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The concept of linking was developed to produce Palais-Smale (PS) sequencesG(uk)→ a,
G′(uk)→ 0 for C1functionals G that separate linking sets. These sequences produce criti-
cal points if they have convergent subsequences (i.e., ifG satisfies the PS condition). In the
past, we have shown that PS sequences can be obtained even when linking does not exist.
We now show that such situations produce more useful sequences. They not only produce
PS sequences, but also Cerami sequences satisfying G(uk)→ a, (1 + ||uk||)G′(uk)→ 0 as
well. A Cerami sequence can produce a critical point even when a PS sequence does not.
In this situation, it is no longer necessary to show that G satisfies the PS condition, but
only that it satisfies the easier Cerami condition (i.e., that Cerami sequences have conver-
gent subsequences). We provide examples and applications. We also give generalizations
to situations when the separating criterion is violated.

Copyright © 2007 Martin Schechter. This is an open access article distributed under the
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1. Introduction

An important approach to critical point theory involves the concept of linking. Ideally,
one would like to know that if A, B are subsets of a Banach space E and G is a C1-
functional on E such that

a0 := sup
A
G≤ b0 := inf

B
G, (1.1)

then G has a critical point, that is, a point u∈ E such that G′(u)= 0. Clearly, this cannot
be true for arbitrary subsets A, B. However, there are pairs of subsets such that (1.1)
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produces a Palais-Smale PS sequence, a sequence of the form

G
(
uk
)−→ a, G′

(
uk
)−→ 0, (1.2)

where a≥ b0. Such a sequence may not produce a critical point, but if it has a convergent
subsequence, then it does. If every PS sequence for G has a convergent subsequence, then
we say thatG satisfies the PS condition. IfA, B are such that (1.1) always produces a Palais-
Smale sequence, we say that A links B. Consequently, if A links B andG is a C1-functional
on E which satisfies (1.1) and the PS condition, then G has a critical point.

Sufficient conditions for A to link B are found in the literature (cf., e.g., [1–10] and the
references quoted there in). The most comprehensive criteria are given in [7, 10].

There are situations in which a Palais-Smale sequence does not lead to a critical point,
but a sequence of the form

G
(
uk
)−→ a,

(
1 +

∥
∥uk

∥
∥)G′

(
uk
)−→ 0 (1.3)

does. Such a sequence was first introduced by Cerami [11]. In the first part of the present
paper, we show that (1.1) always produces a Cerami sequence whenever A links B in the
sense of [10]. Thus, it is not necessary to check if G satisfies the PS condition, but only
that it satisfies the Cerami condition, that is, that every sequence of the form (1.3) has a
convergent subsequence.

In the second part of the paper, we show that Cerami-type sequences can be produced
even when the sets do not link or (1.1) is violated. Finally, we present some applications
in which a Cerami sequence produces a critical point, while a PS sequence does not.

2. Linking

Let E be a Banach space, and let Φ be the set of all continuous maps Γ = Γ(t) from E×
[0,1] to E such that

(1) Γ(0)= I , the identity map;
(2) for each t ∈ [0,1), Γ(t) is a homeomorphism of E onto E and Γ−1(t) ∈ C(E×

[0,1),E);
(3) Γ(1)E is a single point in E and Γ(t)A converges uniformly to Γ(1)E as t→ 1 for

each bounded set A⊂ E;
(4) for each t0 ∈ [0,1) and each bounded set A⊂ E,

sup
0≤t≤t0,u∈A

{∥∥Γ(t)u
∥
∥+

∥
∥Γ−1(t)u

∥
∥} <∞. (2.1)

We make the following.

Definition 2.1. For A,B ⊂ E, say that A links B if
(a) A∩B = φ,
(b) for each Γ∈Φ, there is a t ∈ (0,1] such that

Γ(t)A∩B 
= φ. (2.2)

Roughly speaking, this says that A links B if it cannot be slipped away from B by one of
the mappings Γ∈Φ. The importance of this concept begins to appear in the following.
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Theorem 2.2. Let G be a C1-functional on E, and let A, B be subsets of E such that A links
B and

a0 := sup
A
G≤ b0 := inf

B
G. (2.3)

Assume that

a := inf
Γ∈Φ

sup
0≤s≤1,u∈A

G
(
Γ(s)u

)
(2.4)

is finite. Let ψ(t) be a positive, nonincreasing, locally Lipschitz continuous function on [0,∞)
such that

∫∞

0
ψ(r)dr =∞. (2.5)

Then there is a sequence {uk} ⊂ E such that

G
(
uk
)−→ a,

G′
(
uk
)

ψ
(∥∥uk

∥
∥) −→ 0. (2.6)

Corollary 2.3. Under the hypotheses of Theorem 2.2, there is a sequence {uk} ⊂ E such
that

G
(
uk
)−→ a,

(
1 +

∥
∥uk

∥
∥)G′

(
uk
)−→ 0. (2.7)

Proof. We merely take

ψ(r)= 1
1 + r

(2.8)

in Theorem 2.2. �

Remark 2.4. A sequence satisfying (2.7) is said to be a Cerami sequence. If a functional
G has the property that every Cerami sequence for it has a convergent subsequence, it
is said to satisfy the Cerami condition. Thus, if a functional satisfies the hypotheses of
Theorem 2.2 and the Cerami condition, then it has a critical point satisfying

G(u)= a, G′(u)= 0. (2.9)

It is easier to verify the Cerami condition than the PS condition.

Theorem 2.2 was proved in [12] for the case when the set A is bounded. Here, that
hypothesis is removed.

We now give some consequences of Theorem 2.2.

Theorem 2.5. LetG be aC1-functional on E and letA be a subset of E such that the quantity
a given by (2.4) is finite. Assume that for each Γ∈Φ, the set

gΓ := {v = Γ(s)u : s∈ (0,1], u∈ A, v /∈A, G(v)≥ a0
}

(2.10)

is not empty. Then there is a sequence satisfying (2.6).
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Proof. Let

B =
⋃

Γ∈Φ
gΓ. (2.11)

Then A∩B = φ, and for each Γ∈Φ, there are a v ∈ B, an s∈ (0,1], and a u∈ A such that
v = Γ(s)u. Thus Γ(s)A∩B 
= φ. This means that A links B. Since a0 ≤ G(v) for all v ∈ B,
we have a0 ≤ b0. We can now apply Theorem 2.2 to conclude that a sequence satisfying
(2.6) exists. �

Corollary 2.6. If a <∞ and a0 
= a, then a sequence satisfying (2.6) exists.

Proof. If a0 < a, then for each Γ∈Φ, there are a u∈ A, s∈ (0,1] such that G(Γ(s)u) > a0.
Clearly v = Γ(s)u /∈ A. Thus the set gΓ given by (2.10) is not empty. We can now apply
Theorem 2.5. �

Theorem 2.7. There is a B ⊂ E such that A links B and a0 ≤ b0 if and only if the set gΓ
defined by (2.10) is not empty for each Γ∈Φ.

Proof. If the sets gΓ are not empty, then B given by (2.11) has the required properties, as
was shown in the proof of Theorem 2.5. On the other hand, if gΓ = φ for some Γ ∈ Φ,
then for every set B such that A∩B = φ and a0 ≤ b0, we must have Γ(s)A∩B = φ for all
s∈ [0,1]. Thus A cannot link B. �

3. Weaker conditions

We now turn to the question as to what happens if some of the hypotheses of Theorem 2.2
do not hold. We are particularly interested in what happens when (2.3) is violated. In this
case, we let

B′ := {v ∈ B :G(v) < a0
}
. (3.1)

Note that

B′ = φ iff a0 ≤ b0. (3.2)

Let ψ(t) be a positive nonincreasing function on [0,∞) satisfying the hypotheses of The-
orem 2.2 and such that

a0− b0 <
∫ R+α

α
ψ(t)dt (3.3)

for some finite R ≤ d′ := d(B′,A), where α = d(0,A). If B′ = φ, we take d′ = ∞. We as-
sume that d′ > 0. We have the following.

Theorem 3.1. Let G be a C1-functional on E and let A,B ⊂ E be such that A links B and

−∞ < b0, a <∞. (3.4)

Under the hypotheses given above, for each δ > 0, there is a u∈ E such that

b0− δ ≤G(u)≤ a+ δ,
∥
∥G′(u)

∥
∥ < ψ

(
d(u,A)

)
. (3.5)
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We can also consider a slightly different version of Theorem 3.1. We consider the set

A′′ := {u∈ A :G(u) > b0
}

, (3.6)

and we note that A′′ = φ if and only if a0 ≤ b0. We assume that ψ satisfies the hypotheses
of Theorem 2.2 and

a0− b0 <
∫ R+β

β
ψ(t)dt (3.7)

holds for some finite R≤ d′′ := d(A′′,B), where β = d(0,B). We have the following.

Theorem 3.2. If A links B and

−∞ < b0, a <∞ (3.8)

holds then for each δ > 0, there is a u∈ E such that

b0− δ ≤G(u)≤ a+ δ,
∥
∥G′(u)

∥
∥ < ψ

(
d(u,B)

)
. (3.9)

4. Some consequences

We now discuss some methods which follow from Theorems 3.1 and 3.2. Let {Ak,Bk} be
a sequence of pairs of subsets of E such that Ak links Bk for each k. For G∈ C1(E,R), let

ak0 = sup
Ak

G, bk0 = inf
Bk
G,

ak = inf
Γ∈Φ

sup
0≤s≤1,u∈Ak

G
(
Γ(s)u

)
.

(4.1)

We assume that ak <∞ for each k. We define

B′k := {v ∈ Bk :G(v) < ak0
}

,

A′′k := {u∈Ak :G(u) > bk0
}

,

d′k := d(Ak,B′k
)
, d′′k := d(A′′k ,Bk

)
.

(4.2)

We have the following.

Theorem 4.1. Assume that

d′k −→∞ as k −→∞, (4.3)

and for each k there is a positive nonincreasing function ψk(t) on [0,∞) satisfting the hy-
potheses of Theorem 2.2 and such that

(
ak0− bk0

)
<
∫ Rk+αk

αk
ψk(t)dt, (4.4)
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where αk = d(0,Ak) and Rk ≤ d′k. Then there is a sequence {uk} ⊂ E such that

bk0−
(

1
k

)
≤G(uk

)≤ ak +
(

1
k

)
,

∥
∥G′

(
uk
)∥∥≤ ψk

(
d
(
uk,Ak

))
.

(4.5)

Theorem 4.2. Assume that

d′′k −→∞ as k −→∞ (4.6)

and that for each k there is a positive nonincreasing function ψk(t) on [0,∞) satisfying the
hypotheses of Theorem 2.2 and such that

(
ak0− bk0

)
<
∫ Rk+βk

βk
ψk(t)dt, (4.7)

where βk = d(0,Bk) and Rk ≤ d′′k . Then there is a sequence {uk} ⊂ E such that

bk0−
(

1
k

)
≤G(uk

)≤ ak +
(

1
k

)
,

∥
∥G′

(
uk
)∥∥≤ ψk

(
d
(
uk,Bk

))
.

(4.8)

We combine the proofs of Theorems 4.1 and 4.2.

Proof. For each k, take Rk equal to d′k or d′′k , as the case may be. We may assume that bk0 <
ak0 for each k. Otherwise, the conclusions of the theorems follow from Corollary 2.6. We
can now apply Theorems 3.1 and 3.2 for each k to conclude that there is a uk ∈ E such
that

bk0−
(

1
k

)
≤G(uk

)≤ ak +
(

1
k

)
, (4.9)

and either

∥
∥G′

(
uk
)∥∥ < ψk

(
d
(
uk,Ak

))
(4.10)

or

∥
∥G′

(
uk
)∥∥ < ψk

(
d
(
uk,Bk

))
(4.11)

as the case may be. �

Corollary 4.3. In Theorem 4.1, assume that

bk0 ≥m0 >−∞, ak0 ≤m1 <∞ (4.12)

in place of (4.4). Then there is a sequence {uk} ⊂ E such that

G
(
uk
)−→ c, m0 ≤ c ≤m1, G′

(
uk
)≤ ψk

(
d
(
uk,Ak

))
. (4.13)
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Proof. If there is a k such that ak 
= ak0, then we can apply Corollary 2.6 to find a sequence
{uj} ⊂ E such that

G
(
uj
)−→ ak, G′

(
uj
)≤ ψk

(
d
(
uk,Ak

))
. (4.14)

Since bk0 ≤ ak, this provides the desired sequence. If no such k exists, then ak = ak0 for
each k. Then by Theorem 4.1, there is a sequence satisfying

m0−
(

1
k

)
≤G(uk

)≤m1 +
(

1
k

)
, G′

(
uk
)≤ ψk

(
d
(
uk,Ak

))
, (4.15)

from which we obtain (4.13). �

Corollary 4.4. In Theorem 4.2, assume (4.12) in place of (4.4). Then there is a sequence
satisfying

G
(
uk
)−→ c, m0 ≤ c ≤m1, G′

(
uk
)≤ ψk

(
d
(
uk,Bk

))
. (4.16)

Proof. We apply the same reasoning as in the proof of Corollary 4.3. We obtain a sequence
satisfying

m0−
(

1
k

)
≤G(uk

)≤m1 +
(

1
k

)
, G′

(
uk
)≤ ψk

(
d
(
uk,Bk

))
, (4.17)

and this produces a sequence satisfying (4.16). �

5. Various geometries

We now apply the theorems of the preceding sections to various geometries in Banach
space. As before, we assume that G ∈ C1(E,R) and that ψ satisfies the hypotheses of
Theorem 2.2.

Theorem 5.1. Assume that there is a δ > 0 such that

G(0)≤ α≤G(u), u∈ ∂Bδ , (5.1)

and that there is a ϕ0 ∈ ∂B1 such that

G
(
Rϕ0

)≤ γ, R > R0. (5.2)

Then there is a sequence {uk} ⊂ E such that

G
(
uk
)−→ c, α≤ c ≤ γ,

G′
(
uk
)

ψ
(∥∥uk

∥
∥) −→ 0. (5.3)

Proof. We take A = {0,Rϕ0}, B = ∂Bδ . Then A′′ = {Rϕ0}. Note that a given by (2.4) is
finite for each R since

aR ≤ max
0≤r≤R

G
(
rϕ0

)
. (5.4)
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We apply Theorem 4.2. We note that in each case,

aR ≤ γ, R > R0. (5.5)

In each case, the mapping

Γ(s)u= su (5.6)

(which is in Φ) satisfies

G
(
Γ(s)u

)≤ γ, 0≤ s≤ 1, u∈ A. (5.7)

This implies (5.5). We replace ψ(t) with ψ̃(t)= ψ(t+ δ), which also satisfies the hypothe-
ses of Theorem 2.2. By Theorem 4.2, we can find a sequence satisfying

α−
(

1
k

)
≤G(uk

)≤ γ+
(

1
k

)
,

G′
(
uk
)

ψ̃
(
d
(
uk,B

)) −→ 0. (5.8)

This implies (5.3) since

‖u‖ ≤ d(u,B) + δ. (5.9)

�

Theorem 5.2. Let M, N be closed subspaces of E such that

E =M⊕N , M 
= E, N 
= E (5.10)

with

dimM <∞ or dimN <∞. (5.11)

Let G∈ C1(E,R) be such that

G(v)≤ γ, v ∈ ∂BR∩N , R > R0,

G(w)≥ α, w ∈M. (5.12)

Then there is a sequence {uk} ⊂ E such that

G
(
uk
)−→ c, α≤ c ≤ γ,

G′
(
uk
)

ψ
(
d
(
uk,M

)) −→ 0. (5.13)

Proof. This time, we take A and B as in [7, Section 2.6, Example 2]. Thus A links B. Again
aR given by (2.4) is finite for each R since

aR ≤ max
u∈BR∩N

G(u). (5.14)

Again we see that we can apply Theorem 4.2 to conclude that the desired sequence exists.
�
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Theorem 5.3. Let M, N be as in Theorem 5.2, and let G∈ C1(E,R) satisfy

G(v)≤ α, v ∈N ,

G(w)≥ α, w ∈ ∂Bδ ∩M,

G
(
sw0 + v

)≤ γ, s≥ 0, v ∈N ,
∥
∥sw0 + v

∥
∥= R > R0,

(5.15)

for some w0 ∈ ∂B1∩M, where 0 < δ < R0. Then there is a sequence {uk} ⊂ E such that (5.3)
holds.

Proof. Here we take A, B as in [7, Section 2.6, Example 3]. Thus A and B link each other.
Here

A′′ = {sw0 + v : s≥ 0, v ∈N ,
∥
∥sw0 + v

∥
∥= R}. (5.16)

Again for each R, the quantity a given by (2.4) is finite since

aR ≤max
Q

G, (5.17)

where

Q = {sw0 + v : s≥ 0, v ∈N ,
∥
∥sw0 + v

∥
∥≤ R}. (5.18)

We now apply Theorem 4.2 to conclude that the desired sequence exists. �

Theorem 5.4. Let M, N be as in Theorem 5.2, and let v0 ∈ ∂B1∩N . Take N = {v0}⊕N ′.
Let G∈ C1(E,R) be such that

G(v)≤ γ, v ∈ ∂BR∩N ,

G(w)≥ α, w ∈M, ‖w‖ ≥ δ,

G
(
sv0 +w

)≥ α, s≥ 0, w ∈M,
∥
∥sv0 +w

∥
∥= δ,

(5.19)

where 0 < δ < R. Then there is a sequence satisfying (5.3).

Proof. We take A, B as in [7, Section 2.6, Example 5]. Thus A links B. As before, we note
that aR <∞ for each R. Hence (5.3) holds for some sequence by Theorem 4.2. �

6. Some applications

Many elliptic semilinear problems can be described in the following way. Let Ω be a do-
main in Rn, and let A be a selfadjoint operator on L2(Ω). We assume that A≥ λ0 > 0 and
that

C∞0 (Ω)⊂D :=D(A1/2)⊂Hm,2(Ω) (6.1)

for some m> 0, where C∞0 (Ω) denotes the set of test functions in Ω (i.e., infinitely differ-
entiable functions with compact supports in Ω), and Hm,2(Ω) denotes the Sobolev space.
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If m is an integer, the norm in Hm,2(Ω) is given by

‖u‖m,2 :=
(
∑

|μ|≤m

∥
∥Dμu

∥
∥2
)1/2

. (6.2)

Here Dμ represents the generic derivative of order |μ| and the norm on the right-hand
side of (6.2) is that of L2(Ω). We will not assume that m is an integer.

Let q be any number satisfying

2≤ q
⎧
⎪⎨

⎪⎩

≤ 2n
n− 2m

, 2m< n,

<∞, n≤ 2m,
(6.3)

and let f (x, t) be a Carathéodory function on Ω×R. This means that f (x, t) is contin-
uous in t for a.e. x ∈ Ω and measurable in x for every t ∈ R. We make the following
assumptions.

(A) The function f (x, t) satisfies
∣
∣ f (x, t)

∣
∣≤V0(x)q|t|q−1 +V0(x)W0(x),

f (x, t)
V0(x)q

= o(|t|q−1) as |t| −→∞,
(6.4)

where V0(x) > 0 is a function in Lq(Ω) such that
∥
∥V0u

∥
∥
q ≤ C‖u‖D, u∈D, (6.5)

and W0 is a function in Lq
′
(Ω). Here

‖u‖q :=
(∫

Ω

∣
∣u(x)

∣
∣qdx

)1/q

, (6.6)

‖u‖D := ∥∥A1/2u
∥
∥, (6.7)

and q′ = q/(q− 1). If Ω and V0(x) are bounded, then (6.5) will hold automatically by the
Sobolev inequality. However, there are functions V0(x) which are unbounded and such
that (6.5) holds even on unbounded regions Ω. With the norm (6.7),D becomes a Hilbert
space. Define

F(x, t) :=
∫ t

0
f (x,s)ds,

G(u) := ‖u‖2
D − 2

∫

Ω
F(x,u)dx.

(6.8)

It follows that G is a continuously differentiable functional on the whole of D (cf., e.g.,
[7]).

We assume further that

H(x, t)= 2F(x, t)− t f (x, t)≥−W1(x)∈ L1(Ω), x ∈Ω, t ∈R, (6.9)

H(x, t)−→∞ a.e. as |t| −→∞. (6.10)
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Moreover, we assume that there are functions V(x),W(x)∈ L2(Ω) such that multiplica-
tion by V(x) is a compact operator from D to L2(Ω) and

F(x, t)≤ C(V(x)2|t|2 +V(x)W(x)|t|). (6.11)

We wish to obtain a solution of

Au= f (x,u), u∈D. (6.12)

By a solution of (6.12), we will mean a function u∈D such that

(u,v)D =
(
f (·,u),v

)
, v ∈D. (6.13)

If f (x,u) is in L2(Ω), then a solution of (6.13) is in D(A) and solves (6.12) in the classical
sense. Otherwise, we call it a weak (or semistrong) solution. We have the following.

Theorem 6.1. Let A be a selfadjoint operator in L2(Ω) such that A≥ λ0 > 0 and (6.1) holds
for some m > 0. Assume that λ0 is an eigenvalue of A with eigenfunction ϕ0. Assume also
that

2F(x, t)≤ λ0t
2, |t| ≤ δ for some δ > 0, (6.14)

2F(x, t)≥ λ0t
2−W0(x), t > 0, x ∈Ω, (6.15)

where W0 ∈ L1(Ω). Assume that f (x, t) is a Carathéodory function on Ω×R satisfying
(6.4). Then (6.12) has a solution u 
= 0.

Proof. Under the hypotheses of the theorem, it was shown in [7, Theorem 3.2.1] that the
following alternative holds.

Either
(a) there are an infinite number of y(x)∈D(A) \ {0} such that

Ay = f (x, y)= λ0y, (6.16)

or
(b) for each ρ > 0 sufficiently small, there is an ε > 0 such that

G(u)≥ ε, ‖u‖D = ρ. (6.17)

We may assume that option (b) holds, for otherwise we are done. By (6.15), we have

G
(
Rϕ0

)≤ R2
(∥
∥ϕ0

∥
∥2
D − λ0

∥
∥ϕ0

∥
∥2
)

+
∫

Ω
W0(x)dx =

∫

Ω
W0(x)dx. (6.18)

Thus (5.2) holds. By Theorem 5.1, there is a sequence satisfying (5.3). Taking ψ(r) =
1/(r + 1), we conclude that there is a sequence {uk} ⊂D such that

G
(
uk
)−→ c, m0 ≤ c ≤m1,

(
1 +

∥
∥uk

∥
∥
D

)
G′
(
uk
)−→ 0. (6.19)
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In particular, we have

∥
∥uk

∥
∥2
D − 2

∫

Ω
F
(
x,uk

)
dx −→ c, (6.20)

∥
∥uk

∥
∥2
D −

(
f
(·,xk

)
,uk
)−→ 0. (6.21)

Consequently,
∫

Ω
H
(
x,uk

)
dx −→−c. (6.22)

These imply
∫

Ω
H
(
x,uk

)
dx ≤ K. (6.23)

If ρk = ‖uk‖D →∞, let ũk = uk/ρk. Then ‖ũk‖D = 1. Consequently there is a renamed
subsequence such that ũk → ũ weakly in D, strongly in L2(Ω), and a.e. in Ω. We have by
(6.11) that

1≤ m1 + δ
ρ2
k

+ 2C
∫

Ω

{
V(x)2ũ2

k +V(x)W(x)
∣
∣ũk

∣
∣ρ−1

k

}
dx. (6.24)

Consequently,

1≤ 2C
∫

Ω
V(x)2ũ2dx. (6.25)

This shows that ũ 
≡ 0. Let Ω0 be the subset of Ω on which ũ 
= 0. Then

∣
∣uk(x)

∣
∣= ρk

∣
∣ũk(x)

∣
∣−→∞, x ∈Ω0. (6.26)

If Ω1 =Ω \Ω0, then we have
∫

Ω
H
(
x,uk

)
dx =

∫

Ω0

+
∫

Ω1

≥
∫

Ω0

H
(
x,uk

)
dx−

∫

Ω1

W1(x)dx −→∞. (6.27)

This contradicts (6.23), and we see that ρk = ‖uk‖D is bounded. Once we know that the
ρk are bounded, we can apply [7, Theorem 3.4.1] to obtain the desired conclusion. �

Remark 6.2. It should be noted that the crucial element in the proof of Theorem 6.1 was
(6.21). If we had been dealing with an ordinary Palais-Smale sequence, we could only
conclude that

∥
∥uk

∥
∥2
D −

(
f
(·,uk

)
,uk
)= o(ρk

)
, (6.28)

which would imply only that
∫

Ω
H
(
x,uk

)
dx = o(ρk

)
. (6.29)

This would not contradict (6.27), and the argument would not go through.
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Theorem 6.3. Assume that the spectrum of A consists of isolated eigenvalues of finite mul-
tiplicity

0 < λ0 < λ1 < ··· < λk < ··· , (6.30)

and let  be a nonnegative integer. TakeN to be the subspace of D spanned by the eigenspaces
of A corresponding to the eigenvalues λ0,λ1, . . . ,λ . Take M =N⊥ ∩D. Assume that there are
numbers a1, a2 such that α < a1 ≤ a2 and

a1
(
t−
)2

+ γ
(
a1
)(
t+
)2−W1(x)≤ 2F(x, t)

≤ a2
(
t−
)2

+Γ
(
a2
)(
t+
)2

+W2(x), x ∈Ω, t ∈R,
(6.31)

where

α :=max
{

(Av,v) : v ∈N , v ≥ 0, ‖v‖ = 1
}

, (6.32)

the Wj are in L1(Ω), and the functions γ(a), Γ(a) are defined by

γ(a) :=max
{

(Av,v)− a∥∥v−∥∥2
: v ∈N ,

∥
∥v+

∥
∥= 1

}
, (6.33)

Γ(a) := inf
{

(Aw,w)− a∥∥w−∥∥2
:w ∈M,

∥
∥w+

∥
∥= 1

}
, (6.34)

where u± =max{±u,0}. Assume that (6.9) and (6.10) hold. Then (6.12) has at least one
solution.

Proof. First, we note that

sup
N
G≤ B1, inf

M
G≥−B2, Bj =

∫

Ω
Wj(x)dx. (6.35)

To see this, note that by (6.33), we have

‖v‖2
D ≤ a1

∥
∥v−

∥
∥2

+ γ
(
a1
)∥∥v+

∥
∥2

, v ∈N. (6.36)

By (6.34) we have

a2
∥
∥w−

∥
∥2

+Γ
(
a2
)∥∥w+

∥
∥2 ≤ ‖w‖2

D, w ∈M, (6.37)

Hence

G(v)≤ B1, v ∈N ,

G(w)≥−B2, w ∈M (6.38)

by (6.31).
Moreover, (6.10) implies that

G(v)−→−∞ as ‖v‖ −→∞, v ∈N. (6.39)
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To see this, we fix x ∈Ω, K ∈R and take T so large that

H(x, t)≥ K , |t| ≥ T. (6.40)

Since

∂
(
t−2F(x, t)

)

∂t
=−t−3H(x, t), (6.41)

we have for T < t1 < t2 that

t−2
2 F

(
x, t2

)− t−2
1 F

(
x, t1

)≤ K
(
t−2
2 − t−2

1

)

2
. (6.42)

Consequently,

t−2
2

[
2F
(
x, t2

)−K]≤ t−2
1

[
2F
(
x, t1

)−K]. (6.43)

Thus,

[
2F(x, t)−K]

t2
(6.44)

is a monotone nonincreasing function in t for t > T . By (6.31), it is bounded below by

γ
(
a1
)−

[
W1(x) +K

]

t2
−→ γ

(
a1
)
. (6.45)

Thus,

[
2F(x, t)−K]

t2
−→ h(x)≥ γ

(
a1
)

a.e. as t −→∞. (6.46)

This implies that

K ≤ 2F(x, t)− γ
(
a1
)
t2. (6.47)

Since K was arbitrary, we have

2F(x, t)− γ
(
a1
)
t2 −→∞ a.e. as t −→∞. (6.48)

On the other hand, if t1 < t2 <−T , then

t−2
2 F

(
x, t2

)− t−2
1 F

(
x, t1

)≥ K
(
t−2
2 − t−2

1

)

2
. (6.49)

Consequently, function (6.44) is monotone nonincreasing in t for t < −T . In view of
(6.31), this implies that

2F(x, t)− a1t
2 −→∞ a.e. as t −→−∞. (6.50)
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Combining (6.48) and (6.50), we have

2F(x, t)− a1
(
t−
)2− γ

(
a1
)(
t+
)2 −→∞ a.e. as |t| −→∞. (6.51)

Now

G(v)= ‖v‖2
D − a1

∥
∥v−

∥
∥2− γ

(
a1
)∥∥v+

∥
∥2−

∫

Ω
L(x,v)dx, (6.52)

where L(x, t) is the left-hand side of (6.51). In view of (6.33), we have

G(v)≤−
∫

Ω
L(x,v)dx, v ∈N. (6.53)

Let {vk} ⊂N be such that ρk = ‖vk‖D →∞. Take ṽk = vk/ρk. Then ‖ṽk‖D = 1, and conse-
quently there is a renamed subsequence such that ṽk → ṽ strongly in N . Thus ‖ṽ‖D = 1
showing that ṽ 
≡ 0. Let Ω1 be the set on which ṽ 
= 0 and let Ω2 =Ω \Ω1. Then

G
(
vk
)≤−

∫

Ω1

L
(
x,vk

)
dx−

∫

Ω2

W1(x)dx −→−∞ (6.54)

since

−W1(x)≤ L(x, t)−→∞ a.e. as |t| −→∞, (6.55)

and |vk(x)| = ρk|ṽk(x)| → ∞ for x ∈Ω1. Since this is true for any such sequence, (6.39)
follows.

Take R so large that

G(v)≤−B2, v ∈N ∩ ∂BR. (6.56)

Since N ∩ ∂BR links M, we have by Corollary 2.3 that there are a constant c ∈ R and a
sequence {uk} ⊂ E such that

G
(
uk
)−→ c, −B2 ≤ c ≤ B1,

(
1 +

∥
∥uk

∥
∥)G′

(
uk
)−→ 0. (6.57)

We can now follow the proof of Theorem 6.1 to conclude that (6.20)–(6.27) hold to com-
plete the proof. �

We also have the following.

Theorem 6.4. The conclusion of Theorem 6.3 holds if in place of (6.9), (6.10), one assumes
that

H(x, t)≤W1(x)∈ L1(Ω), x ∈Ω, t ∈R, (6.58)

H(x, t)−→−∞ a.e. as |t| −→∞. (6.59)

Proof. We use (6.58) and (6.59) to replace (6.39) with

G(w)−→∞ as ‖w‖ −→∞, w ∈M. (6.60)

We then proceed as before. �
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Remark 6.5. We could have assumed

a1 ≤ liminf
t→−∞

2F(x, t)
t2

≤ limsup
t→−∞

2F(x, t)
t2

≤ a2,

γ
(
a1
)≤ liminf

t→∞
2F(x, t)
t2

≤ limsup
t→∞

2F(x, t)
t2

≤ Γ
(
a2
)

(6.61)

in place of (6.31).

Remark 6.6. The above theorems apply to the equation

Au=−Δu+ a(x)u= f (x,u), x ∈Rn, (6.62)

where a(x)≥ c0 > 0 and A has compact resolvent. We do not need to restrict the sizes of
a(x) or V(x). The limits (6.10) or (6.59) need only hold on a subset of Ω with positive
measure.

7. Ordinary differential equations

In proving Theorem 2.2, we will make use of various extensions of Picard’s theorem in a
Banach space. Some are well known (cf., e.g., [13]).

Theorem 7.1. Let X be a Banach space, and let

B0 =
{
x ∈ X :

∥
∥x− x0

∥
∥≤ R0

}
,

I0 =
{
t ∈R :

∣
∣t− t0

∣
∣≤ T0

}
.

(7.1)

Assume that g(t,x) is a continuous map of I0×B0 into X such that

∥
∥g(t,x)− g(t, y)

∥
∥≤ K0‖x− y‖, x, y ∈ B0, t ∈ I0,

∥
∥g(t,x)

∥
∥≤M0, x ∈ B0, t ∈ I0.

(7.2)

Let T1 be such that

T1 ≤min
(
T0,

R0

M0

)
, K0T1 < 1. (7.3)

Then there is a unique solution x(t) of

dx(t)
dt

= g(t,x(t)
)
,

∣
∣t− t0

∣
∣≤ T1, x

(
t0
)= x0. (7.4)

Lemma 7.2. Let γ(t) and ρ(t) be continuous functions on [0,∞), with γ(t) nonnegative and
ρ(t) positive. Assume that

∫∞

u0

dτ

ρ(τ)
>
∫ T

t0
γ(s)ds, (7.5)
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where t0 < T and u0 are given positive numbers. Then there is a unique solution of

u′(t)= γ(t)ρ
(
u(t)

)
, t ∈ [t0,T

)
, u
(
t0
)= u0, (7.6)

which is positive in [t0,T) and depends continuously on u0.

Proof. One can separate variables to obtain

W(u)=
∫ u

u0

dτ

ρ(τ)
=
∫ t

t0
γ(s)ds. (7.7)

The function W(u) is differentiable and increasing in R, positive in [u0,∞), depends
continuously on u0, and satisfies

W(u)−→ L=
∫∞

u0

dτ

ρ(τ)
>
∫ T

t0
γ(s)ds, as u−→∞. (7.8)

Thus, for each t ∈ [t0,T), there is a unique u∈ [u0,∞) such that

u=W−1
(∫ t

t0
γ(s)ds

)
(7.9)

is the unique solution of (7.6), and it depends continuously on u0. �

Lemma 7.3. Let γ(t) and ρ(t) be continuous functions on [0,∞), with γ(t) nonnegative and
ρ(t) positive. Assume that

∫ u0

m

dτ

ρ(τ)
>
∫ T

t0
γ(s)ds, (7.10)

where t0 < T and m< u0 are given positive numbers. Then there is a unique solution of

u′(t)=−γ(t)ρ
(
u(t)

)
, t ∈ [t0,T

)
, u
(
t0
)= u0, (7.11)

which is ≥m in [t0,T) and depends continuously on u0.

Proof. One can separate variables to obtain

W(u)=
∫ u0

u

dτ

ρ(τ)
=
∫ t

t0
γ(s)ds. (7.12)

The function W(u) is differentiable and decreasing in R, positive in [m,u0], depends
continuously on u0, and satisfies

W(u)−→ L=
∫ u0

m

dτ

ρ(τ)
>
∫ T

t0
γ(s)ds, as u−→m. (7.13)

Thus, for each t ∈ [t0,T), there is a unique u∈ [m,u0] such that

u=W−1
(∫ t

t0
γ(s)ds

)
(7.14)

is the unique solution of (7.11), and it depends continuously on u0. �
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Theorem 7.4. Assume, in addition to the hypotheses of Theorem 7.1, that

∥
∥g(t,x)

∥
∥≤ γ(t)ρ

(‖x‖), x ∈ B0, t ∈ I0, (7.15)

where γ(t) and ρ(t) satisfy the hypotheses of Lemma 7.2 with T = t0 +T1. Let u(t) be the
positive solution of

u′(t)= γ(t)ρ
(
u(t)

)
, t ∈ [t0,T

)
, u
(
t0
)= u0 ≥

∥
∥x0

∥
∥, (7.16)

provided by Lemma 7.2. Then the unique solution of (7.4) satisfies

∥
∥x(t)

∥
∥≤ u(t), t ∈ [t0,T

)
. (7.17)

Proof. Assume that there is a t1 ∈ [t0,T) such that

u
(
t1
)
<
∥
∥x
(
t1
)∥∥. (7.18)

For ε > 0, let uε(t) be the solution of

u′(t)= [γ(t) + ε
]
ρ
(
u(t)

)
, t ∈ [t0,T

)
, u
(
t0
)= u0. (7.19)

By Lemma 7.2, a solution exists for ε > 0 sufficiently small. Moreover, uε(t)→ u(t) uni-
formly on any compact subset of [t0,T). Let

w(t)= ∥∥x(t)
∥
∥−uε(t). (7.20)

Then, we may take ε sufficiently small so that

w
(
t0
)≤ 0, w

(
t1
)
> 0. (7.21)

Let t2 be the largest number in [t0, t1) such that w(t2)= 0 and

w(t) > 0, t ∈ (t2, t1
]
. (7.22)

For h > 0 sufficiently small, we have

w
(
t2 +h

)−w(t2
)

h
> 0. (7.23)

Consequently,

D+w
(
t2
)≥ 0. (7.24)

But

D+w
(
t2
)=D+

∥
∥x
(
t2
)∥∥−u′ε

(
t2
)≤ ∥∥x′(t2

)∥∥−u′ε
(
t2
)

= ∥∥g(t2,x
(
t2
))∥∥− [γ(t2

)
+ ε
]
ρ
(
uε
(
t2
))

≤ γ(t2
)
ρ
(∥∥x

(
t2
)∥∥)− [γ(t2

)
+ ε
]
ρ
(
uε
(
t2
))=−ερ(uε

(
t2
))
< 0.

(7.25)

This contradiction proves the theorem. �
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Theorem 7.5. Let g(t,x) be a continuous map from R×H to H , where H is a Banach
space. Assume that for each point (t0,x0)∈R×H , there are constants K ,b > 0 such that

∥
∥g(t,x)− g(t, y)

∥
∥≤ K‖x− y‖,

∣
∣t− t0

∣
∣ < b,

∥
∥x− x0

∥
∥ < b,

∥
∥y− x0

∥
∥ < b. (7.26)

Assume also that

∥
∥g(t,x)

∥
∥≤ γ(t)ρ

(‖x‖), x ∈H , t ∈ [t0,TM
)
, (7.27)

where TM ≤∞, and γ(t), ρ(t) satisfy the hypotheses of Lemma 7.2 with ρ nondecreasing.
Then for each x0 ∈H and t0 > 0, there is a unique solution x(t) of the equation

dx(t)
dt

= g(t,x(t)
)
, t ∈ [t0,TM

)
, x
(
t0
)= x0. (7.28)

Moreover, x(t) depends continuously on x0 and satisfies

∥
∥x(t)

∥
∥≤ u(t), t ∈ [t0,TM

)
, (7.29)

where u(t) is the solution of (7.6) in that interval satisfying u(t0)= u0 ≥ ‖x0‖.

Before proving Theorem 7.5, we note that the following is an immediate consequence.

Corollary 7.6. Let V(y) be a locally Lipschitz continuous map from H to itself satisfying

∥
∥V(y)

∥
∥≤ C(1 +‖y‖), y ∈H. (7.30)

Then for each y0 ∈H , there is a unique solution of

y′(t)=V(y(t)
)
, t ∈R+, y(0)= y0. (7.31)

We now give the proof of Theorem 7.5.

Proof. By Theorems 7.1 and 7.4, there is an interval [t0, t0 +m], m> 0, in which a unique
solution of

dx(t)
dt

= g(t,x(t)
)
, t ∈ [t0, t0 +m

]
, x
(
t0
)= x0, (7.32)

exists and satisfies

∥
∥x(t)

∥
∥≤ u(t), t ∈ [t0, t0 +m

]
, (7.33)

where u(t) is the unique solution of

u′(t)= γ(t)ρ
(
u(t)

)
, t ∈ [t0,TM

)
, u
(
t0
)= u0 =

∥
∥x0

∥
∥. (7.34)

Let T ≤ TM be the supremum of all numbers t0 +m for which this holds. If t1 < t2 < T ,
then the solution in [t0, t2] coincides with that in [t0, t1], since such solutions are unique.
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Thus a unique solution of (7.32) satisfying (7.33) exists for each t0 < t < T . Moreover, we
have

x
(
t2
)− x(t1

)=
∫ t2

t1
g
(
t,x(t)

)
dt. (7.35)

Consequently,

∥
∥x
(
t2
)− x(t1

)∥∥≤
∫ t2

t1

∥
∥g
(
t,x(t)

)∥∥dt ≤
∫ t2

t1
γ(t)ρ

(∥∥x(t)
∥
∥)dt

≤
∫ t2

t1
γ(t)ρ

(
u(t)

)
dt = u(t2

)−u(t1
)
.

(7.36)

Assume that T < TM . Let tk be a sequence such that t0 < tk < T and tk → T . Then

∥
∥x
(
tk
)− x(t j

)∥∥≤ u(tk
)−u(t j

)−→ 0. (7.37)

Thus {x(tk)} is a Cauchy sequence in H . Since H is complete, x(tk) converges to an ele-
ment x1 ∈H . Since ‖x(tk)‖ ≤ u(tk), we see that ‖x1‖ ≤ u(T). Moreover, we note that

x(t)−→ x1 as t −→ T. (7.38)

To see this, let ε > 0 be given. Then there is a k such that

∥
∥x
(
tk
)− x1

∥
∥ < ε, u(T)−u(tk

)
< ε. (7.39)

Then for tk ≤ t < T ,

∥
∥x(t)− x1

∥
∥≤ ∥∥x(t)− x(tk

)∥∥+
∥
∥x
(
tk
)− x1

∥
∥

≤ u(t)−u(tk
)

+
∥
∥x
(
tk
)− x1

∥
∥ < 2ε.

(7.40)

We define x(T) = x1. Then, we have a solution of (7.32) satisfying (7.33) in [0,T]. By
Theorem 7.1, there is a unique solution of

dy(t)
dt

= g(t, y(t)
)
, y(T)= x1, (7.41)

satisfying ‖y(t)‖ ≤ u(t) in some interval |t−T| < δ. By uniqueness, the solution of (7.41)
coincides with the solution of (7.32) in the interval (T − δ,T]. Define

z(t)= x(t), t0 ≤ t < T ,

z(T)= x1,

z(t)= y(t), T < t ≤ T + δ.

(7.42)

This gives a solution of (7.32) satisfying (7.33) in the interval [t0,T + δ), contradicting
the definition of T . Hence, T = TM . �
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Lemma 7.7. Let ρ, γ satisfy the hypotheses of Lemma 7.3, with ρ locally Lipschitz continuous.
Let u(t) be the solution of (7.11), and let h(t) be a continuous function satisfying

h(t)≥ h(s)−
∫ t

s
γ(r)ρ

(
h(r)

)
dr, t0 ≤ s < t < T , h

(
t0
)≥ u0. (7.43)

Then

u(t)≤ h(t), t ∈ [t0,T
)
. (7.44)

Proof. Assume that there is a point t1 in the interval such that

h
(
t1
)
< u

(
t1
)
. (7.45)

Let

y(t)= u(t)−h(t), t ∈ [t0,T
)
. (7.46)

Then, y(t0)≤ 0 and y(t1) > 0. Let τ be the largest point < t1 such that y(τ)= 0. Then

y(t) > 0, t ∈ (τ, t1
]
. (7.47)

Moreover, by (7.11) and (7.43), we have

y(t)≤−
∫ t

τ
γ(s)

[
ρ
(
u(s)

)− ρ(h(s)
)]
ds≤ L

∫ t

τ
y(s)ds, (7.48)

where L is the Lipschitz constant for ρ at u(τ) times the maximum of γ in the interval.
Let

w(t)=
∫ t

τ
y(s)ds. (7.49)

Then

[
e−Ltw(t)

]′ = e−Lt[y(t)−Lw(t)
]≤ 0, t ∈ [τ, t1

]
. (7.50)

Consequently,

e−Ltw(t)≤ e−Lτw(τ)= 0, t ∈ [τ, t1
]
. (7.51)

Hence,

y(t)≤ Lw(t)≤ 0, t ∈ [τ, t1
]
, (7.52)

contradicting (7.47). This completes the proof. �
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8. Cerami sequences

We are now ready for the proof of Theorem 2.2.

Proof. First we note that if the theorem were false, there would be a δ > and a ψ satisfying
(2.5) such that

∥
∥G′(u)

∥
∥≥ ψ(‖u‖) (8.1)

when

u∈Q = {u∈ E :
∣
∣G(u)− a∣∣≤ 3δ

}
. (8.2)

Assume first that b0 < a, and reduce δ so that 3δ < a− b0. Since G ∈ C1(E,R), there is a
locally Lipschitz continuous mapping Y(u) of Ê = {u∈ E :G′(u) 
= 0} into E such that

∥
∥Y(u)

∥
∥≤ 1, θ

∥
∥G′(u)

∥
∥≤ (G′(u),Y(u)

)
, u∈ Ê (8.3)

holds for some θ > 0 (cf., e.g., [7]). Let

Q0 =
{
u∈ E :

∣
∣G(u)− a∣∣≤ 2δ

}
,

Q1 =
{
u∈ E :

∣
∣G(u)− a∣∣≤ δ},

Q2 = E \Q0,

η(u)= d
(
u,Q2

)

[
d
(
u,Q1

)
+d
(
u,Q2

)] .

(8.4)

It is easily checked that η(u) is locally Lipschitz continuous on E and satisfies

η(u)= 1, u∈Q1,

η(u)= 0, u∈Q2,

η(u)∈ (0,1) otherwise.

(8.5)

Let ρ(t)= 1/ψ(t). Then ρ is a positive, nondecreasing, locally Lipschitz continuous func-
tion on [0,∞) such that

∫∞

0

dτ

ρ(τ)
=∞ (8.6)

by (2.5). Let

W(u)=−η(u)Y(u)ρ
(‖u‖). (8.7)

Then

∥
∥W(u)

∥
∥≤ ρ(‖u‖), u∈ E. (8.8)

By Theorem 7.5, for each u∈ E there is a unique solution of

σ ′(t)=W(
σ(t)

)
, t ∈R+, σ(0)= u. (8.9)
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We have

dG
(
σ(t)u

)

dt
=−η(σ(t)u

)(
G′
(
σ(t)u

)
,Y
(
σ(t)u

))
ρ
(∥∥σ(t)u

∥
∥)

≤−θη(σ)
∥
∥G′(σ)

∥
∥ρ
(‖σ‖)≤−θη(σ).

(8.10)

By the definition (2.4) of a, there is a Γ∈Φ such that

G
(
Γ(s)u

)
< a+ δ, s∈ [0,1], u∈A. (8.11)

Let v = Γ(s)u, where s∈ [0,1] and u∈A. If there is a t1 ≤ T such that σ(t1)v /∈Q1, then

G
(
σ(T)v

)
< a− δ, (8.12)

since

G
(
σ(T)v

)≤G(σ(t1
)
v
)

(8.13)

and the right-hand side cannot be greater than a + δ by (8.11). On the other hand, if
σ(t)v ∈Q1 for all t ∈ [0,T], then we have by (8.10) that

G
(
σ(T)v

)≤ a+ δ− θ
∫ T

0
dt < a− δ (8.14)

if we take T ≥ 3δ/θ. Hence

G
(
σ(T)Γ(s)u

)
< a− δ, s∈ [0,1], u∈A. (8.15)

Let

Γ1(s)=

⎧
⎪⎪⎨

⎪⎪⎩

σ(2sT), 0≤ s≤ 1
2

,

σ(T)Γ(2s− 1),
1
2
< s≤ 1.

(8.16)

Then Γ1 ∈Φ. Since

G
(
σ(t)u

)≤ a0, t ≥ 0, (8.17)

we see by (8.15) that

G
(
Γ1(s)u

)
< a− δ, s∈ [0,1], u∈A. (8.18)

But this contradicts the definition (2.4) of a. Hence (8.1) cannot hold for u satisfying
(8.2).

If b0 = a, we proceed as before, but we cannot use (8.17) to imply (8.18). However, we
note that (8.10) implies that

G
(
σ(t)u

)≤ b0− θ
∫ t

0
η
(
σ(τ)u

)
dτ (8.19)
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for u∈ A. This shows that

σ(t)A∩B = φ, t ≥ 0. (8.20)

To see this, note that the only way we can have σ(t)u∈ B is if

η
(
σ(τ)u

)≡ 0, 0≤ τ ≤ t. (8.21)

But this implies that σ(τ)u∈Q2, and consequently that

G
(
σ(τ)u

)
< a− δ, 0≤ τ ≤ t, (8.22)

which cannot happen if σ(τ)u∈ B. Thus (8.20) holds. Similarly, (8.15) shows that

σ(T)Γ(t)A∩B = φ, 0≤ t ≤ 1. (8.23)

Combining (8.20) and (8.23), we see that

Γ1(s)A∩B = φ, 0≤ s≤ 1, (8.24)

contradicting the fact that A links B. This completes the proof of the theorem. �

9. The remaining proofs

We can now prove Theorem 3.1.

Proof. We may assume that a= a0. Otherwise by Corollary 2.6, a Cerami sequence (2.6)
exists with ψ replaced by ψ̃(t)= ψ(t+α). Since ψ̃ satisfies the hypotheses of Theorem 2.2
and

d(u,A)≤ ‖u‖+α, (9.1)

for each δ > 0 we can find a u∈ E such that

a− δ ≤G(u)≤ a+ δ,
∥
∥G′(u)

∥
∥ < ψ̃

(‖u‖)≤ ψ(d(u,A)
)
, (9.2)

which certainly implies (3.5). If the conclusion of the theorem was not true, there would
be a δ > 0 such that

ψ
(
d(u,A)

)≤ ∥∥G′(u)
∥
∥ (9.3)

would hold for all u in the set

Q = {u∈ E : b0− 3δ ≤G(u)≤ a+ 3δ
}
. (9.4)

By reducing δ if necessary, we can find θ < 1, T > 0 such that

a0− b0 + δ < θT , T ≤
∫ R+α

δ+α
ψ(s)ds. (9.5)



Martin Schechter 25

Thus, by Lemma 7.3, if u(t) is the solution of (7.11) with ρ(t)= 1/ψ(t), γ = 1, t0 = 0, and
u0 = R, then

u(t)≥ δ, t ∈ [0,T]. (9.6)

Let

Q0 =
{
u∈Q : b0− 2δ ≤G(u)≤ a+ 2δ

}

Q1 =
{
u∈Q : b0− δ ≤G(u)≤ a+ δ

}
,

Q2 = E \Q0, η(u)= d
(
u,Q2

)

[
d
(
u,Q1

)
+d
(
u,Q2

)] .

(9.7)

As before, we note that η satisfies (8.5). There is a locally Lipschitz continuous map Y(u)
of Ê = {u∈ E :G′(u) 
= 0} into itself such that

∥
∥Y(u)

∥
∥≤ 1, θ

∥
∥G′(u)

∥
∥≤ (G′(u),Y(u)

)
, u∈ Ê (9.8)

(cf., e.g., [7]). Let σ(t) be the flow generated by

W(u)= η(u)Y(u)ρ
(
d(u,A)

)
, (9.9)

where ρ(τ) = 1/ψ(τ). Since ‖W(u)‖ ≤ ρ(d(u,A)) ≤ ρ̃(‖u‖) = 1/ψ̃(‖u‖) and is locally
Lipschitz continuous, σ(t) exists for all t ∈R+ in view of Theorem 7.5. Since

σ(t)v− v =
∫ t

0
W
(
σ(τ)v

)
dτ, (9.10)

we have

∥
∥σ(t)v− σ(s)v

∥
∥≤

∫ t

s
ρ
(
d
(
σ(r)v,A

))
dr. (9.11)

If u∈A, we have

h(s)= d(σ(s)v,A
)≤ ∥∥σ(s)v−u∥∥≤ ∥∥σ(t)v−u∥∥+

∫ t

s
ρ
(
d
(
σ(r)v,A

))
dr. (9.12)

This implies that

h(s)≤ h(t) +
∫ t

s
ρ
(
h(r)

)
dr. (9.13)

We also have

dG
(
σ(t)v

)

dt
= (G′(σ),σ ′

)= η(σ)
(
G′(σ),Y(σ)

)
ρ
(
d(σ ,A)

)

≥ θη(σ)
∥
∥G′(σ)

∥
∥ρ
(
d(σ ,A)

)≥ θη(σ)ψ
(
d(σ ,A)

)
ρ
(
d(σ ,A)

)= θη(σ)
(9.14)
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in view of (9.3) and (9.8). Now suppose v ∈ B is such that there is a t1 ∈ [0,T] for which
σ(t1)v /∈Q1. Then

G
(
σ
(
t1
)
v
)
> a+ δ, (9.15)

since we cannot have G(σ(t1)v) < b0− δ for v ∈ B by (9.14). But this implies that

G
(
σ(T)v

)
> a+ δ. (9.16)

On the other hand, if σ(t)v ∈Q1 for all t ∈ [0,T], then

G
(
σ(T)v

)≥G(v) + θ
∫ T

0
dt ≥ b0 + θT > a+ δ (9.17)

by (9.5). Thus, (9.16) holds for v ∈ B. the author claims that A links B1 = σ(T)B. Assume
this for the moment. By the definition (2.4) of a, there is a Γ∈Φ such that

G
(
Γ(s)u

)
< a+

δ

2
, 0≤ s≤ 1, u∈ A. (9.18)

But if A links B1, then there is a t1 ∈ [0,1] such that Γ(t1)A∩ B1 
= φ. This means that
there is a u1 ∈A such that Γ(t1)u1 ∈ B1. In view of (9.16), this would imply that

G
(
Γ
(
t1
)
u1
)
> a+ δ, (9.19)

contradicting (9.18). Thus it remains only to show that A links B1. To this end, we note
that σ(t)v /∈ A for v ∈ B and t ∈ [0,T]. For v ∈ B′, this follows from (9.13) and the fact
that

h(t)= d(σ(t)v,A
)≥ u(t)≥ δ, t ∈ [0,T], (9.20)

in view of Lemma 7.7. If v ∈ B \B′, we have by (9.14) that

G
(
σ(t)v

)≥ a+ θ
∫ t

0
η
(
σ(τ)v

)
dτ > a, t > 0, (9.21)

unless η(v) = 0. But this would mean that v ∈ Q2 in view of (8.5). But then we would
have G(v)≥ a+ 2δ since we cannot have G(v)≤ b0− 2δ for v ∈ B. Thus,

G
(
σ(t)v

)
> a, t > 0, v ∈ B \B′. (9.22)

Hence

A∩ σ(t)B = φ, 0≤ t ≤ T. (9.23)

Let Γ be any map in Φ. Define

Γ1(s)=

⎧
⎪⎪⎨

⎪⎪⎩

σ(2sT)−1, 0≤ s≤ 1
2

,

σ(T)−1Γ(2s− 1),
1
2
< s≤ 1.

(9.24)
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Clearly, Γ1 ∈Φ. Since A links B, there is a t1 ∈ [0,1] such that Γ1(t1)A∩B 
= φ. If 0≤ t1 ≤
1/2, this would mean that

σ
(
2t1T

)−1
A∩B 
= φ (9.25)

or, equivalently, that

A∩ σ(2t1T
)
B 
= φ, (9.26)

contradicting (9.23). Thus we must have 1/2 < t1 ≤ 1. This says that

σ(T)−1Γ
(
2t1− 1

)
A∩B 
= φ (9.27)

or, equivalently,

Γ
(
2t1− 1

)
A∩ σ(T)B 
= φ. (9.28)

Hence A links B1, and the proof is complete. �

We also give the proof of Theorem 3.2.

Proof. Again, we may assume that a= a0. We interchange A and B and consider the func-
tional G̃(u)=−G(u). Then

ã0 = sup
B
G̃=− inf

B
G=−b0 <∞,

b̃0 = inf
A
G̃=−sup

A
G=−a0 >−∞.

(9.29)

Moreover,

ã0− b̃0 = a0− b0 <
∫ R+β

β
ψ(t)dt, (9.30)

where

R≤ d′′ = d(A′′,B). (9.31)

Since

A′′ = {u∈A : G̃(u) < ã0
}

, (9.32)

we can apply Theorem 3.1 to conclude that for each δ > 0, there is a u∈ E such that

b̃0− δ ≤ G̃(u)≤ ã0 + δ,
∥
∥G̃′(u)

∥
∥ < ψ

(
d(u,B)

)
. (9.33)

This implies (3.9). �
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