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Abstract. This paper deals with existence, uniqueness and regularity of
positive generalized solutions of singular nonlinear equations of the form
−∆u + a(x)u = h(x)u−γ in RN where a, h are given, not necessarily con-
tinuous functions, and γ is a positive number. We explore both situations
where a, h are radial functions, with a being eventually identically zero, and
cases where no symmetry is required from either a or h. Schauder’s fixed
point theorem, combined with penalty arguments, is exploited.

1. Introduction

This paper addresses existence, uniqueness and regularity questions on gen-
eralized solutions of the singular nonlinear elliptic problem

(∗)
{

−∆u+ a(x)u = h(x)u−γ in RN

u > 0 in RN

where a, h are nonnegative L∞
loc functions, h �≡ 0, (eventually we consider

a ≡ 0), γ > 0 and N ≥ 3. We point out that the search of positive solutions
of the Dirichlet problem for the equation

−∆u+ a(x)u = h(x)u−γ in Ω

where Ω is a smooth bounded domain has deserved the attention of many
authors. Nowosad [1] studied a related Hammerstein equation, namely

u(x) =
∫ 1

0
K(x, y)(u(x))−γdy,
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where γ = 1,
∫ 1
0 K(x, y)dy ≥ δ > 0 and K(x, y) is positive semidefinite.

Nowosad’s work was extended by Karlin and Nirenberg [2] where more gen-
eral Hammerstein equations were considered including the case γ > 0 in the
equation above. Crandall-Rabinowitz and Tartar [3] studied the Dirichlet
problem

Lu = f(x, u) in Ω, u = 0 on ∂Ω
where L is a linear second order elliptic operator and f : Ω× (0,+∞) → R
is singular in the sense that f(x, r) → ∞ as r → 0+. Examples such as
f(x, r) = r−γ with γ > 1, γ < 1 or γ = 1 were covered.

There is by now an extensive literature on singular elliptic problems. With
respect to the case of bounded domains Ω ⊂ RN we would like to further
mention Gomes [4], Lazer and McKenna [5], Cac and Hernandez [8], Chen
[9], Lair and Shaker [10], Shangbin [13] while for the case Ω = RN we recall
Kuzano and and Swanson [11], Lair and Shaker [12,14]. This reference list
is far from complete. In the earlier papers concerning Ω = RN , h(x) is
assumed at least continuous and several techniques are developed such as
the method of lower and upper solutions. In this paper we assume h(x) only
integrable and use the Schauder fixed point theorem and elliptic estimates.
Singular equations appear in the theory of heat conduction in electrically
conducting materials, (Fulks and Maybee [6]), in binary communications by
signals (Nowosad [1]) and in the theory of pseudoplastic fluids (Nachman
and Callegari [7]).

The following condition on a will be required in the first one of our main
results stated below:

(a)R a(x) ≥ a0 for |x| ≥ R for some a0, R > 0.

In what follows we take γ, α ∈ (0, 1) and h ∈ Lθ ∩ L2 where θ ≡ 2
2−(1−γ) .

Theorem 1. Assume (a)R. Then (∗) has a unique solution u ∈ D1,2∩W 2,p
loc

where 1 < p < ∞ with
∫
a(x)u2 < ∞. If a, h are radial functions the solution

is radial, as well, and in fact, u(x)→ 0 as |x| → ∞. Moreover if a, h ∈ Cα
loc

then u ∈ C2,αloc .

In our second result we take a ≡ 0 and h radially symmetric that is, we
study the problem

(∗)o
{

−∆u = h(|x|)u−γ in RN

u > 0 in RN .

This problem shall be treated by first perturbing the equation by a radially
symmetric term, then using the earlier result in the case a, h are radial
functions and finally taking limits.

Theorem 2. Let a ≡ 0 and let h be radially symmetric. Then (∗)o has
a unique radially symmetric solution u ∈ D1,2 ∩ W 2,p

loc , 1 < p < ∞ and
u(x)→ 0 as |x| → ∞. Moreover, if h ∈ Cα

loc then u ∈ C2,αloc .
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2. Preliminaries

The main goal in this section is to prove theorem 1. For that purpose let
ε > 0 and consider the problem

(2.1)

{
−∆u+ a(x)u = h(x)

(u+ε)γ in RN

u > 0 in RN .

We are going to show by applying the Schauder fixed point theorem that
(2.1) has a solution uε ∈ W 2,p

loc , 1 < p < ∞, and then by passing to the limit
as ε → 0 we arrive at a solution of (∗).
In order to deal with a first step namely, existence of a solution of (2.1), let
f ∈ L2 and consider the linear equation

(2.2) −∆u+ a(x)u = f(x) in RN .

Recalling that the Hilbert space D1,2 is defined as the closure of C∞
0 with

respect to the gradient norm ‖ϕ‖21 =
∫ |∇ϕ|2 we introduce the space

E ≡
{
u ∈ D1,2 |

∫
au2 < ∞

}
which endowed with the inner product and norm given respectively by

〈u, v〉 =
∫
(∇u.∇v + auv) and ‖u‖2 = 〈u, u〉

is itself a Hilbert space. Under condition (a)R it follows that u ∈ E iff
u ∈ W 1,2(RN ).

Yet if f ∈ L2 it follows by minimizing over E the energy functional associated
with (2.2),

I(u) =
1
2
‖u‖2 −

∫
fu

that (2.2) has a weak solution u ∈ E, that is,∫
(∇u∇ϕ+ auϕ) =

∫
f(x)ϕ, ϕ ∈ E.

The solution u is, in fact, unique. Letting S : L2 → E be the solution
operator associated to (2.2) that is Sf = u for f ∈ L2 it follows that S is
linear and moreover

‖Sf‖ ≤ C|f |2, f ∈ L2

for some C > 0. In addition, splitting u into u+ − u− where u± are re-
spectively the positive and negative parts of u, taking ϕ = −u− above and
noticing that u− ∈ E we infer that

Sf ≥ 0 whenever f ≥ 0.
Now let u ∈ L2 with u ≥ 0. Since

(2.3) 0 ≤ h(x)
(u+ ε)γ

≤ h(x)
εγ
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and h(x)
εγ ∈ L2 the operator

Tu ≡ S

[
h(x)
(u+ ε)γ

]
is continuous in L2, and as a matter of fact, letting w ≡ T (0) we have

w = S

[
h(x)
εγ

]
.

Considering
K ≡

{
v ∈ L2 | 0 ≤ v ≤ w a.e. in RN

}
we shall prove that the following result holds true.

Lemma 3. The set K ⊂ L2 is closed, convex and bounded and moreover
T (K) ⊂ K and T (K) is a compact subset of L2.

Using lemma 3 and the Schauder fixed point theorem there is some uε ∈ K
satisfying

uε = S

[
h(x)

(uε + ε)γ

]
that is { ∫

(∇uε∇ϕ+ auεϕ) =
∫ h(x)ϕ
(uε+ε)γ , ϕ ∈ E

uε ≥ 0 a.e. in RN , uε ∈ E.

Now since by (2.3)
h(x)

(uε + ε)γ
∈ L∞

loc

it follows by the elliptic regularity theory that uε ∈ W 2,p
loc , 1 < p < ∞, and

further if B ⊂ RN is a ball, then

−∆uε + a(x)uε =
h(x)

(uε + ε)γ
a.e. in B.

In fact, it follows by the maximum principle that uε > 0 in B and so{
−∆uε + a(x)uε =

h(x)
(uε+ε)γ a.e. in RN

uε > 0 in RN .

On the other hand, if f ∈ L2rad we get by minimizing the functional I above
over the space

Erad ≡
{
u ∈ W 1,2

rad |
∫
a(r)u2 < ∞

}
which endowed with the inner product and norm given above is also a Hilbert
space, a weak solution u ∈ Erad of (2.2) that is∫

(∇u∇ϕ+ auϕ) =
∫
f(x)ϕ, ϕ ∈ Erad.

The solution is also unique and as before the solution operator associated to
(2.2), namely S : L2rad → Erad satisfies

‖Sf‖ ≤ C|f |2
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for f ∈ L2rad and further

Sf ≥ 0 whenever f ≥ 0.
Letting

K ≡
{
v ∈ L2rad | 0 ≤ v ≤ w a.e. in RN

}
we have a corresponding symmetric variant of lemma 3 and so there is some
uε ∈ Erad with∫

(∇uε∇ϕ+ a(r)uεϕ) =
∫

h(r)
(uε + ε)γ

ϕ, ϕ ∈ Erad.

Proof of Lemma 3.

It is easy to show that K is convex, closed and bounded. So we will only
show that T (K) ⊂ K and T (K) is compact in L2. If v ∈ K then

T (0)− T (v) = S

[
h

(
1
εγ

− 1
(v + ε)γ

)]
≥ 0

that is T (v) ≤ w and hence T (K) ⊂ K.

In order to show that T (K) ⊂ L2 is compact let vn be a sequence in T (K)
say vn = T (un) for some un ∈ K. By (2.3)

h(x)
(un + ε)γ

is bounded in L2

so that

T (un) = S

[
h(x)

(un + ε)γ

]
is bounded in E.

Thus, passing to subsequences,

T (un) ⇀ v for some v ∈ E

and
T (un)→ v a.e. in RN .

On the other hand, since 0 ≤ T (un) ≤ w it follows by Lebesgue’s theorem
that

T (un)→ v in L2.

showing that T (K) is compact in L2, ending the proof of lemma 3. The
radial case is handled similarly.

The next result states that the family uε increases when ε decreases.

Lemma 4. If 0 < ε < ε′ then uε′ ≤ uε in RN .

Proof of Lemma 4.

Letting ω ≡ uε′ − uε we get

−∆ω + a(x)ω = h(x)
[

1
(uε′ + ε′)γ

− 1
(uε + ε)γ

]
a.e. in RN
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which gives∫
|∇ω+|2 + a(x)ω+2 =

∫
h(x)

[
1

(uε′ + ε′)γ
− 1
(uε + ε)γ

]
ω+ ≤ 0

showing that ω+ = 0 and thus uε′ ≤ uε a.e. in RN , finishing the proof of
lemma 4.

3. Proofs of Main Results

Proof of Theorem 1.

Step 1 (the non-symmetric case).

Let εn > 0 be a decreasing sequence converging to 0 and set un = uεn . We
claim that

‖un‖ is bounded.
Indeed,

(3.1)
∫ (

|∇un|2 + a|un|2
)
=

∫
h(x)un

(un + εn)γ
≤

∫
h(x)u1−γ

n ≤ C|h|θ‖un‖1−γ

for some C > 0, showing that un is bounded in E. Hence, passing to
subsequences, we have

un ⇀ u in E, and un → u a.e. in RN .

Moreover since by lemma 4 0 < u1 ≤ un in RN we infer that if ϕ ∈ E has
compact support then supp(ϕ) ⊂ B for some ball B ⊂ RN and

|h(x)ϕ|
(un + εn)γ

≤ H(x) for some H ∈ L1

which gives, by applying Lebesgue’s theorem to∫
(∇un∇ϕ+ aunϕ) =

∫
h(x)ϕ

(un + εn)γ

that { ∫
(∇u∇ϕ+ auϕ) =

∫ h(x)ϕ
uγ

u ≥ u1 > 0 in RN .

Using the regularity theory again we arrive at
−∆u+ a(x)u = h(x)u−γ a.e. in RN

u ∈ W 2,p
loc , 1 < p < ∞

u > 0 in RN .

In order to prove uniqueness let M ∈ C∞
0 such that

M(x) = 1 if |x| ≤ 1, M(x) = 0 if |x| ≥ 2 and 0 ≤ M ≤ 1.
Given ϕ ∈ E, an integer j ≥ 1 and letting

ϕj(x) ≡ M(
x

j
)ϕ(x), x ∈ RN
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it follows that ϕj ∈ E and supp(ϕj) is compact. Moreover as we will show
in the Appendix

(3.2) ϕj → ϕ in E.

Now assume u, v are two solutions of (∗) and let wj ≡ uj − vj . Then

〈
u− v, uj − vj

〉
=

∫
(∇(u− v)∇wj + a(x)(u− v)wj)

=
∫
h(x)

(
1

uγ − 1
vγ

)
wj .

Assuming, by contradiction, that u �= v and once〈
u− v, uj − vj

〉
→ ‖u− v‖2

we have ∫
h(x)

(
1
uγ

− 1
vγ

)
wj > 0

for large values of j. On the other hand,

∫
h(x)

(
1
uγ

− 1
vγ

)
wj ≤

∫
Ωj

h(x)u1−γ +
∫
Ωj

h(x)v1−γ

where Ωj ≡ B2j\Bj . Therefore, passing to the limit as j → ∞ and noticing
that the two integrals in the right hand side tend to zero we get a contra-
diction, that is u = v.

Assume now, h ∈ Cα
loc. Then by the elliptic regularity theory more precisely,

interior elliptic estimates, we get u ∈ C2,αloc . This proves theorem 1 (in the
case of Step 1).

Step 2 (the symmetric case: a, h are radial).

From section 2 we have found by Schauder’s Theorem some radial function
uε ∈ K, uε �= 0 satisfying uε = Tuε, which means

(3.3)
∫
(∇uε∇v + a(r)uεv) =

∫
h(r)

(uε + ε)γ
v, v ∈ Erad.

We will show next that uε ∈ W 2,p
loc (R

N\{0}) for 1 < p < ∞, and

−∆uε + a(r)uε =
h(r)

(uε + ε)γ
a.e. in RN\{0}.

Indeed, changing variables we get from (3.3)∫
S

∫ ∞

0

(
u′

εv
′ + a(r)uεv

)
rN−1drdS =

∫
S

∫ ∞

0

h(r)
(uε + ε)γ

vrN−1drdS

where S ⊂ RN is the unit sphere. Making

v ≡ r−(N−1)ψ, r > 0, ψ ∈ C∞
0 (0,∞)
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we have∫ ∞

0

[(
r(N−1)u′

ε

) (
r−(N−1)ψ

)′
+ auεψ

]
dr =

∫ ∞

0

h(r)
(uε + ε)γ

ψ(r)dr,

for ψ ∈ C∞
0 (0,∞), and labelling

h(r)
(uε + ε)γ

− a(r)uε ≡ Ĥ(r), r > 0

we get

− 1
rN−1 (r

(N−1)u′
ε)

′ = Ĥ(r) in (0,∞)
in the distribution sense. But since a, h, uε ∈ Lp

loc(0,∞), 1 < p < ∞ it
follows that Ĥ ∈ Lp

loc(0,∞) and using the regularity theory we infer that
uε ∈ W 2,p

loc (0,∞) and

− 1
rN−1 (r

(N−1)u′
ε)

′ = Ĥ(r) a.e. in (0,∞) .
By the maximum principle,

uε > 0 in (0,∞) .
Since uε ∈ W 2,p

loc (R
N\{0}) and

−∆uε = − 1
rN−1 (r

(N−1)u′
ε)

′

we also have

−∆uε + a(r)uε =
h(r)

(uε + ε)γ
a.e. in RN\{0}.

Now, let εn > 0 such that εn → 0 and label uεn ≡ un. Following the proof
of lemma 4 we have un ≥ u1 > 0. On the other hand we claim that

‖un‖ is bounded.
Indeed, as in (3.1) we have∫ (

|∇un|2 + a|un|2
)

≤ C |h|θ‖un‖1−γ

so that un is bounded in Erad. Passing to subsequences we have

un ⇀ u in Erad, and un → u a.e. in RN .

On the other hand, if v ∈ Erad has compact support then, as in section 1,
applying Lebesgue’s Theorem to∫

(∇un∇v + a(r)unv) =
∫

h(r)
(un + εn)γ

v,

gives ∫
(∇u∇v + a(r)uv) =

∫
h(r)
uγ

v.
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Now changing variables, making again v ≡ r−(N−1)ψ where r > 0 and
ψ ∈ C∞

0 (0,∞) and arguing as above we obtain u ∈ W 2,p
loc (R

N\ {0}) and

− 1
rN−1 (r

(N−1)u′)′ + a(r)u =
h(r)
uγ

a.e. in (0,∞)
and in addition,

−∆u+ a(r)u =
h(r)
uγ

a.e. in RN\{0}.

So, if ϕ ∈ C∞
0 (R

N\ {0}) then∫
(∇u∇ϕ+ a(r)uϕ) =

∫
h(r)
uγ

ϕ

that is

−∆u+ a(r)u =
h(r)
uγ

in RN\{0}
in the distribution sense. Next we show that u ∈ W 2,p

loc (R
N ) and∫

(∇u∇ϕ+ a(r)uϕ) =
∫
h(r)
uγ

ϕ, ϕ ∈ C∞
0 (R

N ).

Indeed, let η ∈ C∞(RN ) such that

η(x) = 0 for |x| ≤ 1, and η(x) = 1 for |x| ≥ 2
and let

ψε(x) ≡ η(
x

ε
), ε > 0.

If ϕ ∈ C∞
0 (R

N ) then ψεϕ ∈ C∞
0 (R

N\ {0}) and from above∫
(∇u∇(ψεϕ) + a(r)u(ψεϕ)) =

∫
h(r)
uγ

(ψεϕ)

so that ∫
(ψε∇u∇ϕ+ ϕ∇u∇ψε + a(r)uψεϕ) =

∫
h(r)
uγ

ψεϕ.

Making ε → 0 and using Lebesgues’s Theorem we infer that∫
ψε∇u∇ϕ →

∫
∇u∇ϕ,∫

a(r)uψεϕ →
∫
a(r)uϕ

and ∫
h(r)
uγ

ψεϕ →
∫
h(r)
uγ

ϕ.

Claim.

∫
ϕ∇u∇ψε → 0.

Assuming the Claim has been proved we have∫
(∇u∇ϕ+ a(r)uϕ) =

∫
h(r)
uγ

ϕ
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and since a, h ∈ L∞
loc we get by the regularity theory that u ∈ W 2,p

loc (R
N ) for

1 < p < ∞ and

−∆u+ a(r)u =
h(r)
uγ

a.e. in RN

and if in addition a, h ∈ Cα
loc then u ∈ C2,αloc by the interior Schauder esti-

mates.

Verification of the Claim.

Using Schwarz inequality we have

| ∫ ϕ∇u∇ψε| ≤ |ϕ|∞
(∫

|x|≤2ε |∇u|2
) 1

2
(∫

|x|≤2ε |∇ψε|2
) 1

2

≤ |ϕ|∞|∇η|2
(∫

|x|≤2ε |∇u|2
) 1

2 ε
N−2

2

where N ≥ 3. Letting ε → 0 shows the Claim.

As for the uniqueness the argument in the proof of theorem 1 (Step 1) applies
ending the proof of theorem 1 (in case of Step 2). The proof of theorem 1 is
finished.

Proof of Theorem 2.

In order to solve (∗)0 we consider the family of problems

(3.4)

{
−∆u+ 1

ku = h(|x|)u−γ in RN

u > 0 in RN .

where k ≥ 1 is an integer. Making a(x) ≡ 1
k in theorem 1 (radial case), it

follows that (3.4) has a solution uk ∈ H1
rad ∩W 2,p

loc , 1 < p < ∞ satisfying∫
|∇uk|2 + 1

k
u2k =

∫
h(r)u1−γ

k .

Using both Hölder’s inequality and the continuous embedding D1,2 → L2
∗

in the equality above we infer that

(3.5)
∫

|∇uk|2 ≤ C1 for some C1 > 0.

By a well known property of radial functions u ∈ D1,2, namely

|u(x)| ≤ C2

|x|N−2
2

‖u‖D1,2 , x �= 0 for some C2 > 0

we get

(3.6) 0 ≤ uk(x) ≤ C

|x|N−2
2

, x �= 0 for some C > 0.

We shall need the following result which says that the sequence uk increases
with k.

Lemma 5. If k < k′ then uk ≤ uk′ , a.e. in RN .
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By the boundedness of uk in D1,2 and lemma 5 there is some radial function
u ∈ D1,2 such that

uk ⇀ u in D1,2, uk → u a.e. in RN

and
u1 ≤ u2 ≤, ...,≤ uk ≤, ...,≤ u a.e. in RN .

Now if ϕ ∈ C∞
0 (R

N ) then

(3.7)
∫ (

∇uk∇ϕ+ 1
k
ukϕ

)
=

∫
hu−γ

k ϕ.

Let Ω ⊂ RN be a bounded domain such that supp(ϕ) ⊂ Ω. Then
|hu−γ

k ϕ| ≤ hu−γ
1 |ϕ| ∈ Lp(Ω), 1 ≤ p < ∞

and ∫
hu−γ

k ϕ →
∫
hu−γϕ.

On the other hand, using (3.6) we get

1
k

∫
ukϕ → 0.

Passing to the limit in (3.7) gives∫
∇u∇ϕ =

∫
hu−γϕ.

Since 0 < u1 ≤ u and u1 ∈ W 2,p
loc (R

N ) it follows that hu−γ ∈ Lp
loc(R

N ) and
by the regularity theory u ∈ W 2,p

loc (R
N ). In addition u ∈ C2,αloc when h ∈ Cα

loc.
This proves Theorem 2.

Proof of Lemma 5.

Letting ω = uk − uk′ we have∫ |∇ω+|2 + 1
k′ (ω+)2 ≤ ∫ ∇ω∇ω+ + 1

k′ωω+

≤ ∫
h

(
1

uγ
k

− 1
uγ

k′

)
ω+

showing that ω+ = 0 and so ω ≤ 0, ending the proof of lemma 5.

4. Appendix

Verification of (3.2).

Indeed,

a|ϕj − ϕ|2 ≤ 4aϕ2 ∈ L1 and a|ϕj − ϕ|2 → 0 a.e. in RN

so that by Lebesgue’s theorem∫
a|ϕj − ϕ|2 → 0.



422 C. O. ALVES, J. V. GONCALVES AND L. A. MAIA

Now
∂ϕj

∂xi
=
1
j

∂

∂xi
M

(
x

j

)
ϕ+M

(
x

j

)
∂ϕ

∂xi
.

Hence∫ |∂ϕj

∂xi
− ∂ϕ

∂xi
|2 =

∫ |1j ∂
∂xi

M
(

x
j

)
ϕ+M

(
x
j

)
∂ϕ
∂xi

− ∂ϕ
∂xi

|2
≤ C

∫ | 1
j2

∂
∂xi

M
(

x
j

)
ϕ|2 + ∫ |M

(
x
j

)
∂ϕ
∂xi

− ∂ϕ
∂xi

|2.
Arguing as above we infer that

M

(
x

j

)
∂ϕ

∂xi
→ ∂ϕ

∂xi
in L2.

It remains to show that ∫
| 1
j2

∂

∂xi
M

(
x

j

)
ϕ|2 → 0.

At first we remark that∫ | 1
j2

∂
∂xi

M
(

x
j

)
ϕ|2 =

∫
B2j\Bj

| 1
j2

∂
∂xi

M
(

x
j

)
ϕ|2

≤ C
j2

∫
B2j\Bj

ϕ2.

Now using Hölder inequality with exponents N
N−2 and

N
2 in the last integral

we obtain∫ | 1
j2

∂
∂xi

M
(

x
j

)
ϕ|2 ≤ C

j2

(∫
B2j\Bj

1dx
) 2

N
(∫

B2j\Bj
|ϕ|2∗) 1

2∗

≤ C
j2

(∫
B2j
1dx

) 2
N

(∫
Bc

2j
|ϕ|2∗

) 1
2∗

≤ CωN

2
N (2j)2
j2

(∫
Bc

2j
|ϕ|2∗

) 1
2∗

where ωN denotes the volume of the unit sphere of RN .

Next passing to the limit we get∫
| 1
j2

∂

∂xi
M

(
x

j

)
ϕ|2 → 0.

This shows that ϕj → ϕ in E proving (3.2).
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