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Abstract. We study the existence of almost periodic mild solutions of a
class of partial functional differential equations via semilinear almost peri-
odic abstract functional differential equations of the form

(∗) x′ = f(t, x, xt) .

To this end, we first associate with every almost periodic semilinear equation

(∗∗) x′ = F (t, x)

a nonlinear semigroup in the space of almost periodic functions. We then
give sufficient conditions (in terms of the accretiveness of the generator of
this semigroup) for the existence of almost periodic mild solutions of (∗∗)
as fixed points of the semigroup. Those results are then carried over to
equation (∗). The main results are stated under accretiveness conditions of
the function f in terms of x and Lipschitz conditions with respect to xt.

1. Introduction

In this paper we are mainly concerned with the existence of almost peri-
odic semilinear evolution equations of the form

dx

dt
= Ax+ f(t, x, xt) (1)

where A is the infinitesimal generator of a C0-semigroup T (t), t ≥ 0 and
f is an everywhere defined continuous operator from R × X × C to X.
Throughout this paper we will denote by C = Cu((−∞, 0],X) the space of
all uniformly continuous and bounded functions from (−∞, 0] to X, by X a
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given Banach space and by xt the map x(t+ θ) = xt(θ), θ ∈ (−∞, 0], where
x(·) is defined on (−∞, a] for some a > 0.

As is well known (see e.g. [2], [5], [10], [12], [18-19], [24-27], [37] and the
references therein) many problems on partial differential equations can be
stated in the setting of abstract functional differential equations of the form
(1). In passing we mention that the case A = 0 of equation (1) has been
treated in [13-17], [28], [31]. In these papers the proofs of the main results
are based on an existence theorem for bounded solutions due to Medvedev
[20].

Recently, increasing interest in semilinear evolution equations can be ob-
served (see e.g. [12], [18-19], [25-27], [32] and the references therein). This
interest arises from a need to extend well-known results on ordinary differ-
ential equations to a class of partial differential equations. In this context
we consider the existence of almost periodic mild solutions of equation (1).
At this point we want to emphasize that our approach to the problem is
somewhat different from that used in the papers [13-17], [28], [31]. In fact,
we first associate with an equation without delay (equation (2) below) a
semigroup of nonlinear operators which then plays a role similar to that of
monodromy operator for equations with periodic coefficients. Then we use
the results thus obtained in order to study equation (1). Our method, in
the case A = 0, requires a condition on f which is somewhat stronger than
that used in the previous papers in order to guarantee the existence of the
associated semigroups. However, our method in turn allows to impose accre-
tiveness conditions on the function f in a more general context which seems
to be more suitable for equations whose right-hand side f depends explicitly
on t.

2. Almost Periodic Solutions of Differential
Equations without Delay

In this section we deal with almost periodic mild solutions to the semilin-
ear evolution equation

dx

dt
= Ax+ f(t, x) , x ∈ X (2)

whereX is a Banach space, A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0 of linear operators of type ω, i.e.

‖S(t)x − S(t)y‖ ≤ eωt‖x − y‖, ∀ t ≥ 0, x, y ∈ X ,

and B is an everywhere defined continuous operator from R×X to X. Here-
after, by a mild solution x(t), t ∈ [s, τ ] of equation (2) we mean a continuous
solution of the integral equation

x(t) = S(t − s)x+
∫ t

s
S(t − ξ)B(ξ, x(ξ))dξ, ∀s ≤ t ≤ τ. (3)

A strong solution (for the definition see [34], e.g.) of equation (2) is neces-
sarily a mild solution of this equation. The inverse assertion, however, is not
true for a general Banach space X (see [34] for a counter-example). On the
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other hand, under additional assumptions on X the mild solutions may be
strong solutions. For more information on semilinear equations of the form
(2) we refer to [12], [19], [24-25], [34].

Before proceeding we recall some notions and results which will be fre-
quently used later on. We define the bracket [·, ·] in a Banach space Y as
follows (see [5], [19])

[x, y] = lim
h→+0

‖x+ hy‖ − ‖y‖
h

= inf
h>0

‖x+ hy‖ − ‖y‖
h

Definition 1. Suppose that F is a given operator in a Banach space Y.
Then (F + γI) is said to be accretive if and only if for every λ > 0 one of
the following equivalent conditions is satisfied
i) (1 − λγ)‖x − y‖ ≤ ‖x − y + λ(Fx − Fy)‖, ∀x, y ∈ D(F ),
ii) [x − y, Fx − Fy] ≥ −γ‖x − y‖, ∀x, y ∈ D(F ).

In particular, if γ = 0 , then F is said to be accretive.

Remark. From this definition we may conclude that (F + γI) is accretive
if and only if

‖x − y‖ ≤ ‖x − y + λ(Fx − Fy)‖ + λγ‖x − y‖ (4)

for all x, y ∈ D(F ), λ > 0, 1 ≥ λγ .

Definition 2. (Condition H1). Equation (2) is said to satisfy condition H1
if
i) A is the infinitesimal generator of a linear semigroup S(t), t ≥ 0 of type

ω in X,
ii) B is an everywhere defined continuous operator from R×X to X,
iii) For every fixed t ∈ R, the operator (−B(t, ·) + γI) is accretive in X.

The following well-known results are quoted for the reader’s convenience
(see [12], [19], [34]).

Theorem 1. Let equation (2) satisfy condition H1. Then for every fixed s ∈
R and x ∈ X there exists a unique mild solution x(·) of equation (2) defined
on [s,+∞). Moreover, if B is independent of t, then the mild solutions
of equation (2) give rise to a semigroup of nonlinear operators T (t), t ≥ 0
having the following properties:

i) T (t)x = S(t)x+
∫ t

0
S(t − ξ)BT ξxdξ, ∀t ≥ 0, x ∈ X, (5)

ii) ‖T (t)x − T (t)y‖ ≤ e(ω+γ)t‖x − y‖, ∀t ≥ 0, x, y ∈ X. (6)

Throughout this paper we shall denote by AP (X) the space of almost
periodic X-valued functions in Bohr’s sense with supremum norm, i.e. the
space of continuous functions f from R to X such that the set {f(· + s) :
R → X | s ∈ R} is precompact in the space of functions {f : R → X |
f bounded and continuous} equipped with the supremum norm.

The following condition will be used frequently:
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Definition 3. (Condition H2). Equation (2) is said to satisfy condition H2
if for every u ∈ AP (X) the function B(·, u(·)) belongs to AP (X) and if the
operator B∗ taking u into B(·, u(·)) is continuous.

The main point of our study is to associate with equation (2) an evolution
semigroup which plays a role similar to that of the monodromy operator
for equations with periodic cofficients. Hereafter we will denote by U(t, s),
t ≥ s, the evolution operator corresponding to equation (2) which satisfies
the assumptions of Theorem 1, i.e. U(t, s)x is the unique solution of equation
(3).

Proposition 1. Let the conditions H1 and H2 be satisfied. Then with
equation (2) one can associate an evolution semigroup T h, h ≥ 0 acting
on AP (X), defined as

[T hv](t) = U(t, t − h)v(t − h),∀h ≥ 0, t ∈ R, v ∈ AP (X).

Moreover, this semigroup has the following properties:
i) T h, h ≥ 0 is strongly continuous, and

T hu = Shu+
∫ h

0
Sh−ξB∗(T ξu)dξ, ∀h ≥ 0, u ∈ AP (X),

where (Shu)(t) = S(h)u(t − h),∀h ≥ 0, t ∈ R, u ∈ AP (X).
ii)

‖T hu − T hv‖ ≤ e(ω+γ)h‖u − v‖, ∀h ≥ 0, u, v ∈ AP (X).

Proof. We first look at the solutions to the equation

w(t) = St−az +
∫ t

a
St−ξB∗(w(ξ))dξ ∀z ∈ AP (X), t ≥ a ∈ R. (7)

It may be noted that Sh, h ≥ 0 is a strongly continuous semigroup of linear
oparators in AP (X) of type ω. Furthermore, for λ > 0, λγ < 1 and u, v ∈
AP (X), from the accretiveness of the operators −B(t, ·) + γI we get

(1 − λγ)‖x − y‖ = (1 − λγ) sup
t

‖u(t) − v(t)‖
= sup

t
(1 − λγ)‖u(t) − v(t)‖

≤ sup
t

‖u(t) − v(t) − λ[B(t, u(t)) − B(t, v(t))]‖
= ‖u − v − λ(B∗u − B∗v)‖.

(8)

This shows that (−B∗+γI) is accretive . In virtue of Theorem 1 there exists
a semigroup T h, h ≥ 0 such that

T hu = Shu+
∫ h

0
Sh−ξB∗T ξudξ,

‖T hu − T hv‖ ≤ e(ω+γ)h‖u − v‖, ∀h ≥ 0, u, v ∈ AP (X).
From this we get

[T hu](t) = [Shu](t) +
∫ h

0
[Sh−ξB∗(T ξu)](t)dξ,∀t ∈ R.
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Thus

[T hu](t) = S(h)u(t − h) +
∫ h

0
S(h − ξ)[B∗(T ξu](t − h+ ξ)dξ

= S(h)u(t − h) +
∫ h

0
S(h − ξ)B(t+ ξ − h, [T u](t+ ξ − h))dξ

= S(h)u(t − h) +
∫ t

t−h
S(t − η)B(η, [T η−(t−h)u](η)dη.

If we denote [T t−su](t) by x(t), we get

x(t) = S(t − s)z +
∫ t

s
S(t − ξ)B(ξ, x(ξ))dξ,∀t ≥ s, (9)

where z = u(s). Consequently, from the uniqueness of mild solutions of
equation (2) we get [T t−su](t) = x(t) = U(t, s)u(s) and [T hu](t) = U(t, t −
h)u(t − h) for all t ≥ s, u ∈ AP (Q). This completes the proof of the propo-
sition.

The main idea underlying our approach is the following assertion.

Corollary 1. Let all assumptions of Proposition 1 be satisfied. Then a mild
solution x(t) of equation (1), defined on the whole real line R, is almost
periodic if and only if it is a common fixed point of the evolution semigroup
T h, h ≥ 0 defined in Proposition 1 above.

Proof. Suppose that x(t), defined on the real line R, is an almost periodic
mild solution of equation (2). Then from the uniqueness of mild solutions
we get

x(t) = U(t, t − h)x(t − h) = [T hx](t), ∀t ∈ R.

This shows that x is a fixed point of T h for every h > 0. Conversely, suppose
that y(·) is any common fixed point of T h, h ≥ 0. Then

y(t) = [T t−sy](t) = U(t, s)y(s), ∀t ≥ s.

This shows that y(·) is a mild solution of equation (2).

We now apply Corollary 1 in order to get sufficient conditions for the
existence of almost periodic mild solutions of equation (2).

Corollary 2. Let all conditions of Proposition 1 be satisfied. Furthermore,
let ω+ µ be negative and −B∗ − µI be accretive. Then there exists a unique
almost periodic mild solution of equation (2).

Proof. It is obvious that there exists a unique common fixed point of the
semigroup T h, h ≥ 0. The assertion now follows from Corollary 1.

Remark. A particular case in which we can check the accretiveness of
−B∗ − µI is ω + γ < 0. In fact, this follows easily from the above estimates
for ‖u − v‖ (see the estimate (8)).
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Another ”hyperbolic” case in which there exists a unique common fixed
point for the semigroup T h, h ≥ 0 can be described as follows.

Definition 4. A semigroup S(t), t ≥ 0 of linear operators in a Banach space
X is said to be hyperbolic if there exist positive constantsK, α and a bounded
projection P of X with the following properties:
i) PS(t) = S(t)P , ∀t ≥ 0,
ii) (I − P )S(t)(I − P ) is a homeomorphism of KerP , ∀t ≥ 0,
iii) ‖[(I − P )S(t)(I − P )]−1‖ ≤ Ke−αt and ‖PS(t)P‖ ≤ Keαt, ∀t ≥ 0.

Corollary 3. Let all conditions of Proposition 1 be satisfied. Moreover, let
A be the infinitesimal generator of a hyperbolic semigroup and let B(t, x)
satisfy the estimate

‖B(t, x) − B(t, y)‖ ≤ δ‖x − y‖, ∀t ∈ R, x, y ∈ X.

Then, for δ sufficiently small, equation (2) has a unique almost periodic mild
solution.

Proof. It may be seen that

‖U(t, s)x − U(t, s)y‖ ≤ eω(t−s)‖x − y‖ +
∫ t

s
eω(t−ξ)δ‖U(ξ, s)x − U(ξ, s)y‖dξ.

Using Gronwall’s inequality we get

‖U(t, s)x − U(t, s)y‖ ≤ e(ω+δ)(t−s)‖x − y‖, ∀t ≥ s, x, y ∈ X.

Consequently,

‖(U(t, s)x − S(t − s)x) − (U(t, s)y − S(t − s)y)‖ ≤
≤ δ

∫ t

s
eω(t−ξ)‖U(ξ, s)x − U(ξ, s)y‖dξ ≤

≤ δ

∫ t

s
eω(t−ξ)e(ω+δ)(ξ−s)dξ ‖x − y‖ =

= δ(t − s)et−s‖x − y‖, ∀t ≥ s, x, y ∈ X.

Applying this in order to estimate the Lipschitz constant of T 1 − S1 we get

‖(T 1 − S1)u − (T 1 − S1)v‖ =
= sup

t
‖[U(t, t − 1)u(t − 1) − S(1)u(t − 1)] −

− [U(t, t − 1)v(t − 1) − S(1)v(t − 1)‖ ≤
≤ sup

t
δeω‖u(t) − v(t)‖ ≤ δ‖u − v‖, ∀u, v ∈ AP (X).

Since S1 is hyperbolic, 1 does not belong to the spectrum σ(S1). Conse-
quently, applying the Inverse Function Theorem for Lipschitz continuous
mappings (see e.g. [19, Proposition 2.3, p. 67]) we observe that if δeω <
‖(S1 − I)−1‖, the maping T 1 − I is invertible and then it has a unique
fixed point. Finally, this is a unique common fixed point for the semigroup
T h, h ≥ 0. Now the assertion of the corollary follows from Corollary 1.
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3. Almost Periodic Solutions of Differential
Equations with Delays

In this section we apply the reults of the previous section in order to study
the existence of almost periodic mild solutions of the equation

(1)
dx

dt
= Ax+ f(t, x, xt)

where A is defined as in Section 2, and f is an everywhere defined continuous
mapping from R×X×C to X. Hereafter we call a continuous function x(t)
defined on the real line R a mild solution of equation (1) if

x(t) = S(t − s)x(s) +
∫ t

s
S(t − ξ)f(ξ, x(ξ), xξ)dξ, ∀t ≥ s.

We refer the reader to [32] for more information on the existence and unique-
ness of mild solutions of equations of the form (1). We should emphasize
that our study is concerned only with the existence of almost periodic mild
solutions of equation (1), and not with mild solutions in general. Conse-
quently, the conditions guaranteeing the existence and uniqueness of mild
solutions of equation (1) as general as in [32] are not supposed to be a priori
conditions.

Definition 5. (Condition H3). Equation (1) is said to satisfy Condition H3
if the following is true:
i) For every g ∈ AP (X) the mapping F (t, x) = f(t, x, gt) satisfies condi-

tions H1 and H2 with the same constant γ.
ii) There exists a constant µ with ω − µ < 0 such that −(µI + F∗) is

accretive for every g ∈ AP (X).
iii) [x − y, f(t, x, φ) − f(t, y, φ′)] ≤ γ‖x − y‖ + δ‖φ − φ′‖, ∀t ∈ R, x, y ∈

X, φ, φ′ ∈ C.

Theorem 2. Let condition H3 hold. Then for δ sufficiently small (see the
estimate (13) below), equation (1) has an almost periodic mild solution.

Proof. First we fix a function g ∈ AP (X). In view of Proposition 1 we
observe that the equation

dx

dt
= Ax+ F (t, x)

has a unique almost periodic mild solution, where F (t, x) = f(t, x, gt). We
denote this solution by Tg. Thus, we have defined an operator T acting on
AP (X). We now prove that T is a strict contraction mapping. In fact, let
us denote by U(t, s) and V (t, s) the Cauchy operators

U(t, s)x = S(t − s)x+
∫ t

s
S(t − ξ)f(ξ, U(ξ, s)x, gξ)dξ, (10)

V (t, s)x = S(t − s)x+
∫ t

s
S(t − ξ)f(ξ, V (ξ, s)x, hξ)dξ, (11)

for given g, h ∈ AP (X), x ∈ X, t ≥ s.
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Putting u(t) = U(t, s)x, v(t) = V (t, s)x for given s, x, from the assump-
tions we have

[u(t) − v(t), f(t, u(t), gt) − f(t, v(t), ht)] ≤ m(t, ‖u(t) − v(t)‖),
where m(t, ‖u(t) − v(t)‖) = γ‖u(t) − v(t)‖ + δ‖h − g‖. Using this we get

‖u(t) − v(t)‖ ≤ ‖u(t − η) − v(t − η)‖ + ηm(t, ‖u(t) − v(t)‖) +
+

∫ t

t−η
‖S(t − ξ)f(ξ, u(ξ), hξ) − f(t, u(t), ht)‖dξ +

+
∫ t

t−η
‖S(t − ξ)f(ξ, v(ξ), gξ) − f(t, v(t), gt)‖dξ.

Now let us fix arbitrary real numbers a ≤ b. Since the functions S(t −
ξ)f(ξ, u(ξ), hξ) and S(t−ξ)f(ξ, v(ξ), gξ) are uniformly continuous on the set
a ≤ ξ ≤ t ≤ b, for every ε > 0 there exists an η0 = η0(ε) such that

‖S(t − ξ)f(ξ, u(ξ), hξ) − f(t, u(t), ht)‖ < ε,

‖S(t − ξ)f(ξ, v(ξ), gξ) − f(t, v(t), gt)‖ < ε,

for all ‖t− ξ‖ < η0 and t ≤ ξ ∈ [a, b]. Hence, denoting ‖u(t)− v(t)‖ by α(t),
for η < η0 we have

α(t) − eωηα(t − η) ≤ ηm(t, α(t)) + 2ηε. (12)

Applying this estimate repeatedly, we get

α(t) − eω(t−s) ≤
n∑

i=1

eω(t−ti)m(ti, α(ti))∆i + 2ε
n∑

i=1

eω(t−ti)∆i,

where t0 = s < t1 < t2 < ... < tn = t and |ti − ti−1| = ∆i. Thus, since ε is
arbitrary, and since the function m is continuous, we get

α(t) − eω(t−s)α(s) ≤
∫ t

s
eω(t−ξ)m(ξ, α(ξ))dξ

=
∫ t

s
eω(t−ξ)(γα(ξ) + δ‖h − g‖)dξ.

Applying Gronwall’s inequality we get

α(t) ≤ e(γ+ω)(t−s)α(s) + eγ(t−s)+ωt(
e−ωs − e−ωt

ω
)δ‖h − g‖.

Because of the identity α(s) = ‖u(s) − v(s)‖ = ‖U(s, s)x − V (s, s)x‖ = 0,
from the above estimate we obtain

sup
t−1≤ξ≤t

‖U(ξ, t − 1)x − V (ξ, t − 1)x‖ ≤ eγ+ω − eγ

ω
δ‖h − g‖.

Now let us denote by T t
h, T

t
g , t ≥ 0 the respective evolution semigroups cor-

responding to equations (10) and (11). Since Th and Tg are defined as the
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unique fixed points u0, v0 of T 1
h , T

1
g , respectively, we have

‖Th − Tg‖ = ‖u0 − v0‖ = ‖T 1
hu0 − T 1

g v0‖ ≤ ‖T 1
hu0 − T 1

g u0‖ +

+ ‖T 1
g u0 − T 1

g v0‖

≤ eγ+ω − eγ

ω
δ‖h − g‖ + eω−µ‖u0 − v0‖

= Nδ‖h − g‖ + eω−µ‖Th − Tg‖,
where N = (eγ+ω − eγ)/ω. Finally, we have

‖Th − Tg‖ ≤ eγ(eω − 1)
ω(1 − eω−µ)

.

Thus, if the estimate

δ <
ω(1 − eω−µ)
eγ(eω − 1)

(13)

holds true, then T is a strict contraction mapping in AP (X). By virtue of
the Contraction Mapping Principle T has a unique fixed point. It is easy to
see that this fixed point is an almost periodic mild solution of equation (1).
This completes the proof of the theorem.

Remarks. 1) In case ω = 0, γ = −µ we get the estimate

δ < eµ − 1 = µ+ µ2/2 + ...

which guarantees the existence of the fixed point of T .

2) If ω + γ < 0 , then we can choose µ = −γ, and therefore we get the
accretiveness condition on −(F∗ + µI). However, in general, the condition
ω+ γ < 0 is a very strong restriction on the coefficients of equation (1), if f
depends explicitly on t.

4. Examples

In applications one frequently encounters functions f fromR×X×C → X
of the form

f(t, x, gt) = F (t, x) +G(t, gt), ∀t ∈ R, x ∈ X, gt ∈ C,

where F satisfies condition ii) of Definition 5 and G(t, y) is Lipschitz contin-
uous with respect to y ∈ C, i.e.

‖G(t, y) − G(t, z)‖ ≤ δ‖y − z‖, ∀t ∈ R, y, z ∈ C

for some positive constant δ. With f in this form numerous examples of
partial functional differential equations fitting into our abstract framework
can be found (see e.g. [2], [18], [19], [26], [27], in particular the recent book
by Wu [35]).

In order to describe a concrete example we consider a bounded domain Ω
in Rn with smooth boundary ∂Ω and suppose that

A(x,D)u =
∑

|α|≤2m

aα(x)Dαu
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is a strongly elliptic differential operator in Ω. Then, defining the operator

Au = A(x,D)u, ∀u ∈ D(A) = W 2m,2(Ω) ∩ Wm,2
0 (Ω)

we know from [27, Theorem 3.6] that the operator −A is the infinitesimal
generator of an analytic semigroup of contractions on L2(Ω). Now let f, g :
R×Ω×R → R be Lipschiz continuous and define the operators F (t, w)(x) =
f(t, x, w(x)) and G(t, w)(x) = g(t, x, w(x)) where t ∈ R, x ∈ Ω and w ∈
L2(Ω). Then, for any positive constant r, the boundary value problem

∂u(t, x)
∂t

= A(x,D)u(t, x) + f(t, x, u(t, x)) + g(t, x, u(t − r, x)) in Ω ,

u(t, x) = 0 on ∂Ω

fits into the abstract setting of equation (1).
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