Mµ(1)+ε
(
D1+D2‖u‖

)‖u‖+‖u‖‖h‖
≤

(
− α

2
+εD2

)
‖u‖2+Mµ(1)+ ε2D2

1

α
+ 1

α
‖h‖2.

(5.9)

Taking ε0 = α/4D2 the last inequality implies that condition (G4∗∗) holds. �

Since (G5) is also satisfied, we have obtained a particular case of inclusion (5.1), so
that Theorem 5.3 implies the following result.

Theorem 5.5. Let f,j satisfy (H1)–(H3) and f satisfy (H4). Then dist(�ε,�0)→ 0,
as ε→ 0+.

Example 5.6. A model of regional economic growth.

Consider in (2.6) the family of functions gε = g1+εg2, θε = θ1+εθ2, where g1,θ1

satisfy the same conditions as g,θ and g2,θ2 are continuous and have at most linear
growth. Define the multivalued maps f,j : R→ 2R,

f (s)= {
ω(s)+g1(s)+ξ | 0 ≤ ξ ≤ θ1(s)

}
,

j (s)= {
g2(s)+ξ | 0 ≤ ξ ≤ θ2(s)

}
.

(5.10)

Then we obtain a particular case of inclusion (5.7), so that Theorem 5.5 holds.
Finally, we remark that if in problems (2.4), (4.2), and (5.7) we replace the operator

−3 by A(u) = −∑n
i=1(∂/∂xi)(|∂y/∂xi |p−2(∂y/∂xi)), p > 2, then all the results

remain valid. In this case, conditions (H4), (L4) are not necessary. Indeed, we prove
that (G4∗∗) holds ((G4) and (R6) can be proved in a similar way). It follows from
Poincaré inequality that 〈Au,u〉 = ‖∇u‖pLp ≥D‖u‖pLp for some D > 0. Let ε0 > 0 be
arbitrary but fixed. Then using the Young inequality we have that ∀u ∈D(∂ϕ), ∀ε ≤ ε0,
∀y ∈ −A(u)+F(u)+εS(u),

(y,u)≤−D‖u‖pLp+ε
(
D1+D2‖u‖

)‖u‖+(
D3+D4‖u‖

)‖u‖+‖u‖‖h‖
≤ −D̃‖u‖p+K,

(5.11)

where D̃ > 0, so that (G4∗∗) holds.
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