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The differential equation u′(t) + Au(t)= f (t) (−∞ < t <∞) in a general Banach space E
with the strongly positive operator A is ill-posed in the Banach space C(E)= C(R,E) with
norm ‖ϕ‖C(E) = sup−∞<t<∞‖ϕ(t)‖E. In the present paper, the well-posedness of this equa-
tion in the Hölder space Cα(E) = Cα(R,E) with norm ‖ϕ‖Cα(E) = sup−∞<t<∞‖ϕ(t)‖E +
sup−∞<t<t+s<∞(‖ϕ(t+ s)−ϕ(t)‖E/s

α), 0 < α < 1, is established. The almost coercivity
inequality for solutions of the Rothe difference scheme in C(Rτ ,E) spaces is proved. The
well-posedness of this difference scheme in Cα(Rτ ,E) spaces is obtained.
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1. Introduction

The role played by coercivity inequalities (maximal regularity, well-posedness) in the
study of boundary value problems for parabolic and elliptic differential equations is well
known (see, e.g., [1–3]).

Coercivity inequalities approach permits to investigate the general boundary value
problems for both elliptic and parabolic differential equations.

The coercivity inequalities also hold for various difference analogues of such prob-
lems. These inequalities evidently enable us to prove not only the existence of solutions
but also the well-posedness of such problems. Main role of the coercivity inequalities for
difference problems lies in that they present a special type of stability, which allows the ex-
istence of exact, that is, two-sided estimates of rate of convergence approximate solutions
with respect to the corresponding coercivity norms.

It is quite possible that there are cases where the difference problem is well-posed,
although the differential problem is not.



2 Abstract and Applied Analysis

Well-posedness of local and nonlocal boundary value problems for abstract parabolic
differential and difference equations in Banach spaces have been studied extensively by
many researchers (see [3–21] and the references therein).

In present paper, the well-posedness of the parabolic equation is investigated. The pa-
per is organized as follows. In Section 2, the parabolic differential equation in the Ba-
nach space E is considered. The well-posedness of this equation in the Hölder space is
presented. In Section 3, the first order of accuracy Rothe difference scheme for para-
bolic differential equation is studied. The almost coercivity inequality for solutions of this
difference scheme is established. Section 4 presents the well-posedness of this difference
scheme in difference analogues of Hölder spaces.

2. Well-posedness of the parabolic differential equation

In the arbitrary Banach space E, the parabolic differential equation

du(t)
dt

+ Au(t)= f (t), −∞ < t <∞, (2.1)

is considered. Here u(t) and f (t) are unknown and given abstract functions, defined on
R=(−∞,∞) with values in E; A is a linear unbounded closed operator acting in E with
dense domain D(A)⊂ E.

A function u(t) is called a solution of the problem (2.1) if the following conditions are
satisfied:

(i) u(t) is continuously differentiable bounded on R;
(ii) The element u(t) belongs to D(A) for all t ∈R and the function Au(t) is contin-

uously bounded on R;
(iii) u(t) satisfies (2.1).

A solution of problem (2.1) defined in this manner will from now on be referred to as
a solution of problem (2.1) in the space C(E) = C(R,E) of all continuously bounded
functions ϕ(t) defined on R with values in E equipped with the norm

‖ϕ‖C(E) = sup
−∞<t<∞

∥
∥ϕ(t)

∥
∥

E. (2.2)

We say that the problem (2.1) is well-posed in C(E) if the following conditions are satis-
fied.

(1) Problem (2.1) is uniquely solvable for any f (t) ∈ C(E). This means that an ad-
ditive and homogeneous operator u(t) ≡ u(t; f (t)) acting from C(E) to C(E) is
defined and gives the solution of problem (2.1) in C(E). Moreover, the operators
(d/dt)[u(t; f (t))] and Au(t; f (t)) acting in C(E) have these properties also (see,
e.g., [10]).

(2) u(t; f (t)), regarded as an operator from C(E) to C(E), is continuous. It means
that inequality

∥
∥u
(

t; f (t)
)∥
∥
C(E) ≤M‖ f ‖C(E) (2.3)

holds for some 1≤M <∞, which does not depend on f (t)∈ C(E).
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In this paper, we will indicate with M positive constants which can be different from time
to time and we are not interested to precise. We will write M(α,β, . . .) to stress the fact
that the constant depends only on α,β, . . ..

From the well-posedness of problem (2.1) inC(E) it follows that the operator u(t; f (t))
is continuous in C(E), and the operator Au(t; f (t)) is defined on the entire space C(E).
The operator A, which acts in the Banach space E with domain D(A), generates via the
formula �u= Au(t) an operator �, which acts in the Banach space C(E) and is defined
on the functions u(t) ∈ C(E) with the property that Au(t) ∈ C(E). From the fact that
the operator A−1 exists and is bounded, it follows that the operator �−1 exists and is
bounded, and hence � is closed in C(E). As a result, the operator Au(t; f (t))=�(·, f ) is
closed in C(E). By Banach’s theorem, this operator is continuous, that is, for any f (t)∈
C(E) one has the inequality

∥
∥Au

(

t; f (t)
)∥
∥

E ≤M‖ f ‖E, (2.4)

where M does not depend f (t).
This leads us to coercivity inequality

‖u′‖C(E) +
∥
∥Au(t)

∥
∥
C(E) ≤MC‖ f ‖C(E) (2.5)

for solution of well-posed in C(E) problem (2.1) with some 1≤MC <∞, which does not
depend on f (t)∈ C(E).

It is assumed that the operator −A generates a semigroup exp{−tA} (t ≥ 0) with ex-
ponentially decreasing norm when t→ +∞, that is, the following estimates hold:

∥
∥e−tA

∥
∥

E→E ≤Me−δt. (2.6)

Now let us consider the function v(t) defined by

(2A)−1etAv if t < 0,

(2A)−1e−tAv+ te−tAv if t ≥ 0.
(2.7)

If v ∈D(A), then v(t) is the solution C(E) of (2.1) with f (t)= e−|t|Av.
For t > 0, using (2.3), (2.4), and (2.6), we get the estimate

∥
∥tAe−tAv

∥
∥

E ≤
∥
∥
(

2−1e−tA + tAe−tA
)

v
∥
∥

E +
∥
∥2−1e−tAv

∥
∥

E

≤ sup
0≤t<∞

∥
∥
(

2−1e−tA + tAe−tA
)

v
∥
∥

E +
M

2
‖v‖E

≤ sup
−∞≤t<∞

∥
∥Av(t)

∥
∥

E +
M

2
‖v‖E

≤M
∥
∥e−|t|Av

∥
∥

E +
M

2
‖v‖E ≤M1‖v‖E.

(2.8)

Since D(A) is dense in E, this implies that Ae−tA is bounded and obeys the estimate
∥
∥Ae−tA

∥
∥

E→E ≤Mt−1. (2.9)
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This means the analyticity of the semigroup e−tA for t > 0 [10]. Finally, the foregoing
argument shows that the analyticity of the semigroup e−tA is a necessary condition for
the well-posedness of problem (2.1) in C(E) [10].

Let u(t) be a solution of the problem (2.1). Then, for any −∞ < s ≤ t, we have the
identity

d

ds

(

e−(t−s)AA−1u(s)
)= e−(t−s)AA−1 f (s). (2.10)

Integrating with respect to s over the interval [x, t], we obtain

A−1u(t)− e−(t−x)AA−1u(x)=
∫ t

x
e−(t−s)AA−1 f (s)ds. (2.11)

Since A is closed, we have

u(t)= e−(t−x)Au(x) +
∫ t

x
e−(t−s)A f (s)ds. (2.12)

By the fact that the analytic semigroup e−pA has norm decaying property as p→∞,

u(t)=
∫ t

−∞
e−(t−s)A f (s)ds. (2.13)

It is easy to see that formula (2.13) defines solution of problem (2.1) in C(E), if, for
example, A f (t)∈ C(E) or f ′(t)∈ C(E). It turns out that formula (2.13) defines solution
of problem (2.1) inC(E) under essentially less restriction on smoothness of function f (t).
Finally, from (2.6), (2.9), the following estimate follow:

∥
∥Aβ

[

e−tA− e−(t+τ)A]
∥
∥

E→E ≤M
τα

tα+β (2.14)

for any 0 < t < t+ τ, 0≤ β ≤ 1, and 0≤ α≤ 1.
The well-posedness of problem (2.1) can be established on the assumption (2.6), (2.9)

if one considers this problem in the Hölder space Cα(E) = Cα(R,E), α ∈ (0,1), of all E-
valued abstract functions ϕ(t) defined on R with the norm

‖ϕ‖Cα(E) = sup
−∞<t<∞

∥
∥ϕ(t)

∥
∥

E + sup
−∞<t<t+τ<∞

∥
∥ϕ(t+ τ)−ϕ(t)

∥
∥

E

τα
. (2.15)

A function u(t) is said to be a solution of problem (2.1) in Cα(E) if it is a solution of this
problem in C(E) and the functions u′(t),Au(t)∈ Cα(E). The well-posedness in Cα(E) of
problem (2.1) means that coercivity inequality

‖u′‖Cα(E) +‖Au‖Cα(E) ≤M(α)‖ f ‖Cα(E) (2.16)

holds for its solution u(t) in Cα(E) with some 1 ≤M(α) <∞, which is independent of
f (t)∈ Cα(E).
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Theorem 2.1. The problem (2.1) is well-posed in Cα(E) and the following coercivity in-
equality:

‖u′‖Cα(E) +‖Au‖Cα(E) ≤ M

α(1−α)
‖ f ‖Cα(E) (2.17)

holds for some 1≤M <∞.

Proof. From formula (2.13), it follows that

Au(t)= f (t) +
∫ t

−∞
Ae−A(t−s)( f (s)− f (t)

)

ds. (2.18)

Let us estimate ‖Au‖C(E). Using formula (2.18), we have

∥
∥Au(t)

∥
∥

E ≤
∥
∥ f (t)

∥
∥

E +
∫ t

−∞

∥
∥Ae−A(t−s)∥∥

E→E

∥
∥ f (s)− f (t)

∥
∥

Eds. (2.19)

Using estimates (2.6), (2.9), we get

∥
∥Ae−A(t−s)∥∥

E→E ≤
∥
∥Ae−A((t−s)/2)

∥
∥

E→E

∥
∥e−A(t−s)/2∥∥

E→E ≤Me−(δ/2)(t−s) M

(t− s)/2
. (2.20)

Hence,

∥
∥Au(t)

∥
∥

E ≤ ‖ f ‖Cα(E)

{

1 +M1

∫ t

−∞
e−(δ/2)(t−s)

(t− s)1−α ds
}

(2.21)

for all t ∈R.
From the substitution u= t− s, it becomes

∫ t

−∞
e−(δ/2)(t−s)

(t− s)1−α ds=
∫∞

0

e−(δ/2)x

x1−α dx ≤
∫ 1

0

dx

x1−α +
∫∞

1
e−(δ/2)xdx. (2.22)

Hence,

∥
∥Au(t)

∥
∥
E ≤ ‖ f ‖Cα(E)

{

1 +M1

(

1
α

+
e−δ/2

δ/2

)}

= M(δ)
α

‖ f ‖Cα(E) (2.23)

for all t ∈R. So, from that it follows

‖Au‖C(E) ≤ M(δ)
α

‖ f ‖Cα(E). (2.24)
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Now, let us establish similar bound for the α-Hölder norm Hα(Au) of Au, where Hα(ϕ)
denotes sup−∞<t<t+τ<∞(‖ϕ(t+ τ)−ϕ(t)‖E/τα). For −∞ < t < t+ τ <∞, we can write

Au(t+ τ)−Au(t)= f (t+ τ)− f (t) +
∫ t+τ

t−τ
Ae−A(t+τ−s)( f (s)− f (t+ τ)

)

ds

−
∫ t

t−τ
Ae−A(t−s)( f (s)− f (t)

)

ds

−
∫ t−τ

−∞
A
[

e−A(t+τ−s)− e−A(t−s)]( f (s)− f (t)
)

ds

+
∫ t−τ

−∞
Ae−A(t+τ−s)( f (t)− f (t+ τ)

)

ds

= J1 + J2 + J3 + J4 + J5.

(2.25)

Clearly,

∥
∥ f (t+ τ)− f (t)

∥
∥

E ≤ τα‖ f ‖Cα(E) (2.26)

for all t ∈R. Then

∥
∥J1
∥
∥

E ≤ τα‖ f ‖Cα(E). (2.27)

Using estimates (2.6), (2.9), we get

∥
∥J2
∥
∥

E ≤
∫ t+τ

t−τ
M
∥
∥Ae−A(t+τ−s)∥∥

E→E

∥
∥ f (s)− f (t+ τ)

∥
∥

Eds≤M‖ f ‖Cα(E)

∫ t+τ

t−τ
1

(t+ τ − s)1−α ds.

(2.28)

The use of the substitution x = t+ τ − s gives

∫ t+τ

t−τ
1

(t+ τ − s)1−α ds=
∫ 2τ

0

1
x1−α dx =

(2τ)α

α
, (2.29)

from that it follows

∥
∥J2
∥
∥

E ≤M
(2τ)α

α
‖ f ‖Cα(E) (2.30)

for all t ∈R. In a similar manner one establishes the estimate

∥
∥J3
∥
∥

E ≤
Mτα

α
‖ f ‖Cα(E). (2.31)

Using estimate (2.14) for β = 1 and α= 1, we get

∥
∥J4
∥
∥

E ≤
∫ t−τ

−∞
M

e−δ(t−s)τ
(t− s)2

∥
∥ f (s)− f (t)

∥
∥

Eds≤M‖ f ‖Cα(E)τ
∫ t−τ

−∞
ds

(t− s)2−α =
Mτα

1−α
‖ f ‖Cα(E)

(2.32)
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for all t ∈R. Then

∥
∥J4
∥
∥

E ≤
Mτα

1−α
‖ f ‖Cα(E). (2.33)

Finally, using the formula

∫ t−τ

−∞
Ae−A(t+τ−s)ds= e−2τA, (2.34)

and estimates (2.6), (2.9), we get
∥
∥J5
∥
∥

E ≤
∥
∥e−2τA

∥
∥

E→E

∥
∥ f (t)− f (t+ τ)

∥
∥

E ≤Mτα‖ f ‖Cα(E) (2.35)

for all t ∈R. Then
∥
∥J5
∥
∥

E ≤Mτα‖ f ‖Cα(E). (2.36)

Combining all these, and using estimate (2.24), we get

‖Au‖Cα(E) ≤ M

α(1−α)
‖ f ‖Cα(E). (2.37)

By the triangle inequality, this last estimate and (2.1) yield

‖u′‖Cα(E) ≤ M

α(1−α)
‖ f ‖Cα(E). (2.38)

Theorem 2.1 is proved. �

Note that the proof of Theorem 2.1 can also be considered a new proof of a particular
case of a well-known result [21]. More precisely, if we assume that

(i)
√−1R⊂ ρ(A);

(ii) there is M ∈R+ = {z ∈R; z > 0}, such that

∀ω ∈R,
∥
∥
(√−1ω+A

)−1∥
∥

E→E ≤
(

1 + |ω|)−1
, (2.39)

then as a consequence of [21, Theorem 8.2], Theorem 2.1 can be obtained.

3. Almost coercivity inequality

The difference analogue of the differential equation (2.1)

uk −uk−1

τ
+ Auk = fk, k ∈ Z, (3.1)

will be considered. Here uk ∈ D(A) and fk ∈ E are unknown and given elements, τ is a
positive small number.

The Banach space �(Rτ ,E) of all bounded grid functions vτ = {vk}∞k=−∞ defined on
Rτ = {tk = kτ; k ∈ Z} with the norm

∥
∥υτ
∥
∥

�(Rτ ,E) = sup
−∞<k<∞

∥
∥υk
∥
∥

E (3.2)
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is introduced and the operator Dτ , acting from the space �(Rτ ,E) into the space �(Rτ ,E),
by the rule

vτ =Dτu
τ , vk = uk −uk−1

τ
, k ∈ Z, (3.3)

is defined. Then the difference equation (3.1) will be considered as operator equation

Dτu
τ + Auτ = f τ (3.4)

in the Banach space �(Rτ ,E). Here Auτ = {Auk}∞k=−∞ and f τ = { fk}∞k=−∞.
From the property (2.6), (2.9), it follows that there exists the bounded operator (I +

τA)−1, that is, the resolvent R(τA), defined on whole space E. Therefore, for every f τ ,
there exists a unique solution uτ = uτ( f τ) of the problem (3.4) and the following formula
holds:

uk =
k
∑

i=−∞
Rk−i+1(τA) fi τ,k ∈ Z. (3.5)

Let the assumption (2.6), (2.9) be satisfied. Since the semigroup e−tA obeys the exponen-
tial decay estimates (2.6), (2.9), we have that

∥
∥Rk(τA)

∥
∥

E→E ≤M(1 + τδ)−k, k ≥ 1, (3.6)

∥
∥kτARk(τA)

∥
∥

E→E ≤M, k ≥ 1. (3.7)

Actually, from the formula connecting the resolvent of the generator of a semigroup with
the semigroup (see [20]) it follows that

(I + τA)−k = 1
(k− 1)!

∫∞

0
tk−1e−te−τtAdt. (3.8)

Using this formula and (2.6), we get

∥
∥(I + τA)−k

∥
∥

E→E ≤
M

(k− 1)!

∫∞

0
tk−1e−t(1+δτ)dt =M(1 + δτ)−k. (3.9)

Estimate (3.6) is proved. For k ≥ 2 using (2.6), (2.9), (3.8) and the fact that the operator
A is closed, this yields the estimate

∥
∥A(I + τA)−k

∥
∥

E→E ≤
M

τ(k− 1)!

∫∞

0
tk−2e−tdt = M

τ(k− 1)(1 + δτ)k−1
≤ 4δM

τk(1 + δτ)k
,

(3.10)

where the last inequality results from 0≤ τ ≤ 1. Therefore, (3.7) is proved for k ≥ 2. For
k = 1, the estimate is obvious.
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From (3.6), (3.7), the following estimates follow:

∥
∥Aβ

[

Rk(τA)−Rk+m(τA)
]∥
∥

E→E ≤M
(mτ)α

(kτ)α+β (3.11)

for any 1≤ k < k+m, 0≤ α≤ 1, and 0≤ β ≤ 1.
The problem (3.4) is said to be stable in �(Rτ ,E) if we have the stability inequality

∥
∥uτ

∥
∥

�(Rτ ,E) ≤M
∥
∥ f τ

∥
∥

�(Rτ ,E), (3.12)

where M is independent not only of f τ but also of τ.

Theorem 3.1. The problem (3.4) is stable in �(Rτ ,E) norm.

The proof of Theorem 3.1 is based on formula (3.5) and estimates (3.6), (3.7).
The problem (3.4) is said to be coercively stable (well-posed) in �(Rτ ,E) if we have

the coercive stability

∥
∥Auτ

∥
∥

�(Rτ ,E) ≤M
∥
∥ f τ

∥
∥

�(Rτ ,E), (3.13)

where M is independent not only of f τ but also of τ.
Since the problem (2.1) in the space C(R,E) is not well-posed for the general posi-

tive operator A and space E, then the well-posedness of the difference problem (3.4) in
�(Rτ ,E) norm does not take place uniformly with respect to τ > 0. This means that the
coercivity norm

∥
∥uτ

∥
∥

�τ (E) =
∥
∥Auτ

∥
∥

�(Rτ ,E) +
∥
∥Dτu

τ
∥
∥

�(Rτ ,E) (3.14)

tends to ∞ as τ → 0+. The investigation of the difference problem (3.4) permits to estab-
lish the order of growth of this norm to∞.

Theorem 3.2. For the solution of the difference problem (3.4), we have the almost coercivity
inequality

∥
∥uτ

∥
∥

�τ (E) ≤Mmin
{

ln
1
τ

, 1 +
∣
∣ ln‖A‖E→E

∣
∣

}
∥
∥ f τ

∥
∥

�(Rτ ,E). (3.15)

Proof. Using formula (3.5) and the substitution m= k− i+ 1, we get

Auk =
k
∑

i=−∞
ARk−i+1(τA) fiτ =

∞
∑

m=1

ARm(τA) fk−m+1τ

=
[1/τ]
∑

m=1

ARm(τA) fk−m+1τ +
∞
∑

m=[1/τ]+1

ARm(τA) fk−m+1τ = J1 + J2,

(3.16)

where [·] stands for the integer part.
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Let us estimate J2. Using estimates (3.6), (3.7), we obtain

∥
∥J2
∥
∥

E ≤
∞
∑

m=[1/τ]+1

∥
∥AR[m/2]Rm−[m/2]

∥
∥

E→E

∥
∥ fk−m+1

∥
∥

E

≤M
∥
∥ f τ

∥
∥

�(Rτ ,E)

∞
∑

m=[1/τ]+1

1
(1 + τδ)m/2m

≤M
∥
∥ f τ

∥
∥

�(Rτ ,E)
1

[1/τ] + 1

∞
∑

m=[1/τ]+1

1
(1 + τδ)m/2

≤M(δ)
∥
∥ f τ

∥
∥

�(Rτ ,E).

(3.17)

Let us estimate J1. It is clear that

[1/τ]
∑

m=1

τ
∥
∥ARm(τA) fk−m+1

∥
∥
E ≤

[1/τ]
∑

m=1

τ
∥
∥ARm(τA)

∥
∥
E→E

∥
∥ f τ

∥
∥

�(Rτ ,E). (3.18)

By [10, Theorem 1.2, page 87],

[1/τ]
∑

m=1

τ
∥
∥ARm(τA)

∥
∥

E→E ≤Mmin
{

ln
[

1
τ

]

, 1 +
∣
∣ ln‖A‖E→E

∣
∣

}

. (3.19)

Thus,

∥
∥J1
∥
∥

E ≤Mmin
{

ln
[

1
τ

]

, 1 +
∣
∣ ln‖A‖E→E

∣
∣

}
∥
∥ f τ

∥
∥

�(Rτ ,E). (3.20)

Combining the estimates for ‖J1‖E and ‖J2‖E, we obtain

∥
∥Auk

∥
∥

E ≤Mmin
{

ln
[

1
τ

]

, 1 +
∣
∣ ln‖A‖E→E

∣
∣

}
∥
∥ f τ

∥
∥

�(Rτ ,E) (3.21)

for all k. It follows from that

∥
∥Auτ

∥
∥

�(Rτ ,E) ≤Mmin
{

ln
1
τ

, 1 +
∣
∣ ln‖A‖E→E

∣
∣

}
∥
∥ f τ

∥
∥

�(Rτ ,E). (3.22)

By the triangle inequality, this last estimate and (3.4) yield

∥
∥Dτu

τ
∥
∥

�(Rτ ,E) ≤M1 min
{

ln
1
τ

, 1 +
∣
∣ ln‖A‖E→E

∣
∣

}
∥
∥ f τ

∥
∥

�(Rτ ,E). (3.23)

Theorem 3.2 is proved. �

Finally, in the next section the theorem on the well-posedness of difference scheme
(3.1) in the difference analogy of Cα(R,E), 0 < α < 1, spaces are established.
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4. Well-posedness of difference scheme

Now, the difference equation (3.1) is considered as operator equation (3.4) in the Banach
space �α(Rτ ,E) (0 < α < 1) of grid functions ϕτ = {ϕk}∞k=−∞ with norm

∥
∥ϕτ

∥
∥

�α(Rτ ,E) =
∥
∥ϕτ

∥
∥

�(Rτ ,E) + sup
−∞<i<i+r<∞

∥
∥ϕi+r −ϕi

∥
∥

E

(rτ)α
. (4.1)

The well-posedness of (3.4) in the space �α(Rτ ,E) means that for solutions uτ of (3.4) in
�α(Rτ ,E) coercive inequality

∥
∥Dτu

τ
∥
∥

�α(Rτ ,E) +
∥
∥Auτ

∥
∥

�α(Rτ ,E) ≤MC(α)
∥
∥ f τ

∥
∥

�α(Rτ ,E) (4.2)

holds for some 1≤MC(α) <∞, which is independent of f τ and positive small number τ.

Theorem 4.1. The difference equation (3.4) is well-possed in Banach space �α(Rτ ,E) (0 <
α < 1) and for its solutions coercivity inequality

∥
∥Dτu

τ
∥
∥

�α(Rτ ,E) +
∥
∥Auτ

∥
∥

�α(Rτ ,E) ≤
M

α(1−α)

∥
∥ f τ

∥
∥

�α(Rτ ,E) (4.3)

holds for some 1≤M <∞, which does not depend on f τ ∈�α(Rτ ,E), α∈ (0,1), and posi-
tive small number τ.

Proof. Let us estimate ‖Auτ‖�(Rτ ,E). Using formula (3.5), estimates (3.6), (3.7), and the
identity

τARk−i+1 =Rk−i−Rk−i+1, (4.4)

we obtain

Auk =
k−1
∑

i=−∞
τARk−i+1(τA)

(

fi− fk
)

+ fk. (4.5)

The estimates (3.6), (3.7), (3.11), and the substitution j = k− i+ 1 will imply

∥
∥Auk

∥
∥

E ≤
k−1
∑

i=−∞

∥
∥τARk−i+1(τA)

∥
∥

E→E

∥
∥ fi− fk

∥
∥

E +
∥
∥ fk
∥
∥

E

=
∞
∑

j=2

∥
∥τAR j(τA)

∥
∥

E→E

∥
∥ fk− j+1− fk

∥
∥

E +
∥
∥ fk
∥
∥

E

≤ ∥∥ f τ∥∥�α(Rτ ,E)

( ∞
∑

j=2

Mτα

(1 + τδ) j/2 j1−α
+ 1

)

(4.6)
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for all k. Splitting the sum into two parts as j < N = [1/τ] and j ≥N , we can write

∥
∥Auk

∥
∥

E ≤
∥
∥ f τ

∥
∥

�α(Rτ ,E)

(N−1
∑

j=2

Mτα

(1 + τδ) j/2 j1−α
+

∞
∑

j=N

Mτα

(1 + τδ) j/2 j1−α
+ 1

)

= ∥∥ f τ∥∥�α(Rτ ,E)

(

S1 + S2 + 1
)

.

(4.7)

From N = [1/τ], it follows that S2 is bounded by

∞
∑

j=N

Mτ

(1 + τδ) j/2
≤M(δ). (4.8)

Next, let us estimate S1. Using the estimate Nτ ≤ 1 and

N−1
∑

j=1

Mτ

(τ j)1−α ≤
∫ 1

0

Mds

s1−α , (4.9)

we obtain

S1 ≤ M

α
. (4.10)

Therefore, from (4.8) and (4.10), it follows that for all k,

∥
∥Auk

∥
∥

E ≤
M(δ)
α

∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.11)

Hence, we obtain

∥
∥Auτ

∥
∥

�(Rτ ,E) ≤
M(δ)
α

∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.12)

Next, the estimate for the α-Hölder norm Hα(Auτ) of Auτ will be established, where

Hα
(

ϕτ
)= sup

−∞<k<k+r<∞

∥
∥ϕk+r −ϕk

∥
∥

E

(rτ)α
. (4.13)

From (4.5), it follows that

Auk+r −Auk =
k+r−1
∑

i=k−r
τARk+r−i+1(τA)

(

fi− fk+r
)−

k−1
∑

i=k−r
τARk−i+1(τA)

(

fi− fk
)

+
k−r−1
∑

i=−∞
τA
[

Rk+r−i+1(τA)−Rk−i+1(τA)
](

fi− fk
)

+
k−r−1
∑

i=−∞
τARk+r−i+1(τA)

(

fk − fk+r
)

+
(

fk+r − fk
)

= J1 + J2 + J3 + J4 + J5.

(4.14)
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Let us estimate {Jm}5
m=1 for m= 1, . . . ,5 separately. Let us estimate ‖J1‖E. Using estimates

(3.6), (3.7), and the substitution j = k+ r− i, we get

∥
∥J1
∥
∥

E ≤
k+r−1
∑

i=k−r

∥
∥τARk+r−i+1(τA)

∥
∥

E→E

∥
∥ fi− fk+r

∥
∥

E

≤M
∥
∥ f τ

∥
∥

�α(Rτ ,E)

k+r−1
∑

i=k−r

τα

(k+ r− i)1−α =M
∥
∥ f τ

∥
∥

�α(Rτ ,E)

2r
∑

j=1

τα

j1−α
.

(4.15)

It results in

∥
∥J1
∥
∥

E ≤ (rτ)α
M2α

α

∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.16)

In a similar manner, we can show that

∥
∥J2
∥
∥

E ≤ (rτ)α
M

α

∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.17)

Now, let us estimate ‖J3‖E. Using the estimate (3.11) for α= 1 and β = 1, we obtain

∥
∥J3
∥
∥

E ≤
k−r−1
∑

i=−∞

∥
∥τA

[

Rk+r−i+1(τA)−Rk−i+1(τA)
]∥
∥

E→E

∥
∥ fi− fk

∥
∥

E

≤M
∥
∥ f τ

∥
∥

�α(Rτ ,E)

k−r−1
∑

i=−∞

rτα

(k− i+ 1)2−α .

(4.18)

The substitution j = k− i+ 1 gives

∥
∥J3
∥
∥

E ≤M
∥
∥ f τ

∥
∥

�α(Rτ ,E)

∞
∑

j=r+2

rτα

j2−α
≤ (rτ)αM1

∥
∥ f τ

∥
∥

�α(Rτ ,E)
1

(1−α)
(4.19)

for all k. Thus, we have

∥
∥J3
∥
∥

E ≤ (rτ)α
M1

1−α

∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.20)

Next, let us establish an estimate for ‖J4‖E. Using estimates (3.6), (3.7), and the identity
(4.4), we get

J4 =R2r+1(τA)
(

fk − fk+r
)

. (4.21)

From estimates (3.6), (3.7), it follows

∥
∥J4
∥
∥

E ≤
∥
∥R2r+1(τA)

∥
∥

E→E

∥
∥ fk − fk+r

∥
∥

E ≤M(rτ)α
∥
∥ f τ

∥
∥

�α(Rτ ,E) (4.22)

for all k. Then

∥
∥J4
∥
∥

E ≤M(rτ)α
∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.23)
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Combining all the estimates for {Jm}5
m=1, we get

Hα
(

Auτ
)≤ M2

(1−α)α

∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.24)

Using estimates (4.12) and (4.24), we get

∥
∥Auτ

∥
∥

�α(Rτ ,E) ≤
M2

(1−α)α

∥
∥ f τ

∥
∥

�α(Rτ ,E). (4.25)

Then estimate

∥
∥Dτu

τ
∥
∥

�α(Rτ ,E) ≤
M2

(1−α)α

∥
∥ f τ

∥
∥

�α(Rτ ,E) (4.26)

follows from the triangle inequality, estimate (4.25), and (3.4).
This finishes the proof of Theorem 4.1. �

Note that for any 0 < α < 1 the norms in the spaces Eα(�(Rτ),Dτ + Iτ) and �α(Rτ)
are equivalent uniformly in τ (see [9, 22]). Here, Eα = Eα(E,B) (0 < α < 1) denotes the
Banach space of all v ∈ E for which the following norm is finite:

‖v‖Eα = sup
λ>0

λα
∥
∥B(λ+ B)−1v

∥
∥

E. (4.27)

Then the application of Grisvard’s theory also permits to establish the well-posedness
of difference problem (3.4) in �α(Rτ ,E) and to obtain the following coercivity inequality:

∥
∥Dτu

τ
∥
∥

�α(Rτ ,E) +
∥
∥Auτ

∥
∥

�α(Rτ ,E) ≤
M

α2(1−α)

∥
∥ f τ

∥
∥

�α(Rτ ,E) (4.28)

for some 1 ≤M <∞, which does not depend on f τ ∈�α(Rτ ,E), α ∈ (0,1) and positive
small number τ.

If the coercive stability estimates of Theorem 4.1 and the passing to the limit for τ → 0+

are considered, one can recover Theorem 2.1 on the well-posedness of the problem (2.1)
in Cα(E), 0 < α < 1, spaces.

Of course, well-posedness and almost coercivity inequality could be also established
for the more general Padé difference schemes of the high order of accuracy (see [18, 19]).
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