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Abstract. Under suitable conditions we are able to solve the semilinear
wave equation in any dimension. We are also able to compute the essential
spectrum of the linear wave operator for the rotationally invariant periodic
case.

1. Introduction

In this paper we continue the work of Smiley [SM] and Ben-Naoum and
Mawhin [BNM1] concerning radially symmetric solutions for the problem

(1.1) utt − ∆u = f(t, x, u), t ∈ R, x ∈ BR

(1.2) u(t, x) = 0, t ∈ R, x ∈ ∂BR

(1.3) u(t+ T, x) = u(t, x), t ∈ R, x ∈ BR,

where
BR = {x ∈ Rn : |x| < R}.

Our basic assumption is that

(1.4) 8R/T = a/b,

where a, b are relatively prime positive integers. We show that

(1.5) n �≡ 3 (mod(4, a))
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implies that the linear problem corresponding to (1.1) – (1.3) has no essential
spectrum. If

(1.6) n ≡ 3 (mod(4, a)),

then the essential spectrum of the linear operator consists of precisely one
point

(1.7) λ0 = −(n− 3)(n− 1)/4R2.

(This shows that the spectrum has at most one limit point.) We can then
consider the nonlinear case

(1.8) f(t, r, s) = µs+ p(t, r, s),

where µ is a point in the resolvent set, r = |x|, and

(1.9) |p(t, r, s)| ≤ (|s|θ + 1), s ∈ R

for some number θ < 1. Our main theorem is

Theorem 1.1. If (1.5) holds, then (1.1) – (1.3) has a weak rotationally in-
variant solution. If (1.6) holds and λ0 < µ, assume in addition that p(t, r, s)
is nondecreasing in s. If µ < λ0, assume that p(t, r, s) is nonincreasing in s.
Then (1.1) – (1.3) has a weak rotationally invariant solution.

The case T= 2π, 2R = π was considered in detail in [BNM1]. They proved
the existence of a weak solution for n even and n = 1, 3. They consider more
general situations than (1.8), (1.9). However, our methods can be adjusted
to cover their case as well. Uniqueness theorems were also treated in [BNM1].
They also considered odd n > 5 when the spectrum of the linear problem is
not dense. However, they do not establish when this is the case.

A main consideration in our approach is the following theorem concerning
infinite dimensional linking. It is of interest in its own right and has several
other applications.

Theorem 1.2. Let N be a closed separable subspace of a Hilbert space E.
Let G be a continuously differentiable functional on E such that

vn = Pun → v weakly in E, wn = (I − P )un → w strongly in E

implies

(1.10) G′(vn + wn) → G′(v + w)weakly in E,

where P is the projection of E onto N . Let Q be a bounded open convex
subset of N , and let F be a continuous map of E onto N such that

(1.11) F |N = I, F (v − w) = v − Fw, v ∈ N, w ∈ E.

Assume

(1.12) a0 := sup
A
G ≤ b0 := inf

B
G, a1 := sup

Q
G < ∞,

where A = ∂Q,B = F−1(p) and p is a point in Q. Then there is a sequence
{uk} ⊂ E such that

(1.13) G(uk) → c, b0 ≤ c ≤ a1, G
′(uk) → 0.
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Theorem 1.2 will be proved in Section 4. It generalizes theorems in
[KS,S2,3,Wi]. Theorem 1.1 will be proved in Section 3 after the essential
spectrum of the linear operator is determined in Section 2.

2. The Spectrum of the linear operator

In proving Theorem 1.1 we shall need to calculate the spectrum of the lin-
ear operator ✷ applied to periodic rotationally symmetric functions. Specif-
ically, we shall need

Theorem 2.1. Let L0 be the operator

(2.1) L0u = utt − urr − r−1(n− 1)ur

applied to functions u(t, r) in C∞(Ω̄) satisfying

(2.2) u(T, r) = u(0, r), ut(T, r) = ut(0, r), 0 ≤ r ≤ R

(2.3) u(t, R) = uR(t, 0) = 0, t ∈ R,

where Ω = [0, T ] × [0, R]. Then L0 is symmetric on L2(Ω, ρ), where ρ =
rn−1. Assume that 8R/T = a/b, where a, b are relatively prime integers
(i.e., (a, b) = 1). Then L0 has a selfadjoint extension L having no essential
spectrum other than the point λ0 = −(n−3)(n−1)/4R2. If n �≡ 3(mod(4, a)),
then L has no essential spectrum. If n ≡ 3(mod(4, a)), then the essential
spectrum of L is precisely the point λ0.

Proof. Let ν = (n − 2)/2, and let γ be a positive root of Jν(x) = 0, where
Jν is the Bessel function of the first kind. Set

(2.4) ϕ(r) = Jν(γr/R)/rν .

Then

ϕ′′ + (n− 1)ϕ′/r = (x2J
′′
ν + xJ

′
ν − ν2Jν)/rν+2 = −γ2Jν/R

2.

If
ψ(t, r) = ϕ(r)e2πikt/T ,

then

(2.5) L0ψ = [(γ/R)2 − (2πk/T )2]ψ.

Let γj be the j-th positive root of Jν(x) = 0, and set

(2.6) ψjk(t, r) = r−νJν(γjr/R)e2πikt/T .

Then ψjk(t, r) is an eigenfunction of L0 with eigenvalue

(2.7) λjk = (γj/R)2 − (2πk/T )2.

It is easily checked that the functions ψjk, when normalized, form a complete
orthonormal sequence in L2(Ω, ρ). We shall show that the corresponding
eigenvalues (2.7) are not dense in R. It will then follow that L0 has a
selfadjoint extension L with spectrum equal to the closure of the set {λjk}.
Now

(2.8) γj = βj − (µ− 1)/8βj +O(β−3
j ) as βj → ∞,
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where

(2.9) βj = π(j +
1
2
ν − 1

4
), µ = 4ν2

(cf., e.g., [WA]). Thus

λjkR
2 = [βj − τk − (µ− 1)/8βj +O(β−3

j )]

·[βj + τk − (µ− 1)/8βj +O(β−3
j )]

= β2
j − τ2

k − (µ− 1)/4 +O(β−2
j ),

where τk = 2kπR/T . (We may assume k ≥ 0.) Now

(2.10) βj − τk = π(j +
1
2
ν − 1

4
− ak/4b) = π[(4j + n− 3)b− ak]/4b.

Since the expression in the brackets is an integer, we see that either βj = τk
or

(2.11) |βj − τk| ≥ π/4b.

Thus

(2.12) lim
j,|k|→∞
βj=τk

λjk = −(µ− 1)/4R2 = λ0

and

(2.13) lim
j,|k|→∞
βj �=τk

|λjk| = ∞.

If n− 3 is not a multiple of (4, a), then

βj − τk = π(4j + n− 3 − ak/b)/4

can never vanish. To see this, note that if (b, k) �= b, then ak/b is not an
integer. Hence βj �= τk. If b = (b, k), then

(n− 3) �= ak′ − 4j ∀j, k′ = k/b.

Thus in this case we always have βj �= τk and |λjk| → ∞ as j, k → ∞. On
the other hand, if n ≡ 3 (mod(4, a)), then there is an infinite number of
positive integers j, k′ such that

n− 3 = ak′ − 4j.

Hence, the point λ0 is a limit point of eigenvalues. Consequently, it is in
σe(L). This completes the proof.

3. The Nonlinear Case

We now turn to the problem of solving

(3.1) Lu = f(t, r, u), u ∈ D(L),

where L is the selfadjoint extension of the operator L0 given in Theorem
2.1. Under the hypotheses of that theorem the spectrum of L is discrete.
We assume that

(3.2) f(t, r, s) = µs+ p(t, r, s),
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where µ is a point in the resolvent set of L and p(t, r, s) is a Carathéodory
function on Ω × R such that

(3.3) |p(t, r, s)| ≤ c(|s|θ + 1), s ∈ R

for some number θ < 1. We have

Theorem 3.1. Let f(t, r, s) satisfy (3.2) and (3.3), and assume the hypothe-
ses of Theorem 2.1. If

(3.4) n �≡ 3(mod(4, a)),

make no further assumptions. If

(3.5) n ≡ 3(mod(4, a))

and λ0 < µ, assume that p(t, r, s) is nondecreasing in s. If (3.5) holds and
µ < λ0, assume that p(t, r, s) is nonincreasing in s. Then (3.1) has at least
one weak solution.

Proof. Since µ is in the resolvent set of L, there is a δ > 0 such that

(3.6) |λjk − µ| ≥ δ ∀ j, k,
where the λjk are given by (2.7). Each u ∈ L2(Ω, ρ) can be expanded in the
form

(3.7) u =
∑

αjkψjk(t, r),

where the ψjk are given by (2.6). Let N0 be the subspace of those u ∈
L2(Ω, ρ) for which αjk = 0 if βj �= τk (cf. the proof of Theorem 2.1). For
u ∈ N0

(3.8) u =
∑
[0]

αjkψjk(t, r),

where summation is taken over those j, k for which βj = τk. Let E be the
subspace of L2(Ω, ρ) consisting of those u for which

(3.9) ‖u‖2
E =

∑
|λjk − µ||αjk|2

is finite. With this norm, E becomes a separable Hilbert space. Note that
E ⊂ D(|L|1/2), and the embedding of E �N0 into L2(Ω, ρ) is compact (we
use (2.13) for this purpose). Let

(3.10) G(u) = ([L− µ]u,w) − 2
∫ ∫

Ω
P (t, r, u)ρdtdr, u ∈ E,

where

(3.11) P (t, r, s) =
∫ s

0
p(t, r, σ)dσ,

and the scalar product is that of L2(Ω, ρ). One checks readily that G is a
C1 functional on E with

(3.12) (G′(u), v)/2 = ([L− µ]u, v) − (p(u), v), u, v ∈ E,

where we write p(u) in place of p(t, r, u). This shows that u is a weak solution
of (3.1) iff G′(u) = 0.
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Let N be the subspace of E spanned by the ψjk corresponding to those
λjk < µ and let M denote the subspace of E spanned by the rest. Thus
M = N⊥ in E. Assume first that N ∩N0 = {0}. Then

(3.13) ‖u‖2
E =

∑
(µ− λjk)|αjk|2, u ∈ N.

Thus

G(v) = −‖v‖2
E − 2

∫ ∫
Ω
P (t, r, v)ρdtdr

≤ −‖v‖2
E + C

∫ ∫
Ω
(|v|1+θ + |v|)ρdtdr

≤ −‖v‖2
E + C ′(‖v‖1+θ + ‖v‖) → −∞, ‖v‖E → ∞, v ∈ N.

If w ∈ M ,

G(w) ≥ δ‖w‖2 − C(‖w‖1+θ + ‖w‖) ≥ −K, w ∈ M.

We can now make use of Theorem 1.2. If Q is a large ball in N , then

sup
∂Q

G ≤ inf
M
G.

Moreover, if {uk} ⊂ E is a sequence such that vk = Puk → v = Pu weakly
on N and wk = (I − P )uk → w = (I − P )u strongly in M , where P is
the projection of E onto N , then {uk} has a renamed subsequence which
converges strongly in L2(Ω, ρ). The reason is that {vk} has such a subse-
quences because the embedding of E � N0 in L2(Ω, ρ) is compact. Thus
G′(un) → G′(u) weakly in E. Hence all of the hypotheses of Theorem 1.2
are satisfied, and we can conclude that there is a sequence {uk} satisfying
(1.13). Write uk = vk + wk + yk, where vk ∈ N, wk ∈ M � N0, yk ∈ N0.
Then

(G′(uk), vk)/2 = ([L− µ]uk, vk) − (p(uk), vk),

and consequently

(3.14) ‖vk‖2
E ≤ ‖G′(uk)‖‖vk‖E/2 + C‖vk‖(‖uk‖θ + 1)

in view of (3.3) and (3.9). Similarly

(3.15) ‖wk‖2
E ≤ ‖G′(uk)‖‖wk‖E/2 + C‖wk‖(‖uk‖θ + 1).

If N0 = {0}, then if follows from (3.14) and (3.15) that ‖uk‖E is bounded,
and consequently there is a renamed subsequence which converges weakly in
E and strongly in L2(Ω, ρ) to a function u. Thus G′(uk) → G′(u) weakly.
But G′(uk) → 0. Consequently G′(u) = 0, and the proof for this case is
complete. If N0 �= {0}, we note that

(3.16) ‖yk‖2
E ≤ ‖G′(uk)‖‖yk‖E/2 + C‖yk||(‖uk‖θ + 1)

as well. Again this together with (3.14) and (3.15) implies that ‖uk||E is
bounded and has a renamed subsequence which converges weakly in E and
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such that u′
k = vk + wk converges strongly in L2(Ω, ρ). Now

(3.17)

(G′(uk), yk − y)/2 = ([L− µ](yk − y), yk − y)

− (p(uk) − p(u′
k + y), yk − y)

+ (p(u′
k + y) − p(u), yk − y)

+ ([L− µ]y, yk − y),

where yk → y weakly in E and L2(Ω, ρ) and u′
k → u′ weakly in E and

strongly in L2(Ω, ρ). By hypothesis

(3.18) (p(uk) − p(u′
k + y), yk − y) ≥ 0

since µ < λ0. Moreover,

(G′(uk), yk − y) → 0
(p(u′

k + y) − p(u), yk − y) → 0

and
([L− µ]y, yk − y) → 0.

Hence
‖yk − y‖2

E ≤ o(1), k → ∞.

This shows that yk → y in E, and the proof proceeds as before. If λ0 < µ,
we apply Theorem 1.2 to −G(u) and come to the same conclusion. In this
case, the inequality in (3.17) is reversed. This completes the proof.

4. Weak Linking

We now give a proof of Theorem 1.2. It is similar to those of [KS,S2,3,Wi].
Assume that there is no sequence satisfying (1.13). Then there is a positive
number δ such that

(4.1) ‖G′(u)‖ ≥ 2δ

whenever u belongs to the set

(4.2) E1 = {u ∈ E : b0 − 2δ ≤ G(u) ≤ a1 + 2δ}.
Since N is separable, we can norm it with a norm |v|w satisfying

(4.3) |v|w ≤ ‖v‖, v ∈ N

and such that the topology induced by this norm is equivalent to the weak
topology of N on bounded subsets of N (cf., e.g., [DS,p.426]). For u ∈ E,
we write u = v + w, where v ∈ N,w ∈ M = N⊥, and take

(4, 4) |u|2w = |v|2w + ‖w‖2.

Then clearly

(4.5) |u|w ≤ ‖u‖, u ∈ E,

and convergence of a bounded sequence un = vn + wn with respect to this
norm means that vn converges weakly in N and wn converges strongly in
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M . We denote E equipped with this norm by Ew. For u ∈ E1, let q(u) =
G′(u)/‖G′(u)‖. Then by (4.1)

(4.6) (G′(u), q(u)) ≥ 2δ, u ∈ E1.

Let T = (a1 − b0 + 4δ)/δ, R = T + supQ ‖u‖, and B = B̄R ∩ E1, where
BR = {u ∈ E : ‖u‖ < R}. For each u ∈ B there is a Ew neighborhood W (u)
of u such that

(4.7) (G′(h), q(u)) > δ, h ∈ W (u) ∩B.

For otherwise there would be a sequence {hk} ⊂ B such that

(4.8) |hk − u|w → 0 and (G′(hk), q(u)) ≤ δ.

Since B is bounded in E,Phk → Pu weakly in N and (I−P )hk → (I−P )u
strongly in M . Hence, by hypothesis,

(G′(hk), q(u)) → (G′(u), q(u)) ≥ 2δ

in view of (4.6). This contradicts (4.8). Let Bw be the set B with the
inherited topology of Ew. It is a metric space, and W (u) ∩ B is an open
set in this space. Thus {W (u) ∩ B}, u ∈ B, is an open covering of the
paracompact space Bw. Consequently, there is a locally finite refinement
{Wτ} of this cover. For each τ there is an element uτ such thatWτ ⊂ W (uτ ).
Let {ψτ} be a partition of unity subordinate to this covering. Each ψτ is
locally Lipschitz continuous with respect to the norm |u|w and consequently
with respect to the norm of E. Let

(4.9) Y (u) =
∑

ψτ (u)q(uτ ), u ∈ B.

Then Y (u) is locally Lipschitz continuous with respect to both norms. More-
over,

(4.10) ‖Y (u)‖ ≤
∑

ψτ (u)‖q(uτ )‖ ≤ 1

and

(4.11) (G′(u), Y (u)) =
∑

ψτ (u)(G′(u), h(uτ )) ≥ δ, u ∈ B.

For u ∈ Q̄ ∩ E1, let σ(t)u be the solution of

(4.12) σ′(t) = −Y (σ(t)), t ≥ 0, σ(0) = u.

Note that σ(t)u will exist as long as σ(t)u is in B. Moreover, it is continuous
in (u, t) with respect to both topologies.

Next we note that if u ∈ Q̄ ∩ E1 and σ(t)u ∈ B, then

dG(σ(t)u)/dt = (G′(σ), σ′)
= −(G′(σ), Y (σ)) ≤ −δ.

Hence if σ(t)u ∈ B for 0 ≤ t ≤ T , then

(4.14) G(σ(T )u) ≤ G(u) − δT ≤ b0 − 4δ.

But if σ(s)u exists for 0 ≤ s ≤ t < T , then σ(t)u ∈ B. To see this note that

(4.15) u− σ(t)u = zt(u) :=
∫ t

0
Y (σ(s)u)ds.



SEMILINEAR WAVE EQUATIONS 179

By (4.10)
‖zt(u)‖ ≤ t.

Consequently

(4.16) ‖σ(t)u‖ ≤ ‖u‖ + t < R.

Thus σ(t)u ∈ B. We can now conclude that for each u ∈ Q̄ ∩ E1 there is a
t < T such that σ(s)u exists for 0 ≤ s ≤ t and G(σ(t)u) ≤ b0 − δ. Let

(4.17) Tu := inf{t ≥ 0 : G(σ(t)u) ≤ b0 − δ}, u ∈ Q̄ ∩ E1.

Then σ(t)u exists for 0 ≤ t ≤ Tu < T . Moreover, Tu is continuous in u.
Define

(4.18) σ1(t)u = σ(t)u, 0 ≤ t ≤ Tu

= σ(Tu)u, Tu ≤ t ≤ T

for u ∈ Q̄∩E1. For u ∈ Q̄\E1, define σ1(t)u = u, 0 ≤ t ≤ T . Then σ1(t)u
is continuous in (u, t), and

(4.19) G(σ1(T )u) ≤ b0 − δ, u ∈ Q̄.

Let

(4.20) ϕ(v, t) = Fσ1(t)v, v ∈ Q̄, 0 ≤ t ≤ T.

Then ϕ is a continuous map of K := Q̄ × [0, T ] to N . Moreover, K is
a compact subset of Nw × [0, T ]. For if (vk, tk) ∈ K, there is a renamed
subsequence such that vk → v0 weakly in N and tk → t0 in [0, T ]. Since Q̄
is convex, v0 is in Q̄. Since Q̄ is bounded, |vk − v0|w → 0. Each u0 ∈ B has
a neighborhood W (u0) in Ew and a finite dimensional subspace S(u0) such
that Y (u) ⊂ S(u0) for u ∈ W (u0) ∩ B. Since σ1(t)v is continuous is (v, t),
for each (v0, t0) in K there are a neighborhood W (v0, t0) ⊂ N × [0, T ] and a
finite dimensional subspace S(v0, t0) ⊂ N such that Fz1t(v) ⊂ S(v0, t0) for
(v, t) ∈ W (v0, t0), where

z1t(v) :=
∫ t

0
Y (σ1(s)v)ds.

Since K is compact, there is a finite number of points (vj , tj) ⊂ K such
that K ⊂ W = ∪W (vj , tj). Let S be a finite dimensional subspace of N
containing p and all the S(vj , tj). We note that ϕ(v, t) maps Q̄ ∩ S × [0, T ]
into S since Fσ1(t)v = v − Fz1t(v), and Fz1t(v) is in S when v is in Q̄. Let
ϕt(v) = ϕ(v, t), (v, t) ∈ K. Then

(4.21) ϕt(v) �= p, v ∈ ∂(Q ∩ S) = ∂Q ∩ S, 0 ≤ t ≤ T.

For if ϕ(v, t) = p, then σ1(t)v ∈ F−1(p) = B. This implies G(σ1(t)v) ≥ b0
by (1.12). But (4.13) and (1.12) imply that G(σ1(t)v) < b0 for t > 0. Since
p �∈ ∂Q by hypothesis, ϕ0(v) = v �= p. Thus (4.21) holds. Consequently the
Brouwer degree d(ϕt, Q∩S, p) can be defined. Since ϕt(v) is continuous, we
have

d(ϕT , Q ∩ S, p) = d(ϕ0, Q ∩ S, p) = d(I,Q ∩ S, p) = 1.
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Hence there is a v ∈ Q such that Fσ1(T )v = p. Consequently, σ1(T )v ∈
F−1(p) = B. In view of (1.12), this implies

G(σ1(T )u) ≥ b0,

contradicting (4.19). This completes the proof.
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