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1. Introduction

The concept of Hadamard-type singular integrals was first introduced by Hadamard [1],
and then developed and adopted in applications by many authors (see [2–13]). This type
of integrals is expressed as

f.p.
∫
Γ

f (τ)
(τ − t)m+1

dτ, t ∈ Γ0 (1.1)

and its general definition can be found in Lu [11], where Γ=
�
ab is an open smooth curve

on a complex plane, f ∈ Cm+1(Γ), and m is a positive integer. Although from

f.p.
∫
Γ

f (τ)dτ
(τ − t)m+1

= 1
m!

p.v.
∫
Γ

f (m)(τ)
τ − t dτ +

m−1∑
r=0

(m− r− 1)!
m!

[
f (r)(a)

(a− t)m−r −
f (r)(b)

(b− t)m−r
]

(1.2)

we would get some characteristics of this type of integrals, many of them such as mapping
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properties still need to have a further investigation, especially for its “weighted type”:

f.p.
∫
Γ

w(τ) f (τ)
(τ− t)m+1

dτ, t ∈ Γ0, (1.3)

where w(t) is an integrable function. In many cases, w(t) is a fundamental function de-
rived from some mixed boundary problem and therefore may not be smooth enough or
even have certain singularities (see [6, 10, 14]).

It is found that Hadamard-type singular integrals can be expressed effectively by a kind
of integral operators which we will define and discuss in the next section. So, in Section 3
of the present paper we directly use this expression as the definition of Hadamard-type
singular integrals and it appears that the definition is more advantageous than the tradi-
tional one. In this paper, some useful results are developed and then in the final section
we use them for the solution of certain strongly singular integral equations. Meanwhile,
we illustrate some examples as well.

Throughout the paper we always assume that m is a nonnegative integer; Γ is an open
smooth curve on the complex plane oriented from the point a to the point b, and c0 is a

fixed positive constant such that for all t1, t2 ∈ Γ, the arc length | �
t1t2| ≤ c0|t1− t2|; as usual,

C(Γ) and Cm(Γ) denote the spaces of continuous andm-times continuously differentiable
complex-valued functions on Γ, respectively, ‖ψ‖ ≡maxt∈Γ |ψ(t)|, ‖ψ‖Cm ≡

∑m
k=0‖ψ(k)‖,

and the modulus of continuity for ψ ∈ C(Ω) is denoted by ω(ψ,x), where Ω= Γ or Γ×
Γ; for convenience, each absolute constant is denoted by c but takes different values in
different places. And, if there is no confusion, we will omit the symbol Γ in some notations
of function classes such as C(Γ) and Cm(Γ), and so forth.

2. Some integral inequalities

It is clear that the kind of integral operators introduced in [15] has a close relation to
Hadamard-type integrals. Here we restate their definition as follows.

Definition 2.1. Let w and ϕ be integrable functions on Γ and assume ϕ is m times differ-
entiable at t0 ∈ Γ. If the integral

k!
∫
Γ
w(τ)

ϕ(τ)−Pk
(
ϕ;τ, t0

)
(
τ − t0

)k+1 dτ (2.1)

exists, then we denote it by Tk(w,ϕ)(t0), where

Pk
(
ϕ;τ, t0

)= ϕ(t0)+ϕ′
(
t0
)(
τ − t0

)
+
ϕ′′
(
t0
)

2!

(
τ − t0

)2
+ ···+

ϕ(k)t0
k!

(
τ − t0

)k
(2.2)

and k = 0,1, . . . ,m. If k = 0, Tk is written as T .

In this section, we will mainly discuss this kind of operators in some smooth function
classes, which are given by the following definition.
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Definition 2.2. Let γ be an oriented open smooth curve and let Λn(γ) denote the function
class

{
f ∈ C(γ) :

∫ 1

0

ωγ( f ,x)

x
lnn−1 1

x
dx <∞

}
, (2.3)

where ωγ(ϕ,x)=max{|ϕ(t′)−ϕ(t′′)| : |t′ − t′′| ≤ x, t′, t′′ ∈ γ} and n is a positive integer.
For differentiable function classes, we let

Λm
n (γ)= { f ∈ Cm(γ) : f (m) ∈Λn(γ)

}
. (2.4)

For t0 ∈ Γ, if we say f ∈ Cm(t0,Γ) or f ∈Λm
n (t0,Γ), it means that f is an integrable func-

tion on Γ and there is a neighborhood �⊂ Γ of t0 such that f ∈ Cm(�) or f ∈Λm
n (�).

Some properties of modulus of continuity will be used repeatedly and we list them in
the following lemma. Their proofs are trivial (cf. [16, Chapter 3]).

Lemma 2.3. Let ω(x) be a modulus of continuity. Then

ω(x)≤ 2
ln2

∫ x
0

ω(y)
y

dy, x > 0, (2.5)

ω(x) ln
1
x
≤ 2

∫ √x
x

ω(y)
y

dy, 0 < x ≤ 1, (2.6)

x
∫ l
x

ω(y)
y2

dy ≤ 2ω(x) ln
l

x
, 0 < x ≤ l, (2.7)

∫ l
0

ω(y)
y

dy ≤ (l+ 1)
∫ 1

0

ω(y)
y

dy, l > 1. (2.8)

Now we suppose ϕ∈C(Γ)∩Cm(γ), and set Ψk(τ, t)=k!(ϕ(τ)−Pk(ϕ;τ, t))/(τ − t)k+1,
where γ is a subarc of Γ and (τ, t)∈ Γ× γ. Then it is easy to verify that

∂

∂t
Ψk(τ, t)=Ψk+1(τ, t), k = 0,1, . . . ,m− 1 (2.9)

for (τ, t)∈ Γ× γ but τ �= t, and

∣∣Ψk(τ, t)
∣∣≤ c

⎧⎪⎪⎨
⎪⎪⎩

max
τ∈γ

∣∣ϕ(k+1)(τ)
∣∣, 0≤ k ≤m− 1,

ωγ
(
ϕ(m),|τ − t|)
|τ − t| , k =m,

(2.10)

for (τ, t) ∈ γ× γ (cf. [15]). So, if ϕ ∈ Λm
1 (Γ), Tkϕ = Tk(w,ϕ) is differentiable when k =

0,1, . . . or m− 1 and Tmϕ is integrable. Furthermore, we have the following theorem.

Theorem 2.4. Let w be an integrable function on Γ, ϕ ∈ Λm
1 (Γ), and 0 < x ≤ 1. If w is

bounded, then

ω
(
Tmϕ,x

)≤ c‖w‖
(
ω
(
ϕ(m),x

)
ln

1
x

+
∫ x

0

ω
(
ϕ(m), y

)
y

dy
)

, (2.11)
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and if w ∈Λ1(Γ) satisfying w(a)=w(b)= 0, then

ω
(
Tmϕ,x

)≤ c‖w‖Λ1

(∫ x
0

ω
(
ϕ(m), y

)
y

dy + x
∫ 1

x

ω
(
ϕ(m), y

)
y2

dy
)

, (2.12)

where ‖w‖Λ1 = ‖w‖+
∫ 1

0 (ω(w, y)/y)dy and c is a positive number related to m and Γ.

Proof. It is equivalent to prove that for t1, t2 ∈ Γ

∣∣Tm(ϕ)
(
t1
)−Tm(ϕ)

(
t2
)∣∣≤ c‖w‖

(
ω
(
ϕ(m),δ

)
ln
L

δ
+
∫ δ

0

ω
(
ϕ(m), y

)
y

dy
)

(2.9)′

if w is bounded and

∣∣Tm(ϕ)
(
t1
)−Tm(ϕ)

(
t2
)∣∣≤ c‖w‖Λ1

(∫ δ
0

ω
(
ϕ(m), y

)
y

dy + δ
∫ L
δ

ω
(
ϕ(m), y

)
y2

dy
)

(2.10)′

ifw ∈Λ1(Γ) satisfyingw(a)=w(b)= 0, where δ = |t2− t1| and L= |Γ|. For convenience,
we assume 0 < δ < 1 and a≺ t1 ≺ t2 ≺ b. Here t1 ≺ t2 means that t1 precedes t2.

(i) If |t1− a| > δ and |b− t2| ≤ δ or |t1− a| ≤ δ and |b− t2| > δ, we let

Tm(ϕ)
(
t1
)−Tm(ϕ)

(
t2
)=m!

(∫
�
at1

+
∫

�
t1b

)
w(τ)

[
Ψm

(
τ, t2

)−Ψm
(
τ, t1

)]
dτ = I1 + I2.

(2.13)

Because of the similarity, we assume |t1− a| > δ and |b− t2| ≤ δ. In this case, from (2.10)

and |
�
t1b| = |

�
t1t2|+ |

�
t2b| ≤ 2c0δ, we have

∣∣I2∣∣=m!
∣∣∣∣
∫

�
t1b
w(τ)

[
Ψm

(
τ, t2

)−Ψm
(
τ, t1

)]
dτ
∣∣∣∣

≤ c‖w‖
∫

�
t1b

ω
(
ϕ(m),

∣∣τ − t2∣∣)∣∣τ − t2∣∣ +
ω
(
ϕ(m),

∣∣τ − t1∣∣)∣∣τ − t1∣∣ |dτ|

≤ c‖w‖
∫ δ

0

ω
(
ϕ(m), y

)
y

dy.

(2.14)

If we let

h(τ)= Pm
(
ϕ;τ, t1

)−Pm(ϕ;τ, t2
)
, τ ∈ Γ, (2.15)

then

h(τ)= h(t2)+
h′
(
t2
)

1!

(
τ − t2

)
+ ···+

h(m)(t2)
m!

(
τ − t2

)m
, (2.16)

m!
k!

∣∣h(k)(t2)∣∣≤ c
(
m

k

)
ω
(
ϕ(m),δ

)
δm−k (2.17)
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for k = 1,2, . . . ,m, therefore

i1 ≡m!
∣∣∣∣
∫

�
at1
w(τ)

Pm
(
ϕ;τ, t2

)−Pm(ϕ;τ, t1
)

(
τ − t2

)m+1 dτ
∣∣∣∣

≤m!
m∑
k=0

∣∣h(k)
∣∣(t2)
k!

∫
�
at1

∣∣w(τ)
∣∣

∣∣τ − t2∣∣m−k+1 |dτ|

≤ cω(ϕ(m),δ
) m∑
k=0

(
m

k

)
δm−k

∫
�
at1

∣∣w(τ)
∣∣

∣∣τ − t2∣∣m−k+1 |dτ|.

(2.18)

For τ ∈ �
at1, c0|τ − t2| ≥ |

�
τt2| = |

�
τt1|+ | �

t1t2| ≥ |t2− t1| = δ, that is, δ/|τ− t2| ≤ c0, so that
the above inequality becomes

i1 ≤ cω
(
ϕ(m),δ

)∫
�
at1

∣∣w(τ)
∣∣∣∣τ − t2∣∣ |dτ|. (2.19)

If w is bounded, then, by some computation, we have

i1 ≤ c‖w‖ω
(
ϕ(m),δ

)
ln
L

δ
. (2.20)

Since |b− t2| ≤ |t2 − t1| ≤ c0|τ − t2|, |τ − b| ≤ |τ − t2|+ |t2 − b| ≤ (1 + c0)|τ − t2| and it
follows that, if w ∈Λ1 and w(b)= 0,

∫
�
at1

∣∣w(τ)
∣∣∣∣τ − t2∣∣ |dτ| =

∫
�
at1

∣∣w(τ)−w(b)
∣∣∣∣τ − t2∣∣ |dτ|

≤
∫

�
at1

ω
(
w,
(
1 + c0

)∣∣τ − t2∣∣)∣∣τ − t2∣∣ |dτ| ≤ c
∫ 1

0

ω(w, y)
y

dy,

(2.21)

or

i1 ≤ c
∫ 1

0

ω(w, y)
y

dyω
(
ϕ(m),δ

)
. (2.22)

On the other hand, by (2.10),

i2 ≡m!

∣∣∣∣∣
∫

�
at1
w(τ)

[
ϕ(τ)−Pm

(
ϕ;τ, t1

)][ 1(
τ − t2

)m+1 −
1(

τ − t1
)m+1

]
dτ

∣∣∣∣∣

≤ c‖w‖∣∣t1− t2∣∣
m∑
k=0

∫
�
at1

ω
(
ϕ(m),

∣∣τ − t1∣∣)∣∣τ − t1∣∣k∣∣τ − t1∣∣∣∣τ − t2∣∣k+1 |dτ|

≤ c(m+ 1)‖w‖∣∣t1− t2∣∣
∫

�
at1

ω
(
ϕ(m),

∣∣τ − t1∣∣)∣∣τ − t1∣∣∣∣τ − t2∣∣ |dτ|

≤ c‖w‖δ
∫ L

0

ω
(
ϕ(m), y

)
y(y + δ)

dy

≤ c‖w‖
(∫ δ

0

ω
(
ϕ(m), y

)
y

dy + δ
∫ L
δ

ω
(
ϕ(m), y

)
y2

dy
)

,

(2.23)
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where L= |Γ|. Now from

I1 =
∣∣∣∣∣m!

∫
�
at1
w(τ)

[
ϕ(τ)−Pm

(
ϕ;τ, t2

)
(
τ − t2

)m+1 − ϕ(τ)−Pm
(
ϕ;τ, t1

)
(
τ − t1

)m+1

]
dτ

∣∣∣∣∣

=
∣∣∣∣∣m!

∫
�
at1
w(τ)

{
Pm
(
ϕ;τ, t1

)−Pm(ϕ;τ, t2
)

(
τ − t2

)m+1

+
[
ϕ(τ)−Pm

(
ϕ : τ, t1

)]( 1(
τ − t2

)m+1 −
1(

τ − t1
)m+1

)}
dτ

∣∣∣∣∣≤ i1 + i2,

(2.24)

we have

I1 ≤ c‖w‖
(
ω
(
ϕ(m),δ

)
ln
L

δ
+
∫ δ

0

ω
(
ϕ(m), y

)
y

dy

)
(2.25)

if w is bounded, where we have used the inequality (2.7), or

I1 ≤ c‖w‖Λ1

(∫ δ
0

ω
(
ϕ(m), y

)
y

dy + δ
∫ L
δ

ω
(
ϕ(m), y

)
y2

dy

)
(2.26)

ifw ∈Λ1 andw(b)= 0, where we have used the inequality (2.5), and together with (2.14),
we obtain (2.9)′ and (2.10)′.

(ii) If |t1− a| > δ and |b− t2| > δ, we let

Tm(ϕ)
(
t1
)−Tm(ϕ)

(
t2
)=m!

(∫
�
at1

+
∫

�
t1t2

+
∫

�
t2b

)
w(τ)

[
Ψm

(
τ, t2

)−Ψm
(
τ, t1

)]
dτ

= I1 + I2 + I3.
(2.27)

Similar to the proof of (2.14),

∣∣I2∣∣≤ c‖w‖
∫ δ

0

ω
(
ϕ(m), y

)
y

dy. (2.28)

We rewrite I1 + I3 as i1 + i2, where

i1 =m!
∫

�
at1
w(τ)

Pm
(
ϕ;τ, t1

)−Pm(ϕ;τ, t2
)

(
τ − t2

)m+1 dτ

+m!
∫

�
t2b
w(τ)

Pm
(
ϕ;τ, t1

)−Pm(ϕ;τ, t2
)

(
τ − t1

)m+1 dτ,

i2 =m!
∫

�
at1
w(τ)

[
ϕ(τ)−Pm

(
ϕ;τ, t1

)]( 1(
τ − t2

)m+1 −
1(

τ − t1
)m+1

)
dτ

+m!
∫

�
t2b
w(τ)

[
ϕ(τ)−Pm

(
ϕ;τ, t2

)]( 1(
τ − t2

)m+1 −
1(

τ − t1)m+1

)
dτ.

(2.29)
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Similar to the proof of (2.23),

∣∣i2∣∣≤ c‖w‖
(∫ δ

0

ω
(
ϕ(m), y

)
y

dy + δ
∫ L
δ

ω
(
ϕ(m), y

)
y2

dy

)
. (2.30)

Using (2.16), we rewrite i1 as

m!
m−1∑
k=0

[
h(k)

(
t2
)

k!

∫
�
at1

w(τ)dτ(
τ − t2

)m−k+1 +
h(k)

(
t1
)

k!

∫
�
t2b

w(τ)dτ(
τ − t1

)m−k+1

]

+
(∫

�
at1

w(τ)
τ − t2 dτ +

∫
�
t2b

w(τ)
τ − t1 dτ

)[
ϕ(m)(t1)−ϕ(m)(t2)]= i11 + i12.

(2.31)

Notice that
∣∣∣∣∣
∫

�
at1

dτ(
τ − t2

)m−k+1

∣∣∣∣∣≤ cδ−m+k,

∣∣∣∣∣
∫

�
t2b

dτ(
τ − t1

)m−k+1

∣∣∣∣∣≤ cδ−m+k (2.32)

for k = 0,1, . . . ,m− 1. Hence, by using the inequality (2.17), we have

∣∣i11
∣∣≤ c‖w‖ω(ϕ(m),δ

)
. (2.33)

Similar to the proof of (2.20),

i12 ≤ c‖w‖ω
(
ϕ(m),δ

)
ln
L

δ
. (2.34)

But if w ∈Λ1 and w(a)=w(b)= 0, then

∣∣∣∣
∫

�
at1

w(τ)
τ − t2 dτ +

∫
�
t2b

w(τ)
τ − t1 dτ

∣∣∣∣≤ c
(
‖w‖+

∫ 1

0

ω(w, y)
y

dy
)

(2.35)

(see [15, Section 6]), and thus

∣∣i12
∣∣≤ c

(
‖w‖+

∫ 1

0

ω(w, y)
y

dy
)
ω
(
ϕ(m),δ

)
. (2.36)

Now from |i1| ≤ |i11|+ |i12|, we obtain

∣∣i1∣∣≤ c‖w‖ω(ϕ(m),δ
)(

ln
L

δ
+ 1
)

(2.37)

if w is bounded and obtain

∣∣i1∣∣≤ c
(
‖w‖+

∫ 1

0

ω(w, y)
y

dy
)
ω
(
ϕ(m),δ

)
(2.38)

if w ∈ Λ1 and w(a)= w(b)= 0, and these, together with (2.28) and (2.30), lead to (2.9)′

and (2.10)′.
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(iii) If |t1− a| ≤ δ and |b− t2| ≤ δ, then |Γ| = | �
at1|+ | �

t1t2|+ |
�
t2b| ≤ 3c0δ. From (2.10),

∣∣Tm(ϕ)
(
t1
)−Tm(ϕ)

(
t2
)∣∣

≤ c‖w‖
∫
Γ

[
ω
(
ϕ(m),

∣∣τ − t2∣∣)∣∣τ − t2∣∣ +
ω
(
ϕ(m),

∣∣τ − t1∣∣)∣∣τ − t1∣∣
]
|dτ|

≤ c‖w‖
∫ δ

0

ω
(
ϕ(m), y

)
y

dy

(2.39)

and thus (2.9)′ and (2.10)′ are also valid.
Now we have proved that (2.9)′ and (2.10)′ are true in all cases and the constant c > 0

depending on m and Γ can be derived from the process of the proof.
The proof is completed. �

Generally, for Tk, k = 0,1, . . . ,m, we have the following results.

Theorem 2.5. Assume w, ϕ, and wϕ are all integrable and t0 ∈ Γ. If w is bounded on some
neighborhood of t0 on Γ and ϕ ∈ Λm

1 (t0,Γ), then T(w,ϕ) is m-time continuously differen-
tiable at t0 and

Tk(w,ϕ)
(
t0
)= dk

dtk
T(w,ϕ)

(
t0
)

(2.40)

for k = 1,2, . . . ,m.

Proof. It is obvious that (2.40) is true for k = 1,2, . . . ,m− 1. So, we need only to prove

d

dt
Tm−1(w,ϕ)

(
t0
)= Tm(w,ϕ)

(
t0
)

(2.41)

and Tm(w,ϕ) is continuous at t0.
According to the given conditions, there is a subarc γ ⊂ Γ with t0 ∈ γ but t0 ∈ Γ \ γ0

such thatw is bounded on γ and ϕ∈Λm
1 (γ), where γ0 denotes the inner points of γ. Write

Tm−1(ϕ) as

(∫
Γ\γ

+
∫
γ

)
w(τ)Ψm−1(τ, t)dτ = I1(t) + I2(t). (2.42)

Then I1(t) is continuously differentiable at t0 and

I′1
(
t0
)=

∫
Γ\γ
w(τ)Ψm

(
τ, t0

)
dτ. (2.43)

For I2, we consider

(∫
γ\

�
t0t

+
∫

�
t0t

)
w(τ)

[
Ψm−1(τ, t)−Ψm−1

(
τ, t0

)
t− t0 −Ψm

(
τ, t0

)]
dτ = i1 + i2, (2.44)
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where t ∈ γ and, without loss of generality, we assume t0 ≺ t. Notice that

i1 =
∫
γ\

�
t0t
w(τ)

[
1

t− t0
∫

�
t0t

[
Ψm(τ,ζ)−Ψm

(
τ, t0

)]
dζ
]
dτ

= 1
t− t0

∫
�
t0t

[∫
γ\

�
t0t
w(τ)

[
Ψm(τ,ζ)−Ψm

(
τ, t0

)]
dτ
]
dζ.

(2.45)

By using Theorem 2.4 to the internal integral, we have

∣∣i1∣∣≤ c′‖w‖γ
[
ω
(
ϕ(m),δ

)(
1 + ln

1
δ

)
+
∫ δ

0

ω
(
ϕ(m), y

)
y

dy
]

, (2.46)

where ‖w‖γ =maxt∈γ |w(t)| and δ = |t− t0|. If τ ∈ �
t0t, then |τ − t| ≤ c0|t− t0| and |τ −

t0| ≤ c0|t− t0|, and from (2.10),

∣∣∣∣Ψm−1(τ, t)−Ψm−1
(
τ, t0

)
t− t0 −Ψm

(
τ, t0

)∣∣∣∣

=
∣∣∣∣
[
Ψm(τ, t)(τ − t) +ϕ(m)(t)

]− [Ψm
(
τ, t0

)(
τ − t0

)
+ϕ(m)

(
t0
)]

m
(
t− t0

) −Ψm
(
τ, t0

)∣∣∣∣

≤ c
(
ω
(
ϕ(m),

∣∣t− t0∣∣)∣∣t− t0∣∣ +
ω
(
ϕ(m),

∣∣τ − t0∣∣)
|τ − t0|

)
,

(2.47)

so that

∣∣i2∣∣≤ c′‖w‖γ
(
ω
(
ϕ(m),δ

)
+
∫ δ

0

ω
(
ϕ(m), y

)
y

dy
)
. (2.48)

Since ϕ(m) ∈Λ1(γ), (2.46), and (2.48) result in i1, i2 → 0 when t→ t0, it follows that

I′2
(
t0
)=

∫
γ
w(τ)Ψm

(
τ, t0

)
dτ. (2.49)

On the other hand, according to Theorem 2.4,
∫
γ w(τ)Ψm(τ, t)dτ is continuous on γ be-

cause w is bounded on the subarc and ϕ∈ Λm
1 (γ). Now we have proved that Tm−1(w,ϕ)

is differentiable at t0 and there holds (2.41). �

The following corollaries can be verified easily.

Corollary 2.6. If w is bounded and ϕ∈Λm
1 , then T(w,ϕ)∈ Cm and

∥∥T(w,ϕ)
∥∥
Cm ≤ c‖w‖

[ m∑
k=1

∥∥ϕ(k)
∥∥+

∫ 1

0

ω
(
ϕ(m), y

)
y

dy

]
. (2.50)

Corollary 2.7. If w is bounded and ϕ∈Λm
n+1, then T(w,ϕ)∈Λm

n and

∥∥T(w,ϕ)
∥∥
Λm
n
≤ c‖w‖

[ m∑
k=1

∥∥ϕ(k)
∥∥+

∫ 1

0

ω
(
ϕ(m), y

)
y

lnn
1
y
dy

]
, (2.51)
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where n is a positive integer and ‖ · ‖Λm
n

is defined by

‖ψ‖Λm
n
= ‖ψ‖Cm +

∫ 1

0

ω(ψ(m), y)
y

lnn−1 1
y
dy, ψ ∈Λm

n . (2.52)

Remark 2.8. The space Λm
n normed by ‖ · ‖Λm

n
is a Banach space and thus the above corol-

laries imply that, if the “weight” w is bounded, then T(w,·)∈�(Λm
1 ,Cm) and T(w,·)∈

�(Λm
n+1,Λm

n ) for n≥ 1, where �(X ,Y) denotes the space of all bounded linear operators
from Banach space X to Banach space Y .

Remark 2.9. Generally, the inequality (2.12) is called Zygmund-type inequality. In this
case, if we consider the operator in Cm,λ, then T(w,·)∈�(Cm,λ)≡�(Cm,λ,Cm,λ), or in
detail,

∥∥T(w,ϕ)
∥∥
Cm,λ ≤ c‖w‖Λ1‖ϕ‖Cm,λ , (2.53)

where Cm,λ is the space of functions in Cm whose mth derivative satisfies a Hölder condi-
tion with exponent λ∈ (0,1), and its norm is defined by

‖ψ‖Cm,λ = ‖ψ‖Cm + sup
0<x≤1

ω(ψ(m),x)
xλ

(2.54)

(cf. [15] and [17, Chaptre II, Section 6]). The positive constant c in inequality (2.53)
depends only on m, λ, and Γ.

3. Weighted Hadamard-type singular integrals

In this section, we start from the definition of a basic Hadamard-type or finite-part inte-
gral, and then give an expression for general ones by means of singularity deletion method
(cf. [7, 11]). For convenience, we denote the Hadamard-type integrals of the form (1.3)
by Hm(w, f )(t).

Definition 3.1. For t0 ∈ Γ0, the Hadamard-type singular integral or finite part f.p.
∫
Γ(dτ/

(τ − t0)m+1) is defined by

f.p.
∫
Γ

dτ(
τ − t0

)m+1 =
1
m

[
1(

a− t0
)m − 1(

b− t0
)m
]
. (3.1)

If letting h0(t)= p.v.
∫
Γ(1/(τ − t))dτ, t ∈ Γ0, where p.v. means Cauchy principal value,

then we have h0(t)= ln((b− t)/(t− a)) and

f.p.
∫
Γ

1
(τ − t)m+1

dτ = 1
m!

dm

dtm
h0(t), t ∈ Γ0. (3.2)

So, the integral is well defined.
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Definition 3.2. Let t0 ∈ Γ0 and f ∈ Cm(t0,Γ). If Tm(1, f )(t0) exists, then the m-order
Hadamard-type singular integral or finite part integral of f is defined by

f.p.
∫
Γ

f (τ)(
τ − t0

)m+1 dτ =
1
m!
Tm(1, f )

(
t0
)

+
m∑
k=0

f (k)
(
t0
)

k!
hm−k

(
t0
)
, (3.3)

where hr(t)= f.p.
∫
Γ(1/(τ− t)r+1)dτ with r = 1,2, . . . .

According to Theorem 2.5, if f ∈ Λm
1 (t0,Γ) at t0 ∈ Γ0, then Tm(1, f ) exists on some

neighborhood of t0 and Tm(1, f ) ∈ C(t0,Γ) as well. Thus, from (3.3), we obtain the fol-
lowing.

Theorem 3.3. If f ∈Λm
1 (t0,Γ), then Hm(1, f )∈ C(t0,Γ), where t0 ∈ Γ0.

As a special case, we have the following.

Corollary 3.4. If the function w is integrable on Γ and arbitrary times differentiable on
Γ0, then Hr(1,w)∈ C∞(Γ0) and

f.p.
∫
Γ

w(τ)
(τ − t)r+1

dτ = 1
r!
dr

dtr

[
p.v.

∫
Γ

w(τ)
τ− t dτ

]
t ∈ Γ0, (3.4)

where r = 0,1, . . . .

Now we consider “weighted” Hadamard-type integrals of the form Hm(w, f ).

Definition 3.5. Letw be an integrable function on Γ, f ∈Cm(t0,Γ), and t0∈Γ0. IfTm(w, f ),
hr,w = Hr(1,w) with r = 0,1,2, . . . ,m are all existent at t0, then the m-order “weighted”
Hadamard-type singular integral or finite part integral of f at t0 is defined by

f.p.
∫
Γ

w(τ) f (τ)(
τ − t0

)m+1 dτ =
1
m!
Tm(w, f )

(
t0
)

+
m∑
k=0

f (k)
(
t0
)

k!
hm−k,w

(
t0
)
. (3.5)

Theorem 3.6. Assume the function w is integrable on Γ and arbitrary times differentiable
on Γ0. If f ∈Λm

1 (Γ), then Hm(w, f ) exists on Γ0. Furthermore, Hm(w, f )∈ C(Γ0) and

Hm(w, f )(t)= 1
m!

dm

dtm

(
p.v.

∫
Γ

w(τ) f (τ)
τ − t dτ

)
, t ∈ Γ0. (3.6)

Proof. It is clear that Hm(w, f )(t) exists at all t ∈ Γ0 and Hm(w, f )∈ C(Γ0) as well. In the
following we give the proof of (3.6).

From the given conditions, by Theorem 2.5 and Corollary 3.4, we see that T(w,ϕ) ∈
Cm(Γ0) and h0,w ∈ C∞(Γ0). Hence, from

p.v.
∫
Γ

w(τ) f (τ)
τ − t dτ = T(w, f )(t) + f (t)h0,w(t), (3.7)

we have

dm

dtm

(
p.v.

∫
Γ

w(τ) f (τ)
τ − t dτ

)
= Tm(w, f )(t) +

m∑
k=0

(
m

k

)
f (k)(t)h(m−k)

0,w (t), t ∈ Γ0. (3.8)



12 Abstract and Applied Analysis

Corollary 3.4 states that hr,w(t) = r!h(r)
0,w(t) for t ∈ Γ0. Thus, from (3.5) we obtain (3.6).

�

In (3.5), for each r, hr,w is known. As will be seen in the following examples, these
functions are simple in some cases. So, it is the operator Tm that plays a crucial role in
Hadamard-type singular integrals.

Example 3.7. Let w1(t)= (t− a)−α(b− t)−β with 0 < α, β < 1 and α+β = 1. We have

p.v.
1
π

∫
Γ

w1(τ)
τ − t dτ =

cosπα
sinπα

w1(t), (3.9)

(cf. [11]), and hence

f.p.
∫
Γ

w1(τ) f (τ)
(τ − t)m+1

dτ = 1
m!
Tm
(
w1, f

)
(t) +

π cosπα
m! sinπα

m∑
k=0

(
m

k

)
w(k)

1 (t) f (m−k)(t) (3.10)

for f ∈Λm
1 .

Now we let σ(t)= (t− a)(b− t). From

σ(t)
τ − t =

σ(τ)
τ − t + (τ + t)− (a+ b) (3.11)

we have

σ(t)Tm
(
w1, f

)
(t)= Tm

(
σw1, f

)
(t) +m!

∫
Γ
w1(τ)p(τ, t)

f (τ)−Pm( f ;τ, t)
(τ − t)m dτ (3.12)

and thus

∣∣Tm(w1, f )(t)
∣∣≤ c∣∣σ(t)

∣∣
(∥∥ f (m)

∥∥+
∫ 1

0

ω( f (m), y)
y

dy
)

, t ∈ Γ0, (3.13)

where p(τ, t)= (τ + t)− (a+ b) and the constant c depends on w1, Γ, and m. Therefore,

∣∣Hm
(
w1, f

)
(t)
∣∣≤ c

(∥∥ f (m)
∥∥
Λ1∣∣σ(t)
∣∣ +

cosπα
sinπα

∣∣∣∣w1(t)
σm(t)

∣∣∣∣‖ f ‖Cm
)

, t ∈ Γ0. (3.14)

If α= 1/2, then Hm(w1, f )(t)= (1/m!)Tm(w1, f )(t) and

∣∣∣∣f.p.
∫
Γ

w1(τ) f (τ)
(τ − t)m+1

dτ
∣∣∣∣≤ c∣∣σ(t)

∣∣
(∥∥ f (m)

∥∥+
∫ 1

0

ω
(
f (m), y

)
y

dy
)

, t ∈ Γ0. (3.15)

Example 3.8. Let w2(t) = (t− a)α(b− t)β with 0 < α, β < 1 and α+ β = 1. Similarly, we
have

p.v.
1
π

∫
Γ

w2(τ)
τ − t dτ =−

cosπα
sinπα

w2(t)− t−αa−βb
sinπα

,

f.p.
∫
Γ

w2(τ) f (τ)
(τ − t)m+1

dτ = 1
m!
Tm
(
w2, f

)
(t)− π cosπα

m! sinπα

m∑
k=0

(
m

k

)
w(k)

2 (t) f (m−k)(t)

− π

m! sinπα

(
m f (m−1)(t) + (t−αa−βb) f (m)(t)

)
(3.16)
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for f ∈Λm
1 . In this case

∣∣∣∣f.p.
∫
Γ

w2(τ) f (τ)
(τ − t)m+1

dτ
∣∣∣∣≤ c

[∥∥w2
∥∥
∫ 1

0

ω( f (m), y)
y

dy +
cosπα
sinπα

∣∣∣∣w2(t)
σm(t)

∣∣∣∣‖ f ‖Cm

+
1

sinπα

(∥∥ f (m−1)
∥∥+

∥∥ f (m)
∥∥)], t ∈ Γ0.

(3.17)

By the way, the operator Tm(w2,·)∈�(Cm,λ).

Remark 3.9. In fact, we do not redefine Hadamard-type integrals but give an expression of
this type of integrals, though Definition 3.5 is more common than the traditional one. In
this expression, the main part is the operator Tm. Therefore, it would be easier to identify
the characteristics of this type of integrals from Tm.

4. Applications

Consider the strongly singular integral equations of the form

f.p.
1
π

∫
J

ϕ(t)
(t− x)2

dt+
∫
J
k(x, t)ϕ(t)dt = f (x), x ∈ (−1,1) (4.1)

which was discussed in [10], where k, f ∈ C0,λ are given, J = [−1,1], and the unknown
function ϕ is required to be integrable but smooth in the inner of J .

We let ϕ=wy and define the operators H and K by

Hy(x)= f.p.
1
π

∫
J

w(t)y(t)
(τ − x)2

dt,

Ky(x)=
∫
J
w(t)k(x, t)y(t)dt,

(4.2)

respectively, where w(x)= 1/
√

1− x2. Then the equation becomes

(H +K)y = f , (4.1)′

and we will see that y ∈ C1,λ if the above equation is solvable.
Corresponding to H , we introduce an operator Ĥ defined by

Ĥ y(x)=−f.p.
1
π

∫
J

ŵ(t)
t− xdt

∫ t
0
y(s)ds, (4.3)

where ŵ(x)=√1− x2. Let σ = 1− x2 be a multiplication operator, that is, σ f (x)= (1−
x2) f (x). We have the following.

Theorem 4.1. σH ∈�(C1,λ,C0,λ), Ĥ ∈�(C0,λ,C1,λ), and

HĤ = I0, ĤH = I1−P1, (4.4)
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where I0 and I1 are identical operators on C0,λ and C1,λ, respectively,

P1y(x)= p.v.
1
π

∫
J

w(t)(x+ t)
t

y(t)dt, y ∈ C1,λ (4.5)

and 0 < λ < 1.

Proof. If we let

Vψ(x)= p.v.
1
π

∫
J

w(τ)ψ(t)
t− x dt, V̂ψ(x)=−p.v.

1
π

∫
J

ŵ(t)ψ(τ)
t− x dt, (4.6)

thenH =DV and Ĥ = V̂S, whereD is a differential operator and S is an integral operator
defined by S f (x)= ∫ x0 f (t)dt, x ∈ J . Notice the relations

VV̂ f (x)= f (x),

V̂V f (x)= f (x)− 1
π

∫
J
w(t) f (t)dt

(4.7)

for f ∈ C0,λ (see [11, 14]). Thus we have

HĤ f (x)=DVV̂S f (x)=DS f (x)= f (x) (4.8)

for f ∈ C0,λ and

ĤH f (x)= V̂SDV f (x)= V̂(V f (x)−V f (0)
)

= f (x)− 1
π

∫
J
w(t) f (t)dt− xV f (0)= f (x)−P1 f (x),

(4.9)

for f ∈ C1,λ. Hence, (4.4) is true.
By noting H f = T1(w, f ) and (3.13), we have

σH f (x)= T1(ŵ, f )(t) +
∫
Γ
w(τ)(τ + x)

f (τ)−P1( f ;τ,x)
τ − x dτ (4.10)

and it leads to σH ∈�(C1,λ,C0,λ). On the other hand, Ĥ = V̂S, but S∈�(C0,λ,C1,λ) and
V̂ ∈�(C1,λ) (see [15]), and thus Ĥ ∈�(C0,λ,C1,λ). The proof is completed. �

Let Z1,λ
0 = {ψ ∈ C1,λ : P1ψ = 0}. Then Z1,λ

0 is a close subspace of C1,λ and if restricted
in this subspace, H is invertible and its inverse is Ĥ . Therefore, the equation

(H +K)y = f , y ∈ Z1,λ
0 (4.11)

is equivalent to the following Fredholm integral equation:

(I + K̂)y = f ∗, (4.12)

where K̂ = ĤK and f ∗ = Ĥ f . Hence, if the Fredholm integral equation is regular, then
(4.1)′ has unique solution in Z1,λ

0 .



Yong Jia Xu 15

Let p be a given polynomial with degree of 1 and Z1,λ
p = p+Z1,λ

0 . Notice that P1ψ = p

for ψ ∈ Z1,λ
p . Thus, the equation

(H +K)y = f , y ∈ Z1,λ
p (4.13)

is equivalent to

(I + K̂)y = f ∗ + p. (4.14)

Since p is arbitrarily given, the solution of (4.1)′ has 2 degrees of freedom if the above
Fredholm integral equation is regular.

Theorem 4.2. Under the given assumptions, (4.1)′ is equivalent to (4.14), and if the equa-
tion is solvable then the solution has at least 2 degrees of freedom and belongs to C1,λ.

Usually, we want the solution of (4.1) to be bounded. If we find a solution y from
(4.14) satisfying y(±1)= 0, then its corresponding solution ϕ= wy of (4.1) is bounded
(in fact ϕ(±1)= 0, cf. [18]). However, it is possible to choose such a solution from (4.14),
because its solution has 2 degrees of freedom. Alternatively, we can define another oper-
ator Ĥ0 by

Ĥ0y(x)=−1− x2

π
p.v.

∫
J

w(t)
t− xdt

∫ t
0
y(s)ds, (4.15)

and get the solution from the equation

(I + K̂0)y = f ∗0 , (4.16)

where K̂0 = Ĥ0K and f ∗0 = Ĥ0 f . The reason is stated as follows.
At first, it is easy to verify the following.

Theorem 4.3. Ĥ0 ∈�(C0,λ,C1,λ
0 ) and

HĤ0 = I0, Ĥ0H = I0
1 , (4.17)

where the space C1,λ
0 = {ψ ∈ C1,λ : ψ(±1)= 0} and I0

1 is an identical operator on it.

Then, from this theorem, we see that (4.16) is equivalent to

(H +K)y = f , y ∈ C1,λ
0 , (4.18)

and hence, the solution of (4.16) is also the solution of (4.1)′ but satisfies y(±1)= 0.

Example 4.4. In order to solve the equation

f.p.
1
π

∫
J

ϕ(t)
(t− x)2

dt+
4
π

∫
J
(1 + xt)ϕ(t)dt = 2, x ∈ (−1,1) (4.19)
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we let ϕ(x)= y(x)/
√

1− x2, that is,

f.p.
1
π

∫
J

1√
1− t2

y(t)
(t− x)2

dt+
4
π

∫
J

1 + xt√
1− t2 y(t)dt = 2, x ∈ (−1,1) (4.15′)

and use Ĥ to act on both sides of it. Then, the equation is converted into

y(x)− 1
π

∫
J

2− 4x2 +
(
x− 2x3

)
t√

1− t2 y(t)dt =−1 + 2x2 + θ0 + θ1x, (4.20)

where θ0 and θ1 are arbitrary constants. By solving the equation, we have

y(x)= 3θ0− 1 +
7
2
θ1x+

(
2− 4θ0

)
x2− 2θ1x

3. (4.21)

If taking θ0 = 1 and θ1 = 0, we obtain a special solution y(x)= 2(1− x2) which satisfies
y(±1) = 0, and thus ϕ(x) = 2

√
1− x2 is a bounded as well as unique solution of (4.19).

This solution can also be obtained directly by solving the equation

y(x)− 1− x2

π

∫
J

4 + 2xt√
1− t2 y(t)dt =−2

(
1− x2), (4.22)

which is from (4.15′) with Ĥ0 acting on it.

Remark 4.5. Obviously, the results on (4.1) obtained in this section are significant for the
solution of this kind of equations, and especially, they are helpful for the discussion of
error estimation of the approximate solution.

Remark 4.6. Theorem 4.1 means σH is a bounded operator from C1,λ to C0,λ but H is
not. If we consider the operator in the Sobolev spaces Wm,2

w and Wm,2
ŵ , which are the

completions of Cm normed by

‖ f ‖m,w =
[ m∑
r=0

∫
J
w(t)

∣∣ f (r)(t)
∣∣2
dt

]1/2

,

‖ f ‖m,ŵ =
[ m∑
r=0

∫
J
ŵ(t)

∣∣ f (r)(t)
∣∣2
dt

]1/2

,

(4.23)

respectively, then H ∈�(Wm,2
w ,Wm−1,2

ŵ ) and Ĥ ∈�(Wm−1,2
ŵ ,Wm,2

w ) as well (cf. [17, 19]).

In this case, H and Ĥ are symmetrical.
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