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Abstract. We consider a coupled PDE system arising in noise reduction
problems. In a two dimensional chamber, the acoustic pressure (unwanted
noise) is represented by a hyperbolic wave equation. The floor of the cham-
ber is subject to the action of piezo-ceramic patches (smart materials). The
goal is to reduce the acoustic pressure by means of the vibrations of the
floor which is modelled by a hyperbolic Kirchoff equation. These two hy-
perbolic equations are coupled by appropriate trace operators. This overall
model differs from those previously studied in the literature in that the
elastic chamber floor is here more realistically modeled by a hyperbolic Kir-
choff equation, rather than by a parabolic Euler-Bernoulli equation with
Kelvin-Voight structural damping, as in past literature. Thus, the hyper-
bolic/parabolic coupled system of past literature is replaced here by a hyper-
bolic/hyperbolic coupled model. The main result of this paper is a uniform
stabilization of the coupled PDE system by a (physically appealing) bound-
ary dissipation.

1. Introduction

In this paper we study the uniform stabilization of two coupled hyperbolic
equations arising in the noise reduction problem for structural acoustic mod-
els. The acoustic pressure (unwanted noise) inside a two dimensional cham-
ber is mathematically represented by a hyperbolic wave equation, whereas
a hyperbolic Kirchoff equation models the elastic displacements of the one
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dimensional moving floor of the chamber. Such a floor is subject to the
action of a piezo-ceramic patch (smart material), which is mathematically
modeled as the distributional derivative of a Dirac mass. The interaction
between the chamber and the moving floor is represented by appropriate
trace operators acting on the interface between the floor and the chamber.
More precisely, let Ω be a two dimensional, open and bounded domain

(the chamber) in R
� with boundary Γ. The boundary is made up of two

open, smooth, and disjoint portions Γ0 and Γ1. Γ0, which models the mov-
ing floor of the chamber, is assumed to be flat. Two examples of such a
domain are given below. Notice that we have scaled the coordinate system
for convenience so that Γ0 =

{
(0, 1)× {0}}.
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The acoustic medium within Ω is described by the wave equation in the
variable z. The vibrations of the elastic floor Γ0 are modeled by the variable
v. We assume that v will satisfy a Kirchoff equation on Γ0, coupled with the
wave equation satisfied by z in the interior of the domain Ω. Then the PDE
model in the variables z and v is as follows:




WaveEquation


ztt = ∆z on Q
∂z
∂ν

∣∣
Γ1
= −k1zt on Σ1

∂z
∂ν

∣∣
Γ0
= −k1zt − vt on Σ0

KirchoffEquation{
vtt − γ∆vtt +∆2v − zt = δ′(x0)u(t) on Σ0
v
∣∣
∂Σ0

= 0;∆v
∣∣
∂Γ0

= −k2
∂vt
∂ν on ∂Σ0

z(0, ·) = z0; zt(0, ·) = z1; v(0, ·) = v0; vt(0, ·) = v1 in Ω× Ω× Γ0 × Γ0

(1.1)

where γ > 0, k1 ≥ 0, and k2 ≥ 0 and
(0, T ]× Ω = Q; (0, T ]× Γ1 = Σ1; (0, T ]× Γ0 = Σ0; (0, T ]× ∂Γ0 = ∂Σ0

The control is modeled mathematically by a finite number of distributional
derivatives of Dirac masses concentrated at points of the moving floor Γ0. It
is mathematically equivalent to consider only one such distributional deriv-
ative (concentrated at the point x0 on the flat segment Γ0 ∈ R

�).
The basic structure of acoustic flow models has been known for a long

time (see [18]). Some related mathematical questions regarding the spectral
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properties or the strong stabilization of the model in [18] are studied in [4]
and [8]. Smart material technology has suggested the introduction of a dissi-
pation acting at the edge of the floor via moments or shears. This motivates
one to consider the damped coupled model (1.1) where the dissipation is
exercised through the bending moment of the Kirchoff equation. This model
differs in a critical way from other models recently studied in noise reduction
problems (see [1], [3]) in that the elastic dynamics of the moving floor is more
realistically represented by a hyperbolic Kirchoff equation, rather than by a
structurally damped Euler-Bernoulli equation with so-called Kelvin-Voight
damping, as in the past models.
The results existing in the literature on the stabilization of structural

acoustic models refer to those where the floor is strongly damped by means of
structural damping (see [1],[2],[7]). In the case of structural damping present
in the model, the component of the uncoupled system corresponding to the
Euler-Bernoulli equation represents an analytic semigroup ([22],[6]). This
provides, in addition to strong stability properties for the Euler-Bernoulli
equation, a lot of regularity properties which facilitate the analysis of sta-
bility for the entire structure. The situation is drastically different when
the analytic Euler-Bernoulli equation is actually replaced by a more realistic
hyperbolic Kirchoff equation.

2. Abstract Models

2.1. Undamped Problem: k1 = k2 = 0.
The case of undamped coupled equations (that is, k1 = k2 = 0 in (1.1)) is

analyzed in a companion paper where a sharp regularity result (to be quoted
below) is obtained (see [5]). The following operators and abstract setting for
problem (1.1) are also quoted from [5]:

i) Let A : L2(Γ0) ⊃ D(A)→L2(Γ0) be the positive self-adjoint operator

Af = ∆2f, D(A) = {
f ∈ H4(Γ0) : f |∂Γ0 = ∆f |∂Γ0 = 0

}
(2.1)

• Define the operator A : L2(Γ0) ⊃ D(A)→L2(Γ0) as

A = (I + γA 1
2 )−1A, D(A) = D(A 1

2 ) (2.2)

The operator A is positive self-adjoint on the space D(A
1
4
γ ) topologized

by the inner product
(
x, y

)
D(A

1
4
γ )
=
(
(I + γA 1

2 )x, y
)

L2(Γ0)
; ∀x, y ∈ D(A

1
4
γ ) (2.3)

where

D(A 1
2 ) = H2(Γ0) ∩ H1

0 (Γ0) and D(A
1
4
γ ) = H1

0 (Γ0) (2.4)

Let us also note for future reference the following equivalent spaces:

D(A 1
2−ε) ≡ H2−4ε(Γ0) (equivalence in norms for small ε > 0) (2.5)
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• Let AN : L0
2(Ω) = L2(Ω)

/
N (AN )→L0

2(Ω) be the positive self-adjoint
operator

ANf = −∆f ; D(AN ) =
{
f ∈ H2(Ω) :

∂f

∂ν

∣∣
Γ = 0

}
(2.6)

where N (AN ) is the one-dimensional null space of AN in L2(Ω).
• Define the Neumann map N for h ∈ L0

2(Ω) as

h = Ng ⇐⇒
{
∆h = 0 on Ω
∂h
∂ν

∣∣
Γ0
= g on Γ0

(2.7)

Let us note the following property of the Neumann map for future
reference (see [11]):

N∗ANh = −h
∣∣
Γ (2.8)

• Finally, consider the following spaces equivalent in norms:

Y ≡ D(AN
1
2 )× L2(Ω)× D(A 1

2 )× D(A
1
4
γ ) (2.9)

≡ H1(Ω)× L2(Ω)× [H2(Γ0) ∩ H1
0 (Γ0)]× H1

0 (Γ0)

Hence, problem (1.1) with k1 = k2 = 0 can be written abstractly as

ẏ = Ay +Bu on [D(A∗)]′; y(0) = y0 (2.10)

where y(t) = [z(t), zt(t), v(t), vt(t)]

A =




0 I 0 0
−AN 0 0 ANN(·|Γ0)
0 0 0 I

0 −(I + γA 1
2 )−1N∗AN −A 0


 = −A∗

(2.11)

The action of A is described by its domain where, with y = [y1, y2, y3, y4],

D(A) = {
y ∈ Y : y2 ∈ D(A

1
2
N ), y3 ∈ D(A 3

4 ), y4 ∈ D(A 1
2 ), [y1 − N(y4

∣∣
Γ0
)] ∈

D(AN )
}
and A∗ is the Y -adjoint of A; while the operator B : U→[D(A∗)]′,

U = R and its adjoint B∗ : D(A∗)→U are

Bu =




0
0
0

(I + γA 1
2 )−1δ′(x0)u


; B∗




y1
y2
y3
y4


 = − d

dx
y4

∣∣∣∣
x=x0

, y ∈ D(A∗)
(2.12)

By the skew-adjointness of A on Y (see (2.11)), we see that A generates a
s.c. unitary group eAt on Y :

eA∗t = e−At;
∥∥eA∗t

∥∥
L(Y ) ≡ ∥∥e−At

∥∥
L(Y ) ≡ 1 (2.13)

Re(Ax, x)Y = Re(A∗x, x)Y ≡ 0, ∀x ∈ D(A) = D(A∗)

Also the solution to the undamped problem can be written as:

y(t) = eAty0 + (Lu)(t) (2.14)
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where

(Lu)(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ (2.15)

Now we quote the main theorem, a sharp regularity result, of [5] (Theorem 1.2).

Theorem 2.1. With reference to the coupled P.D.E. system (1.1), we have
that
i) For each 0 < T < ∞, the operator L defined in (2.15) satisfies the

following property:

L : L2(0, T )→C([0, T ];Y ), continuously. (2.16)

• (Abstract Trace Regularity) Equivalently, it follows by duality that the
operator B∗eA∗t can be extended continuously from Y to L2(0, T ):∫ T

0

∣∣B∗eA∗ty
∣∣2 dt ≤ CT ‖y‖2Y , ∀y ∈ Y (2.17)

Sharp (optimal) regularity results (abstract trace regularity) for the mixed
PDE problems have significant implications in the study of associated control
theory problems, enabling one to invoke a large body of abstract results
on quadratic control theory, min-max game theory, etc. For instance, the
abstract results in [11], [15], [17], [24] can now be readily applied to the
coupled PDE problem (1.1) over a finite time interval. In the case of infinite
time interval, however, in order to invoke the abstract theory as in [11], [15],
[17], and [24], additional control theoretic hypotheses such as the Finite
Cost Condition and the Detectability Condition are needed. The Finite
Cost Condition can be verified by the property of uniform stability in the
space Y (see (2.9)) with L2(0,∞;U) feedback control. However, this uniform
stabilizability property on the space of regularity Y (as given to be H1(Ω)×
L2(Ω) × H2(Γ0) × H1(Γ0) for the coupled PDE system (1.1) ) fails for the
undamped (k1 = k2 = 0) problem (1.1), which is actually a general pathology
of hyperbolic or Petrowski type dynamics with point controls acting through
δ or δ′ (see [11]). Therefore, the issue of ensuring uniform stabilization is
of paramount importance. To remedy this situation, we modify the original
conservative dynamics by adding damping terms, as to make it uniformly
stable on the regularity space Y , while preserving the same regularity in
C([0, T ];Y ).

2.2. Damped Problem: k1 > 0, k2 > 0; u(t) ≡ 0.
We are mainly interested in the physically appealing boundary stabiliza-

tion in which energy decay rates are achieved by introducing some form of
dissipation on the boundary. Our main goal is to show that the boundary
damping added to the wave equation and the boundary dissipation applied
through the bending moments at the edge of Γ0 are enough to provide the
uniform decay rates of the natural energy function associated with the model.
For this purpose, we consider the coupled system (1.1) with strictly positive
constants k1 and k2 which we henceforth take equal to 1 for convenience.
Since our main interest is a uniform stability result, we also let u(t) ≡ 0.
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Now we introduce two more operators, namely, the Dirichlet operator D
and the Green’s operator G2 (see [9] and [11]):

w = Dh ⇔
{
∆w = 0 in Γ0; w = h on ∂Γ0

}
(2.18)

f = G2g ⇔
{
∆2f = 0 in Γ0; f = 0, ∆f = g on ∂Γ0

}
(2.19)

It is easy to show that (see [9])

G2 = −A− 1
2D (2.20)

Note that since Γ0 = (0, 1) is one dimensional, the Dirichlet operator D
in (2.18) has the following form:

(Dh)(x1) =
[
h(1)− h(0)

]
x1 + h(0), 0 ≤ x1 ≤ 1 (2.21)

Next notice from (2.20) and [11] that

G∗
2Ag = −D∗A 1

2 g =
∂g

∂ν
(2.22)

However, again because of Γ0 = (0, 1) and ∂Γ0 = {0} ∪ {1}, we have that
∂g

∂ν
(i) = (−1)i+1 ∂g

∂x1
(i), i = 0, 1 (2.23)

Consequently, from (2.21), (2.22), and (2.23), we note the following expres-
sions in x1 ∈ (0, 1) to be referred to later

(G2
∗Avt)(i) = −(D∗A 1

2 vt)(i) = (−1)i+1 ∂vt

∂x1
(i), i = 0, 1 (2.24)

(DD∗A 1
2 vt)(x1) = −

(
∂vt

∂x1
(t, 1) +

∂vt

∂x1
(t, 0)

)
x1 +

∂vt

∂x1
(t, 0) (2.25)

∇DD∗A 1
2 vt = −

(
∂

∂x1
DD∗A 1

2 vt =
∂vt

∂x1
(t, 1) +

∂vt

∂x1
(t, 0)

)
(2.26)

Proceeding as in [10] and [11], the damped problem (1.1) with k1 = k2 = 1
and u(t) ≡ 0 can be written abstractly as ( see (2.2), (2.7) and (2.20))

ztt = −ANz − ANNN∗A∗
Nzt +ANN(vt

∣∣
Γ0
) (2.27)

vtt = −Av − AG2G
∗
2Avt − (I + γA 1

2 )−1N∗ANzt

= −(I + γA 1
2 )−1Av − (I + γA 1

2 )−1A 1
2DD∗A 1

2 vt

+(I + γA 1
2 )−1(zt

∣∣
Γ0
) (2.28)

At this point, we introduce the following subspace Y0 of Y (see (2.9)):

Y0 =
{
y = [y1, y2, y3, y4] ∈ Y :

∫
Γ
y1 dΓ+

∫
Ω
y2 dΩ+

∫
Γ0

y3 dΓ0 = 0
}
. (2.29)

It is easy to show that the coupled problem (1.1) is well-posed in Y0; that
is, the Lumer-Phillips theorem holds on Y0 with the norm of

D(AN
1
2 )× L2(Ω)× D(A 1

2 )× D(A
1
4
γ ) (2.30)
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Then the first order equation corresponding to (2.27) and hence to the
damped problem (1.1) with u(t) ≡ 0 is

ẏ = AF y on [D(A∗
F )]

′; y(0) = y0 ∈ Y0 (2.31)

where y(t) = [z(t), zt(t), v(t), vt(t)] and

AF =




0 I 0 0
−AN −ANNN∗AN 0 ANN(·|Γ0)
0 0 0 I

0 −(I + γA 1
2 )−1N∗AN −A −AG2G

∗
2A


 (2.32)

with dense domain D(AF ) =
{
y ∈ Y0 : AF y ∈ Y0

}
. The Y0-adjoint of AF is

A∗
F =




0 −I 0 0
AN −AN NN ∗AN 0 −AN N (·|Γ′)
0 0 0 −I

0 (I + γA 1
2 )−1N∗AN A −AG�G

∗
�
A


 (2.33)

with D(AF
∗) =

{
y ∈ Y0 : A∗

F y ∈ Y0
}
. The action of AF and A∗

F is described
by their domains.

Theorem 2.2. AF is a maximal dissipative operator on Y0 and hence the
infinitesimal generator of a s.c. semigroup eAF t of contractions on Y0.

Proof: Since AF is densely defined, it is enough to show dissipativity of
both of AF and AF

∗ on Y0 (see Corollary 4.4 in [20]). Dissipativity follows
from the calculations below where we use the skew-adjointness of A (see
(2.11)): by (2.13), (2.8), and (2.24), first with y ∈ D(AF ) and then with
y ∈ D(A∗

F )

Re
(
AF y, y

)
Y0

= −(ANNN∗ANy2, y2
)
L2(Ω)

− (
AG2G

∗
2Ay4, y4

)
D(A

1
4
γ )

= −(
y2
∣∣
Γ, y2

∣∣
Γ

)
L2(Γ)

−
[∂y4
∂x1

2
(t, 0) +

∂y4
∂x1

2
(t, 1)

]
≤ 0,

(2.34)

Re
(
AF

∗y, y
)
Y0

= −(ANNN∗ANy2, y2
)
L2(Ω)

− (
AG2G

∗
2Ay4, y4

)
D(A

1
4
γ )

= −(
y2
∣∣
Γ, y2

∣∣
Γ

)
L2(Γ)

−
[∂y4
∂x1

2
(t, 0) +

∂y4
∂x1

2
(t, 1)

]
≤ 0.

(2.35)

3. Uniform Stability of eAF t

Our main goal is to show the uniform stability of the s.c. contraction
semigroup eAF t in the space Y0 described in (2.29), corresponding to the
coupled damped PDE system with k1 = k2 = 1 and u(t) ≡ 0. Accordingly,
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the ‘energy’ of the damped system is identified with the norm of Y0 where
y0 = [z0, z1, v0, v1] ∈ Y0 (see (2.30)):

E(t) =
∥∥eAF ty0

∥∥2
Y
= Ez(t) + Ev(t) (3.1)

Ez(t) =
∫
Ω

(
|∇z(t)|2 + z2t (t)

)
dΩ

=
∥∥z(t)∥∥2D(AN

1
2 )
+
∥∥zt(t)

∥∥2
L2(Ω)

; (3.2)

Ev(t) =
∫
Γ0

(
(∆v(t))2 + v2t (t) + γ|∇vt(t)|2

)
dΓ0

=
∥∥v(t)∥∥2D(A 1

2 )
+
∥∥vt(t)

∥∥2
D(A

1
4
γ )

(3.3)

Lemma 3.1. With respect to the coupled system (1.1) with k1 = k2 = 1 and
u(t) ≡ 0, we have the following expressions:

E(t̃) + 2
∫ t̃

0

∫
Γ
z2t dΓ dt+ 2

∫ t̃

0

( ∂vt

∂x1

2
(t, 0) +

∂vt

∂x1

2
(t, 1)

)
dt = E(0)(3.4)

∫ ∞

0

( ∂vt

∂x1

2
(t, 0) +

∂vt

∂x1

2
(t, 1)

)
dt+

∥∥(zt

∣∣
Γ)
∥∥2

L2(0,∞;L2(Γ))
≤ 1
2
E(0) (3.5)

Proof: Initially for y0 ∈ D(AF ), we get from (2.34) in the proof of The-
orem 2.2 that ∀t̃ ∈ [0, T ],

d

dt
E(t) =

d

dt

∥∥eAF tyo

∥∥2
Y
= 2

(
AF e

AF ty0, e
AF ty0

)
Y

(3.6)

= −2
∫
Γ
z2t dΓ− 2

[ ∂vt

∂x1

2
(t, 0) +

∂vt

∂x1

2
(t, 1)

]
≤ 0

Then (3.4) follows by integrating (3.6), which we then extend to y0 ∈ Y0 by
density. (3.5) follows immediately from (3.4).

From (3.4) in Lemma 3.1, it is clear that E(t) is non-increasing. The main
result of this paper is the following theorem which states that E(t) actually
decays to zero.

Theorem 3.1. Let Ω be a bounded open domain in R
2 of the form in either

Fig.(i) or Fig.(ii). Then the contraction semigroup eAF t of Theorem 2.2
describing the damped coupled PDE system (1.1) is uniformly stable on Y0;
that is, there exist constants δ > 0 and M ≥ 1 such that∥∥eAF t

∥∥
L(Y0)

≤ Me−δt, t ≥ 0. Equivalently, E(t) ≤ Me−δtE(0) (3.7)

Orientation: Our strategy is to study the Kirchoff equation on Γ0 and
the Wave equation on Ω separately and then combine the results. In both
cases, we run some multipliers on the corresponding equation. Then, by
means of these energy methods, we get an identity (one for Kirchoff equation,
another for wave equation) which is commonly met in hyperbolic equations,
where the left hand side of the identity contains trace terms and the right
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hand side consists of interior terms. For each hyperbolic equation, analy-
sis of the equalities obtained by multiplier techniques leads to an estimate
of energy plus lower order terms (l.o.t.) terms (with norms topologically
weaker than that of the energy) by dissipation terms. Thereon, a standard
application of compactness/uniqueness argument gives the result. Let us
also note that the analysis of the Kirchoff equation follows closely the tech-
nique of [10]. However, since the domain of the Kirchoff equation that we
are interested in is only one dimensional (Γ0 = (0, 1)), the analysis here is
easier.

3.1. Kirchoff Equation Part of the Damped System. In this section,
we will consider the following uncoupled Kirchoff equation:


vtt − γ∆vtt +∆2v = f on Σ0
v
∣∣
∂Γ0

= 0 on ∂Σ0

∆v
∣∣
∂Γ0

= −∂vt
∂ν on ∂Σ0

v(0, ·) = v0; vt(0, ·) = v1 in Γ0

(3.8)

where f ∈ L2(Σ0) (3.9)

The Kirchoff equation (3.8) with f ≡ 0 is studied in [10], where it is shown
that there exists an operator AF generating a s. c. semigroup eAF t on the

space
{D(A 1

2 )× D(A
1
4
γ )
}
. Therefore, the solution to (3.8) is the following:

[
v
vt

]
= eAF t

[
v0
v1

]
+
∫ t

0
eAF (t−s)

[
0

f(s)

]
ds (3.10)

Hence, it follows a fortiori from (3.10) and (3.9) that

[
v
vt

]
∈ C

(
[0, T ];

[ D(A 1
2 )

D(A
1
4
γ )

])
(3.11)

The main result of this section is the following theorem:

Theorem 3.2. With respect to the Kirchoff equation in (3.8), we have the
following inequality:

∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt+

∫
Σ0

f2 dΣ0 (3.12)

≥ Ch0γ

(∫ T

0
Ev(t)dt − [

Ev(T ) + Ev(0)
] − ∥∥v∥∥2

L2(0,T ;D(A 1
2 −ε))

)

The proof of Theorem 3.2 will be given in the subsequent steps.

Corollary 3.2. With respect to the Kirchoff equation part of the coupled
PDE’s with k1 = k2 = 1 and u(t) ≡ 0 in (1.1), we have the following
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inequality:∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt+

∫
Σ0

z2t dΣ0 (3.13)

≥ Ch0γ

(∫ T

0
Ev(t)dt − [

Ev(T ) + Ev(0)
] − ∥∥v∥∥2

L2(0,T ;D(A 1
2 −ε))

)

Proof: Notice that the Kirchoff equation part of (1.1) is the same as
(3.8) with f = zt

∣∣
Γ0

∈ L2(0,∞;L2(Γ0)), (see Lemma 3.1). Hence, the result
follows from Theorem 3.2.

Let us now note the following abstract version of (3.8) (see (2.28)):

(I + γA 1
2 )vtt = −Av − A 1

2DD∗A 1
2 vt + f (3.14)

Remark 3.1. The analysis of the Kirchoff equation above will follow closely
section 6 in [10]. However, in our case we have an extra term introduced by
the coupling with a wave equation. Here, we will emphasize the influence of
the coupling term represented by f in (3.8), which was absent in the problem
considered in [10]. Whenever convenient, we quote results directly from [10].
However, since our case is only one dimensional, some parts of the analysis
here is easier than in [10]. Compare (3.8) with (1.24) in [10].

Step 1: A New Variable. Define a new variable r as:

r = A− 1
2 vt ∈ C

(
[0, T ];D(A 3

4 )
)

(3.15)

where the regularity follows from (3.11).

Proposition 3.3. The variable r satisfies the following Kirchoff equation:


rtt − γ∆rtt +∆2r = −DD∗A 1
2 vtt +A− 1

2 ft on Σ0
r
∣∣
∂Γ0

= ∆r
∣∣
∂Γ0

= 0 on ∂Σ0

r(0, ·) = A− 1
2 v1;

rt(0, ·) = −(I + γA 1
2 )−1[A 1

2 v0 +DD∗A 1
2 v1 − A− 1

2 f(0, ·)] (3.16)

Remark 3.2. Compare (3.16) with (6.9) in [10]. Also notice the extra term
A− 1

2 ft in (3.16) as a result of coupling.

Proof: By the definition (3.15) and the abstract equation (3.14), we get
that

rt = A− 1
2 vtt (3.17)

= −(I + γA 1
2 )−1[A 1

2 v +DD∗A 1
2 vt − A− 1

2 f
]

(I + γA 1
2 )rt = −A 1

2 v − DD∗A 1
2 vt +A− 1

2 f (3.18)

(I + γA 1
2 )rtt = −Ar − DD∗A 1

2 vtt +A− 1
2 ft (3.19)
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Since r ∈ C
(
[0, T ];D(A 3

4 )
)
(see (3.15)), the boundary conditions stated in

(3.16) hold true. As for the initial conditions, they follow from (3.15) and
(3.18).

In the rest of the paper, however, we can assume without loss of generality
that

f ∈ H1
0 (0, T ;L2(Γ0)) which is dense in L2(0, T ;L2(Γ0)) (3.20)

so that f(0, ·) = 0. Similarly, we will assume that v1 ∈ H2
0 (Γ0), which is

dense in H1
0 (Γ0) = D(A 1

4 ) so that D∗A 1
2 v1 = ∂v1

∂ν

∣∣
∂Γ0

= 0. As a result, the
initial conditions in (3.16) become

rt(0, ·) = −(I + γA 1
2 )−1A 1

2 v0 (3.21)

Therefore, it suffices to prove the desired estimates with these smoother
data, and then extend by density.

Step 2: Equivalence of Some Norms Between Old Variable v and New Vari-
able r
Let us note the following norms for later reference:

(i)
{∫

Γ0

∣∣∇(∆r)
∣∣2 dΓ0

} 1
2

=
∥∥A 3

4 r
∥∥

L2(Γ0)
=
∥∥A 1

4 vt

∥∥
L2(Γ0)

which is equivalent to
∥∥vt

∥∥
D(A

1
4
γ )
(see (3.15)). (3.22)

(ii)
{∫

Γ0

(|∇rt|2 + γ|∆rt|2
)
dΓ0

} 1
2

which is equivalent to

∥∥(I + γA 1
2 )rt

∥∥
L2(Γ0)

=
∥∥A 1

2 v
∥∥

L2(Γ0)
(3.23)

+O
(∥∥D∗A 1

2 vt

∥∥
L2(∂Γ0)

+
∥∥A− 1

2 f
∥∥

L2(Γ0)

)
(see (3.18))

Notice from (2.24) and Lemma 3.1 that

D∗A 1
2 vt ∈ L2

(
0, T ;D(A 1

2 )
)
, hence by (3.23) rt ∈ L2

(
0, T ;D(A 1

2 )
)
(3.24)

Step 3: A Trace Identity
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Proposition 3.4. The solution r(t, x1) of the equation (3.16) satisfies the
following equality where h0(x1) = x1 − 1

2 :

1
4

∫ T

0

[(
∂∆r

∂x1
(t, 0)

)2

+
(
∂∆r

∂x1
(t, 1)

)2

+
(
∂rt

∂x1
(t, 0)

)2

+
(
∂rt

∂x1
(t, 1)

)2]
dt

=
1
2

∫
Σ0

|∇(∆r)|2dΣ0 +
3
2

∫
Σ0

|∇rt|2dΣ0 +
γ

2

∫
Σ0

|∆rt|2dΣ0

+
∫
Σ0

(
DD∗A 1

2 vtt − A− 1
2 ft, h0 · ∇(∆r)

)
dΣ0

−
[(

rt + γ∆rt, h0 · ∇(∆r)
)

L2(Γ0)

]T

0

(3.25)

Proof: A more general version of the identity for dim(Γ0) = n ≥ 1 is
proved in the appendix A of [10] by using the multiplier h0∇(∆r). Then the
LHS of (3.4) is as in (A.7) of [10] and the RHS of (3.4) is stated in (A.8)
of [10] after specializing (A.7) and (A.8) from [10] to our one dimensional
domain with h0 = x1 − 1

2 .

Remark 3.3. The simple one dimensionality of the domain of (3.16) also
helps us to avoid running the second multiplier ∆rdivh, which is required
in the analysis of Kirchoff equations on two or higher dimensional domains.
See appendix B in [10].

Step 4: Analysis of RHS of (3.4)

Proposition 3.5. With respect to the Kirchoff equation (3.16) and the iden-
tity (3.4), we have the following estimate:

RHS of (3.4)

≥ Ch0γ

(∫ T

0
Ev(t)dt − [

Ev(0) + Ev(T )
] −

∫
Σ0

f2 dΣ0

−
∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt − ∥∥rt

∥∥2
D(A 1

2 −ε)

) (3.26)

Proof: Let us first notice the following for later reference:

By (3.20), A− 1
2 f ∈ H1

0
(
0, T ;H2(Γ0) ∩ H1

0 (Γ0)
)
so that

A− 1
2 f

∣∣
∂Γ0

≡ 0 and ∆(I + γA 1
2 )−1A− 1

2 f = −(I + γA 1
2 )−1f ; (3.27)

By (3.24), rt ∈ L2
(
0, T ;D(A 1

2 )
)
so that ∆rt = −A 1

2 rt (3.28)

With reference to the last two terms on the RHS of (3.4), we have the
following equality where the first step below follows from integration by
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parts and (3.28), whereas the second step follows from (3.18):∫ T

0

(
DD∗A 1

2 vtt − A− 1
2 ft, h0 · ∇(∆r)

)
L2(Γ0)

dt

−
[(

rt + γ∆rt, h0 · ∇(∆r)
)

L2(Γ0)

]T

0

=
[(

DD∗A 1
2 vt − A− 1

2 f − rt + γA 1
2 rt, h0 · ∇(∆r)

)
L2(Γ0)

]T

0

(3.29)

+
∫ T

0

(
DD∗A 1

2 vt − A− 1
2 f, h0 · ∇(A 1

2 rt)
)

L2(Γ0)
dt

=
[(

− (I + γA 1
2 )rt − A 1

2 v − rt + γA 1
2 rt, h0 · ∇(∆r)

)
L2(Γ0)

]T

0

+
∫ T

0

(
DD∗A 1

2 vt − A− 1
2 f, h0 · ∇(A 1

2 rt)
)

L2(Γ0)
dt

= −
[(
2rt +A 1

2 v, h0 · ∇(∆r)
)

L2(Γ0)

]T

0

+
∫ T

0

(
DD∗A 1

2 vt − A− 1
2 f, h0 · ∇(A 1

2 rt)
)

L2(Γ0)
dt

(3.29)

Therefore, we see by means of (3.4) and (3.29) that

RHS of (3.4) = I + II + III where

I = −
[(
2rt +A 1

2 v, h0 · ∇(∆r)
)

L2(Γ0)

]T

0

II =
1
2

∫
Σ0

|∇(∆r)|2dΣ0 +
3
2

∫
Σ0

|∇rt|2dΣ0 +
γ

2

∫
Σ0

|∆rt|2dΣ0

III =
∫ T

0

(
DD∗A 1

2 vt − A− 1
2 f, h0 · ∇(A 1

2 rt)
)

L2(Γ0)
dt

Therefore, Proposition 3.5 will be proved as soon as we show the estimates
claimed below:

I ≤ Ch0γ

[
Ev(0) + Ev(T )

]
+ (3.30)

II ≥ Cγ

∫ T

0
Ev(t)dt − C

∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt

−C

∫
Σ0

f2 dΣ0 (3.31)

III = O
(∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt

+
∥∥f∥∥2

L2(Σ0)
+
∥∥A 1

2 v
∥∥2

L2(Σ0)
+
∥∥rt

∥∥2
L2(0,T ;D(A 1

2 −ε))

)
(3.32)
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Remark 3.4. Up to this point, there has not been a significant difference
between the analysis here and that in [10]. The main difference of the analysis
here involves the proof of (3.32), which is induced by the coupling of the
Kirchoff equation with the wave equation in the PDE system (1.1).

Proof of (3.30): It follows immediately from the equivalence of norms stated
in (3.22) and (3.23) and from the definition of energy Ev(t) in (3.3).

Proof of (3.31): It follows from the equivalence of norms stated in (3.22)
and (3.23) that

1
2

∫
Σ0

|∇(∆r)|2dΣ0 +
3
2

∫
Σ0

|∇rt|2dΣ0 +
γ

2

∫
Σ0

|∆rt|2dΣ0

≥ 1
2
∥∥A 1

4 vt

∥∥2
L2(Σ0)

+
1
2
∥∥(I + γA 1

2 )−1rt

∥∥2
L2(Σ0)

=
1
2
∥∥A 1

4 vt

∥∥2
L2(Σ0)

+
1
2
∥∥A 1

2 v
∥∥2

L2(Σ0)

+O
(∫ T

0

[∥∥D∗A 1
2 vt

∥∥2
L2(∂Γ0)

+
∥∥A− 1

2 f
∥∥2

L2(Γ0)

]
dt

)

To finish the proof (3.31), we first recall that
∥∥A 1

4 vt

∥∥
L2(Σ0)

is equivalent

to
∥∥vt

∥∥
D(A

1
4
γ )
and then recall (2.24) for the term

∥∥D∗A 1
2 vt

∥∥
L2(∂Γ0)

.

Proof of (3.32): Recall from (3.18), (3.28), and (3.27) that

∆rt = −A 1
2 rt (3.33)

= A 1
2 (I + γA 1

2 )−1[A 1
2 v +DD∗A 1

2 vt
] − A 1

2 (I + γA 1
2 )−1A− 1

2 f

= F − (I + γA 1
2 )−1f (3.34)

where F = A 1
2 (I + γA 1

2 )−1[A 1
2 v +DD∗A 1

2 vt
]
. Therefore, we can write

III = IIIa + IIIb + IIIc (3.35)

where

IIIa =
∫ T

0

(
DD∗A 1

2 vt, h0 · ∇F

)
L2(Γ0)

dt

IIIb =
∫ T

0

(
DD∗A 1

2 vt, h0 · ∇(I + γA 1
2 )−1f

)
L2(Γ0)

dt

IIIc =
∫ T

0

(A− 1
2 f, h0 · ∇(A 1

2 rt)
)
L2(Γ0)

dt (3.36)



A COUPLED STRUCTURAL ACOUSTIC SYSTEM 391

Since the coupling term does not appear in IIIa, we can readily apply
Proposition 6.10 from [10] to get that

IIIa = −1
γ

∫ T

0

(A 1
2 v, h0 · ∇(DD∗A 1

2 vt)
)
L2(Γ0)

dt (3.37)

+O
(∫ T

0

∥∥D∗A 1
2 vt

∥∥2
L2(∂Γ0)

dt

)

+O
(∫ T

0

∥∥D∗A 1
2 vt

∥∥
L2(∂Γ0)

· ∥∥A 1
2 v
∥∥

L2(Σ0)
dt

)

Now recalling (2.26), we get∫ T

0

(A 1
2 v, h0∇(DD∗A 1

2 vt)
)
L2(Γ0)

dt

= O
(∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2] 1
2

· ∥∥A 1
2 v
∥∥

L2(Γ0)
dt

) (3.38)

Therefore, (3.37), (3.1), and (2.25) imply

IIIa = O
(∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2] 1
2

· ∥∥A 1
2 v
∥∥

L2(Γ0)
dt

+
∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt

) (3.39)

As for IIIb, we get from (2.25)

IIIb = O
(∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2] 1
2

· ∥∥f∥∥
L2(Σ0)

dt

)
(3.40)

Hence, to finish the proof of (3.31), we finally consider IIIc. First notice
that since dim(Γ0) = 1,

IIIc =
(A− 1

2 f, h0 · ∇(A 1
2 rt)

)
L2(Γ0)

=
∫
Γ0

h0(A− 1
2 f)

∂(A 1
2 rt)

∂x1
dΓ0. (3.41)

By integration by parts on (3.41)and from the fact that A− 1
2 f

∣∣
∂Γ0

= 0 (see
(3.27)) we have that

IIIc =
∫
Σ0

h0(A− 1
2 f)

∂(A 1
2 rt)

∂x1
dΣ0 = −

∫
Σ0

∂

∂x1
(h0A− 1

2 f)A 1
2 rtdΣ0

= −
∫
Σ0

(
Aε∇(h0A− 1

2 f),A 1
2−εrt

)
dΣ0

= O
(∫ T

0

∥∥f∥∥
L2(Γ0)

· ∥∥rt

∥∥
D(A 1

2 −ε)
dt

)
(3.42)

(3.35), (3.39), (3.40), and (3.42) finish the proof of (3.32).

Step 5: Analysis of LHS of (3.4)
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Proposition 3.6. With respect to the Kirchoff equation (3.16) and the iden-
tity (3.4), we have the following estimate:

LHS of (3.4)

≤ C
∥∥rt

∥∥2
L2(0,T ;D(A 1

2 −ε))
+
∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt

(3.43)

Proof: Since ∆r = −A 1
2 r (see (3.28)), it is true that

∂∆r

∂x1
= −∂A 1

2 r

∂x1
= − ∂vt

∂x1
(3.44)

As for the remaining term ∂rt
∂x1

in LHS of (3.4), it follows by trace theory
that ∫ T

0

[(
∂rt

∂x1
(t, 0)

)2

+
(
∂rt

∂x1
(t, 1)

)2]
dt ≤ C

∥∥rt

∥∥2
L2(0,T ;D(A 1

2 −ε))
(3.45)

Combining (3.44) and (3.45) finishes the proof of Proposition 3.6.

Final Step of Proof of Theorem 3.2: Combining Propositions 3.5 and 3.6 al-
most completes the proof:∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2]
dt+

∫
Σ0

f2 dΣ0

≥ Ch0γ

(∫ T

0
Ev(t)dt − [

Ev(T ) + Ev(0)
] − ∥∥rt

∥∥2
L2(0,T ;D(A 1

2 −ε))

) (3.46)

To complete the proof, note from (3.17) and (2.22) that∥∥rt

∥∥2
L2(0,T ;D(A 1

2 −ε))
= C

∥∥v∥∥2
L2(0,T ;D(A 1

2 −ε))

+O
(∫ T

0

[(
∂vt

∂x1
(t, 0)

)2

+
(
∂vt

∂x1
(t, 1)

)2] 1
2

· ∥∥f∥∥
L2(Γ0)

dt

) (3.47)

3.2. Wave Equation Part of the Damped System. We will focus on
the following Wave equation coming from the coupled P.D.E. system (1.1):


ztt = ∆z on Q,
∂z
∂ν

∣∣
Γ1
= −zt on Σ1,

∂z
∂ν

∣∣
Γ0
= −g − zt on Σ0.

(3.48)

where g ∈ L2(Σ0) (3.49)

The main result of this section is the following estimate concerning the
wave equation (3.48):

Theorem 3.3. Let h(x) be a smooth (C2) vector field on Ω, satisfying the
following condition:∫

Ω
H(x)w(x) · w(x)dΩ ≥ ρ

∫
Ω
w2(x)dΩ, ∀w(x) ∈ L2(Ω) (3.50)
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where H(x) is the transpose of the Jacobian of h(x) and ρ > 0 is a strictly
positive constant. Then, with respect to the wave equation (3.48), we have
the following inequality:

CT

{
‖zt‖2L2(Σ) + ‖g‖2L2(Σ0) + ‖z‖2

L2(0,T ;H
1
2+ε1 (Ω))

+ ‖z‖2
H

1
2+ε1 (0,T ;L2(Ω))

}

≥ Chαε1

(∫ T−α

α
Ez(t) dt − [

Ez(α) + Ez(T − α)
])

(3.51)

We have the following corollary of Theorem 3.3:

Corollary 3.7. Let h(x) be a smooth (C2) vector field on Ω chosen as in
Theorem 3.3. Then, with respect to the wave equation part of (1.1) with
u(t) ≡ 0, we have the following inequality:

CT

{
‖zt‖2L2(Σ) + ‖vt‖2L2(Σ0) + ‖z‖2

L2(0,T ;H
1
2+ε1 (Ω))

+ ‖z‖2
H

1
2+ε1 (0,T ;L2(Ω))

}

≥ Chαε1

(∫ T−α

α
Ez(t) dt − [

Ez(α) + Ez(T − α)
])

(3.52)

Proof: Since vt ∈ C
(
[0, T ];H1(Γ0)

)
(see (3.11)), Theorem 3.3 holds true

for the Kirchoff equation part of the coupled system (1.1) where g is replaced
by vt.

The proof of the Theorem 3.3 will follow from the subsequent lemma and
propositions. Before we proceed, let us introduce the following domains
where T > α > 0 and α is arbitrarily small:

Qα = (α, T − α)× Q; Γα = (α, T − α)× Γ; Γ0α = (α, T − α)× Γ0
Proposition 3.8. Let h be a smooth vector field on Ω. We denote the trans-
pose of its Jacobian as H. Also, ν is the unit normal of the boundary Γ.
Then the following (basic trace) identity holds true for the wave equation
(3.48):∫

Σα

∂z

∂ν
h · ∇z dΣα +

1
2

∫
Σα

z2t h · ν dΣα − 1
2

∫
Σα

∣∣∇z
∣∣2h · ν dΣα

=
∫

Qα

H∇z · ∇z dQα +
1
2

∫
Qα

[
z2t − ∣∣∇z

∣∣2]divh dQα

+
[(

zt, h · ∇z

)
L2(Ω)

]T−α

α

(3.53)

Proof: We refer to [L-T.4] for the proof of the identity (3.53), where
both sides of a Wave equation is multiplied by h ·∇z and then integrated by
parts. Let us note that the (3.53) is true for any wave equation as long as h
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is a smooth vector field on a bounded open domain Ω ∈ R
n with a smooth

boundary Γ.

Lemma 3.9. With respect to the wave equation (3.48), the following equal-
ities hold true:∫

Qα

(
z2t − ∣∣∇z

∣∣2)divh dQα =
∫
Σα

ztzdivh dΣα +
∫
Σ0α

gzdivh dΣ0α

+
∫

Qα

z∇(
divh

) · ∇z dQα +
[(

zt, zdivh
)

L2(Ω)

]T−α

α

,

(3.54)

∫
Qα

(
z2t − ∣∣∇z

∣∣2) dQα =
∫
Σα

ztz dΣα +
∫
Σ0α

gz dΣ0α

+
[(
zt, z

)
L2(Ω)

]T−α

α

(3.55)

Proof: (3.55) follows from (3.54) with when h is chosen as h = x so
divh = 2. The proof of (3.54) is achieved through a standard application of
energy methods via the multiplier z div(h).

We will need the following result which gives a bound for the tangential
gradient ∂z

∂τ = ∇τz (see [13]):

Proposition 3.10. Consider the wave equation (3.48). For arbitrarily small
α > 0, there exist a constant CTαε1

> 0 such that

∫ T−α

α

∫
Γ

∣∣∣∂z
∂τ

∣∣∣2dΣ ≤ CTαε1

{∫ T

0

∫
Γ

(∣∣∣∂z
∂ν

∣∣∣2 + z2t

)
dΣ

+ ‖z‖2
H1/2+ε1 (Q)

} (3.56)

Let us now analyze the basic trace identity (3.53).

Proposition 3.11. With reference to the wave equation (3.48), the follow-
ing estimate is true:

LHS of (3.53) ≤ CThαε1

{∫
Σα

z2t dΣα +
∫
Σ0α

g2 dΣ0α

+ ‖z‖2
H1/2+ε1 (Qα)

} (3.57)

Proof: Since h = (h · ν)ν + (h · τ)τ ,

h · ∇z =
∂z

∂ν
h · ν + ∂z

∂τ
h · τ on Γ and |∇z|2 =

(∂z
∂ν

)2
+
(∂z
∂τ

)2
on Γ.
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Hence, we see from (3.53) that

LHS of (3.53) =
1
2

∫
Σα

(∂z
∂ν

)2
h · ν dΣα +

∫
Σα

(∂z
∂ν

∂z

∂τ

)
h · ν dΣα

+
1
2

∫
Σα

z2t h · ν dΣα − 1
2

∫
Σα

(∂z
∂τ

)2
h · τ dΣα

≤ C ′
h

{
1
2

∫
Σα

(∂z
∂ν

)2
dΣα +

∫
Σα

∣∣∣∂z
∂ν

∂z

∂τ

∣∣∣ dΣα +
1
2

∫
Σα

z2t dΣα

+
1
2

∫
Σα

(∂z
∂τ

)2
dΣα

}
,

where C ′
h = supx∈Γ

∣∣h(x)∣∣. Next by Proposition 3.10 and the boundary
conditions on ∂z

∂ν

∣∣
Σ from the equation (3.48), we get that

LHS of (3.53) ≤ CThαε1

{∫
Σ0α

g2 dΣ0α +
∫
Σα

z2t dΣα + ‖z‖2
H1/2+ε1 (Qα)

}
,

which finishes the proof of Proposition 3.11.

Let us now consider the right hand side of (3.53):

Proposition 3.12. With reference to the wave equation (3.48), the follow-
ing estimate is true:

RHS of (3.53)

≥
(
ρ − ε

2

)∫ T−α

α
Ez(t) dt − Ch,ε

[
Ez(α) + Ez(T − α)

]
(3.58)

−Ch,ε

(∫
Qα

z2 dQα +
∫
Σα

z2 dΣα +
∫
Σα

z2t dΣα +
∫
Σ0α

g2 dΣ0α

)

Proof: The proof is a standard application of Lemma 3.9 to the identity
(3.53). See, for instance, [16].

Final Step of Proof of Theorem 3.3:

Combining Propositions 3.11 and 3.12 we get

CT

{
‖zt‖2L2(Σ) + ‖g‖2L2(Σ0) + ‖z‖2L2(Σ) + ‖z‖2L2(Q) + ‖z‖2

H
1
2+ε1 (Ω)

}

≥ Chαε1

(∫ T−α

α
Ez(t) dt − [

Ez(α) + Ez(T − α)
]) (3.59)

Next by trace theory we get that

‖z‖2L2(Γ) ≤ C‖z‖2
H

1
2 (Ω)

(3.60)
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Finally, (3.59) and (3.60) finish the proof of Theorem 3.3 since ‖z‖2
L2(0,T ;H

1
2 (Ω))

and ‖z‖2L2(Q) can be absorbed by ‖z‖2
H

1
2+ε1 (Q)

.

3.3. Combined Analysis of Coupled P.D.E.’s. Combining Corollary
3.2 and Corollary 3.7 over the interval (α, T −α) and using the definition of
energy (3.1) in associated with the PDE system (1.1), we get the following
PDE estimate:

Lemma 3.13. For T big enough, there exists a constant, CT > 0 such that

E(T ) ≤ CT

{∥∥∥∂vt

∂ν

∥∥∥2
L2(∂Σ0)

+ ‖zt‖2L2(Σ0) + ‖v‖2C([0, T ];H2−ε(Γ0))

+ ‖vt‖2L2(Σ0) + ‖z‖2
H

1
2+ε(Q)

} (3.61)

Note that we keep track of dependence of the constant CT only on T , the
others being insignificant. Also for convenience, we take ε = ε1.
Proof: By Corollaries 3.2 and 3.7, there exists a constant CT > 0 such

that

CT

{∥∥∥∂vt

∂ν

∥∥∥2
L2(∂Σ0)

+ ‖zt‖2L2(Σ0) + ‖v‖2
C([0,T ];D(A 1

2 − ε
4 ))
+ ‖vt‖2L2(Σ0)

+ ‖z‖2
H

1
2+ε(Q)

}

≥
∫ T−α

α
E(t) dt − [

E(0) + E(α) + E(T − α) + E(T )
]

(3.62)

It follows from (3.4) that∫ T−α

α
E(t) dt ≥ (T − 2α)

(
E(0)− 2

{∥∥∥∂vt

∂ν

∥∥∥2
L2(∂Σ0)

+ ‖zt‖2L2(Σ)

})
(3.63)

Since D(A 1
2− ε

4 ) = H2−ε(Γ0) (see (2.5)), we have that

‖v‖2
C([0,T ];D(A 1

2 − ε
4 ))
= ‖v‖2C([0, T ];H2−ε(Γ0)) (3.64)

It then follows from (3.62), (3.63), and (3.64) that there exists a positive
constant still denoted as CT > 0 such that

CT

{∥∥∥∂vt

∂ν

∥∥∥2
L2(∂Σ0)

+ ‖zt‖2L2(Σ0) + ‖v‖2C([0, T ];H2−ε(Γ0)) + ‖vt‖2L2(Σ0)

+‖z‖2
H

1
2+ε(Q)

}
≥ (T − 2α − 4)E(0) ≥ (T − 2α − 4)E(T )

Hence Lemma 3.13 is true when T > 2α+ 4.

In the last lemma, we have an estimate for the energy of the system (1.1)
by the dissipative terms plus lower order terms (with respect to the norm of
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the energy). Our last step is to absorb these lower order terms by means of
a standard compactness/uniqueness argument.

Proposition 3.14. With respect to the coupled P.D.E. system (1.1), for T
big enough, there exists a constant CT > 0 such that

CT

(∫
Σ
z2t dΣ+

∫
∂Σ0

(
∂vt

∂ν

)2

d(∂Σ0)
)

≥ ∥∥v∥∥2
C([0, T ];H2−ε(Γ0))

+
∥∥vt

∥∥2
L2(Σ0)

+ ‖z‖2
H

1
2+ε(Q)

(3.65)

Proof: It follows by a contradiction argument. Assume that there ex-
ists a sequence {zn(t), z

′
n(t), vn(t), v

′
n(t)} of solutions to the problem (1.1)

corresponding to the sequence of initial conditions {zn0, zn1, vn0, vn1} such
that∥∥vn

∥∥2
C([0, T ];H2−ε(Γ0))

+
∥∥vn

′∥∥2
L2(Σ0)

+ ‖zn‖2
H

1
2+ε, 12+ε(Q)

= 1 and

lim
n→∞

(∥∥z′
n

∥∥2
L2(Σ)

+
∥∥∥∥∂v′

n

∂ν

∥∥∥∥
2

L2(∂Σ0)

)
= 0

(3.66)

Let us now define the energy En(t) of the system (1.1) corresponding to the
initial conditions {zn0, zn1, vn0, vn1} as we did in (3.1), (3.2), and (3.3) so
that we have (see (3.4)):

En(T ) = En(0)− 2
(∥∥z′

n

∥∥2
L2(Σ)

+
∥∥∥∥∂v′

n

∂ν

∥∥∥∥
2

L2(∂Σ0)

)
(3.67)

We claim that {zn(0), z
′
n(0), vn(0), v

′
n(0)} is uniformly bounded in Y0. To

see it, we recall the equation (3.61) from Lemma 3.13 and substitute it into
(3.67). Therefore, we get first by rearranging the dissipation terms and then
by (3.66) that for T large enough (see Lemma 3.13), there exists a constant
still denoted by CT such that ∀ n

En(0) ≤ CT

{∥∥∥∂vt

∂ν

∥∥∥2
L2(∂Σ0)

+ ‖zt‖2L2(Σ0)

+ ‖v‖2C([0, T ];H2−ε(Γ0)) + ‖vt‖2L2(Σ0) + ‖z‖2
H

1
2+ε(Q)

}
≤ const

(3.68)

Hence, En(0) is uniformly bounded and the claim is proved. By (3.3),
there exists a subsequence still ordered by n such that

{zn0, zn1, vn0, vn1} −→ {z̃0, z̃1, ṽ0, ṽ1} weakly in Y0.

Now denote by {z̃(t), z̃t(t), ṽ(t), ṽt(t)} the solution to the problem (1.1)
corresponding to the initial conditions {z̃0, z̃1, ṽ0, ṽ1}. Since eAF t is a s.c.
semigroup of contractions on Y0, {zn(t), z

′
n(t), vn(t), v

′
n(t)} is uniformly bounded

on C([0, T ];Y0); therefore, there exists a subsequence still ordered by n such
that

{zn(t), z
′
n(t), vn(t), v

′
n(t)} −→ {z̃(t), z̃′

(t), ṽ(t), ṽ
′
(t)} weakly in

C([0, T ];Y0). It then follows by compact imbeddings below
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H2(Γ0) ↪→ H2−ε(Γ0),
H1

0 (Γ0) ↪→ L2(Γ0),
H1(Ω) ↪→ H1−ε(Ω), and
H1(0, T ;L2(Ω)) ↪→ H1−ε(0, T ;L2(Ω))

(3.69)

that 


vn −→ ṽ strongly in C([0, T ];H2−ε(Γ0)),
v′
n −→ ṽt strongly in L2(Σ0)
zn −→ z̃ strongly in H1−ε(Q).

(3.70)

Therefore, by (3.70) and the limit in the assumptions noted in (3.66), we
get that ∫

Σ
z̃t

2 dΣ0 =
∫

∂Σ0

(
∂ṽt

∂ν

)2

d(∂Σ0) = 0 (3.71)

Hence, by use of (3.71) in the equation (1.1), {z̃, ṽ} satisfies the following
equations: 



z̃tt = ∆z̃ on Q
∂z̃
∂ν

∣∣
Γ1
= 0 on Σ1

∂z̃
∂ν

∣∣
Γ0
= −ṽt on Σ0

z̃t

∣∣
Γ = 0 on Σ

(3.72)

{
ṽtt − γ∆ṽtt +∆2ṽ = 0 on Σ0
ṽ
∣∣
∂Σ0

= ∆ṽ
∣∣
∂Γ0

= ∂ṽt
∂ν = 0 on ∂Σ0

(3.73)

where {z̃(0, ·), z̃t(0, ·), ṽ(0, ·), ṽt(0, ·)} = {z̃0, z̃1, ṽ0, ṽ1} ∈ Y0

It is known that the solution of the Kirchoff problem (3.73) with three
zero boundary conditions is the trivial solution (see [19]):

ṽ ≡ ṽt ≡ 0 (3.74)

Thus, using (3.74) in (3.72), we see that z̃ satisfies the following:{
z̃tt = ∆z̃ on Q
∂z̃
∂ν

∣∣
Γ ≡ z̃t

∣∣
Γ ≡ 0 on Σ (3.75)

where {z̃0, z̃1} ∈ H1(Ω)× L2(Ω) such that by (2.29)∫
Γ
z̃0 dΓ +

∫
Ω
z̃1 dΩ = 0 (3.76)

Lumer-Phillips theorem holds true for the uncoupled z̃ problem (3.75) in
H1(Ω)× L2(Ω) subject to (3.76). Hence, we also get that

z̃ ≡ z̃t ≡ 0 (3.77)

However, (3.74) and (3.77) contradict with the assumptions in (3.66) and
the proof of Proposition 3.14 is finished.

Final Step of the Proof of Theorem 3.1:
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By Lemma 3.13 and Proposition 3.14, we see that when T is large enough,
there exists a positive constant CT > 0 such that

CTE(T ) ≤ ∥∥zt

∥∥2
L2(Σ)

+
∥∥∥∥∂vt

∂ν

∥∥∥∥
2

L2(∂Σ0)

Now recall the equality (3.4) rewritten below as:

E(T ) + 2
∥∥zt

∥∥2
L2(Σ)

+ 2
∥∥∥∥∂vt

∂ν

∥∥∥∥
2

L2(∂Σ0)
= E(0)

Consequently, we get that
(
2CT + 1

)
E(T ) ≤ E(0) and hence E(T ) < E(0),

implying that
∥∥eAF t

∥∥
L(Y ) < 1. Therefore, AF is the infinitesimal generator of

a uniformly stable semigroup on Y and the proof of Theorem 3.1 is finished.
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