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1. Introduction

Throughout this paper, let Rn be a Euclidean space, whose inner product and norm are
denoted by 〈·,·〉 and ‖·‖, respectively. Let K be a nonempty closed convex set in Rn,
let f : Rn→Rn be a continuous function. We consider the variational inequality problem
associated with K and f , denoted by VIP(K , f ), which is to find a vector x∗ ∈ K such
that

〈
f (x∗), y− x∗

〉≥ 0, ∀y ∈ K. (1.1)

Variational inequalities have many applications in different fields such as mathematical
programming, game theory, economics, and engineering, see [1–3] and the references
mentioned there. Error bounds have played an important role not only in theoretical
analysis but also in convergence analysis of iterative algorithms for solving variational
inequalities, see [4] for an excellent survey of the theory and application. A few error
bounds have been presented for variational inequality, which mainly use the following
assumptions on the map f :

(i) strong monotonicity + Lipschitz continuous [5–7];
(ii) strong monotonicity [8, 9].
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When the map f is cocoercive, by using the perturbed fixed point and normal maps,
and by utilizing Williamson geometric estimation of fixed points of contractive maps,
Zhao and Hu [7] established global bounds for VIP(K , f ).

In this paper, by using the strong monotonicity of the perturbed fixed-point and nor-
mal maps, we establish two new global bounds measuring the distance between any point
and the solution set for cocoercive variational inequalities. We need weaker restriction on
the constants involved in the (perturbed) fixed point and normal maps.

2. Preliminaries and notations

The fixed-point and the normal equations for VIP(K , f ) are defined by

πα(x)= x−ΠK
(
x−α f (x)

)= 0, (2.1)

Φα(x)= f
(
ΠK (x)

)
+α
(
x−ΠK (x)

)= 0, (2.2)

respectively, where α is an arbitrary positive scalar and ΠK (·) is the projection operator
on the convex set K , that is, ΠK (x)=minz∈K‖z− x‖. The projection operator is nonex-
pansive, that is, for any x,x′ ∈ Rn, it holds that

∥
∥ΠK (x)−ΠK (x′)

∥
∥≤ ‖x− x′‖. (2.3)

It is well known that x∗ solves VIP(K , f ) if and only if x∗ solves the fixed-point equa-
tion (2.1); if x∗ is a solution of VIP(K , f ), then x∗ − (1/α) f (x∗) is a solution of the
normal equation (2.2); conversely, if Φα(y∗)= 0, then ΠK (y∗) is a solution of VIP(K , f ).

In fact, the perturbed fixed-point and normal maps also have been extensively studied,
which are defined by

πα,ε(x)= x−ΠK
(
x−α

(
f (x) + εx

))
,

Φα,ε(x)= f
(
ΠK (x)

)
+ εΠK (x) +α

(
x−ΠK (x)

)
,

(2.4)

respectively.
For the map f , we require the following concepts.

Definition 2.1. The map f : Rn→Rn is said to be
(i) monotone if

〈
f (x)− f (y),x− y

〉≥ 0, ∀x, y ∈ Rn; (2.5)

(ii) strongly monotone with modulus c if there is a scalar c > 0 such that

〈
f (x)− f (y),x− y

〉≥ c‖x− y‖2, ∀x, y ∈ Rn; (2.6)

(iii) Lipschitz with modulus L if there is a constant L > 0 such that

∥
∥ f (x)− f (y)

∥
∥≤ L‖x− y‖, ∀x, y ∈ Rn. (2.7)

If L < 1, f is said to be contractive.
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Definition 2.2. The map f : Rn→Rn is said to be cocoercive with modulus β if there exists
a constant β > 0 such that

〈
f (x)− f (y),x− y

〉≥ β
∥
∥ f (x)− f (y)

∥
∥2

, ∀x, y ∈ Rn. (2.8)

Remark 2.3. Our analysis in the rest of the paper is based upon the cocoercive condition.
Gabay [10] implicitly introduced the strong- f -monotonicity and Tseng [11], using the
name cocoercivity, explicitly stated this condition. The cocoercive condition plays an im-
portant role in the convergence analysis of algorithms; for more details, see [12, 7, 13–15].
Notice that any cocoercive map with modulus β is monotone and Lipschitz continuous
(with modulus L = 1/β), but it is not necessary to be strongly monotone (e.g., the con-
stant map).

In some cases, the modulus β of the cocoercive map can be determined explicitly, for
example, see [14, 15].

Let us introduce more required notations. Let B denote the open unit ball in Rn and
SOL(K , f ) denotes the solution set of VIP(K , f ). Denote dist(x,D) for the distance from
the vector x to any set D ⊆ Rn, and denote π−1

α (0) for the zeros of πα(x).
We state some lemmas, which are crucial in the proof of our main theorems. The first

shows us the monotonicity of the (perturbed) fixed-point and normal maps associated
with VIP(K , f ) under certain conditions.

Lemma 2.4 (Zhao and Li [13]). Let K be an arbitrary closed convex set in Rn and K ⊆ S⊆
Rn. Let f : Rn→Rn be a function.

(i) If f is cocoercive with modulus β > 0 on the set S, and if the scalars α and ε satisfy 0 <
α < 4β and 0 < ε ≤ 2(1/α− 1/(4β)), then the perturbed fixed-point map πα,ε(x) is strongly
monotone with modulus αε(1−αε/4).

(ii) If f is cocoercive with modulus β > 0 on the set S, and if the scalars α and ε satisfy
0 < ε < α and α > 1/(4β), then the perturbed normal map Φα,ε(x) is strongly monotone with
modulus r, where r =min{ε,α− 1/4β}.

(iii) If f is strongly monotone with modulus c > 0 and f is Lipschitz continuous with
constant L > 0 on the set S, then for any fixed scalar α satisfying 0 < α < 4c/L2, the fixed
point map πα(x) is strongly monotone with modulus α(c−αL2/4) on the set S.

(iv) If f is strongly monotone with modulus c > 0 and f is Lipschitz continuous with
constant L > 0 on the set S, then for any α satisfying α > L2/(4c), the normal map Φα(x) is
strongly monotone with modulus r on the set S, where 0 < r < α/2 and 2r +L2/4(α− 2r) < c.

The upper-semicontinuity theorem concerning weakly univalent maps established by
Ravindran and Gowda [16] is as follows.

Lemma 2.5 (Ravindran and Gowda [16]). Let g : Rn→Rn be weakly univalent, that is, g
is continuous and there exists one-to-one continuous function gk : Rn→Rn such that gk→g
uniformly on every bounded subset of Rn. Suppose that g−1(0) = {x ∈ Rn : g(x) = 0} is
nonempty and compact. Then for any given γ > 0, there exists a scalar δ > 0 such that for any
weakly univalent function h : Rn→Rn with supΩ‖h(x)− g(x)‖ < δ, one has ∅=h−1(0) ⊆
g−1(0) + γB, where Ω denotes the closure of Ω= g−1(0) + γB.

The following lemma shows us an important property of strongly monotone maps.
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Lemma 2.6. Let f : Rn→Rn be strongly monotone with modulus c > 0, then the following
inequality holds:

‖x− y‖ ≤
∥
∥ f (x)− f (y)

∥
∥

c
, ∀x, y ∈ Rn. (2.9)

Proof. Since f is strongly monotone with modulus c > 0, it holds that

〈 f (x)− f (y),x− y〉 ≥ c‖x− y‖2, ∀x, y ∈ Rn. (2.10)

On the other hand, from the Cauchy-Schwarz inequality, we have

〈 f (x)− f (y),x− y〉 ≤ ∥∥ f (x)− f (y)
∥
∥‖x− y‖. (2.11)

Combining (2.10) and (2.11), we obtain

‖x− y‖ ≤
∥
∥ f (x)− f (y)

∥
∥

c
.

(2.12)

�

3. Main results

In this section, we first establish two global bounds measuring the distance between any
point and the solution set for cocoercive VIP(K , f ) by using the strong monotonicity of
the perturbed fixed-point and normal maps.

Theorem 3.1. Let f : Rn→Rn be cocoercive with modulus β > 0. Suppose that the solution
set of VIP(K , f ) is nonempty and bounded, let α be a constant satisfying 0 < α < 4β. Then
there exists a constant δ > 0, and for any ε satisfying 0 < ε < min{δ/aM∗,2/α− 1/2β}, the
following result holds for all x ∈ Rn:

dist
(
x,SOL(K , f )

)≤
∥
∥πα,ε(x)

∥
∥

αε
(
1−αε/4

) +α, (3.1)

where M∗ ≥ sup x∈Ω‖x‖, Ω := SOL(K , f ) +αB.

Proof. Let α,ε be constants such that 0 < α < 4β and 0 < ε < 2/α− 1/2β, thus by Lemma
2.4(i), the perturbed fixed point map πα,ε(x) is strongly monotone with modulus αε(1−
αε/4).

Since πα,ε(x) is strongly monotone, we may denote by x∗ the unique element of the
set π−1

α,ε(0). By Lemma 2.6, for any x ∈ Rn, we have

‖x− x∗‖ ≤
∥
∥πα,ε(x)

∥
∥

αε
(
1−αε/4

) . (3.2)

Since any monotone map is weakly univalent, we can replace h(x) with πα,ε(x) in
Lemma 2.5. By Lemma 2.5, there exists a constant δ > 0, and then let ε be a constant satis-
fying 0 < ε < min{δ/aM∗,2/α− 1/2β} with M∗ ≥ supx∈Ω‖x‖ and Ω := SOL(K , f ) + αB



F. Jianghua and W. Xiaoguo 5

such that

sup
x∈Ω

∥
∥πα,ε(x)−πα(x)

∥
∥= sup

x∈Ω

∥
∥ΠK (x−α( f (x) + εx)−ΠK (x−α f (x))

∥
∥

≤ sup
x∈Ω

αε‖x‖ ≤ αεM∗ < δ.
(3.3)

Thus we have ∅={x∗} ⊆ π−1
α (0) +αB = SOL(K , f ) +αB, which yields that

dist
(
x∗, SOL(K , f )

)≤ α. (3.4)

Therefore, for any x ∈ Rn, we obtain

dist
(
x, SOL(K , f )

)≤ ‖x− x∗‖+ dist
(
x∗,SOL(K , f )

) ≤
∥
∥πα,ε(x)

∥
∥

αε(1−αε/4)
+α. (3.5)

�

Remark 3.2. In [7, Theorem 2.1], Zhao and Hu need stronger restriction on α,ε, ensuring
that the map pε : Rn→Rn defined by pε(x)=ΠK (x− α( f (x) + εx)) is contractive, that is,

‖pε(x)− pε(y)‖ ≤ r‖x− y‖, where r =
√

(1−αε)2 + 2α2εβ ∈ (0,1).
On the other hand, if pε is a Lipschitz continuous map with modulus r < 1, it is easy

to see that πα,ε = I − pε (I is the identity operator) is strongly monotone with modulus
1− r. Thus from Lemma 2.6, for any x ∈ Rn, we have

‖x− x∗‖ ≤
∥
∥πα,ε(x)

∥
∥

1− r
. (3.6)

Remark 3.3. If the set K is bounded, then the solution set SOL(K , f ) ⊂ K , and we can
choose M∗ = supx∈K‖x‖+α.

If the set K is unbounded, it follows from [17, Corollary 1] that the solution set
SOL(K , f ) is nonempty and bounded if and only if

∃ρ > 0, ∀x ∈ K \Kρ, ∃ y ∈ Kρ, 〈 f (x),x− y〉 > 0, (3.7)

where Kρ = {x ∈ K : ‖x‖ ≤ ρ}.
If we can find x0 ∈ K and ρ > 0 such that

〈 f (x),x− x0〉 > 0, ∀x ∈ K \Kρ, (3.8)

then SOL(K , f )⊂ Kρ, and we can choose M∗ = ρ+α.

Theorem 3.4. Let f : Rn→Rn be cocoercive with modulus β > 0. Suppose that the solution
set of VIP(K , f ) is nonempty and bounded, and let α be a constant satisfying α > 1/4β. Then
there exists a constant δ > 0, and for any ε satisfying 0 < ε < min{δ/C∗,α}, the following
result holds for all x ∈ Rn,

dist
(
x,Φ−1

α (0)
)≤

∥
∥Φα,ε(x)

∥
∥

r
+α, (3.9)

where C∗ = supx∈Ω‖ΠK (x)‖, r =min{ε, α− 1/4β}, Ω := SOL(K , f ) +αB.
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Proof. Let α, ε be constants such that α > 1/4β and 0 < ε < α, thus by Lemma 2.4(ii),
the perturbed normal map Φα,ε(x) is strongly monotone with modulus r, where r =
min{ε, α− 1/4β}. Since Φα,ε(x) is strongly monotone, we may denote by y∗ the unique
element of the set Φ−1

α,ε(0).
Since any monotone map is weakly univalent, we can replace h(x) with Φα,ε(x) in

Lemma 2.5. Then by Lemma 2.5, there exists a constant δ > 0, and for any ε satisfying
0 < ε < min{δ/C∗,α} with C∗ = supx∈Ω‖ΠK (x)‖ and Ω := SOL(K , f ) +αB, we have

sup
x∈Ω

∥
∥Φα,ε(x)−Φα(x)

∥
∥

= sup
x∈Ω

∥
∥ f
(
ΠK (x)

)
+ εΠK (x) +α

(
x−ΠK (x)

)− ( f (ΠK (x)
)

+α
(
x−ΠK (x)

))∥∥

≤ sup
x∈Ω

ε
∥
∥ΠK (x)

∥
∥= εC∗ < δ.

(3.10)

Thus we obtain that ∅={x∗} ⊆Φ−1
α (0) +αB = SOL(K , f ) +αB, which means that

dist
(
y∗,Φ−1

α (0)
)≤ α. (3.11)

By Lemma 2.6, for any x ∈ Rn, we have

‖x− y∗‖ ≤
∥
∥Φα,ε(x)

∥
∥

r
, (3.12)

where r =min{ε,α− 1/4β}.
Combining (3.11) and (3.12), for any x ∈ Rn, we have

dist
(
x,Φ−1

α (0)
)≤ ‖x− y∗‖+ dist

(
y∗,Φ−1

α (0)
)≤

∥
∥Φα,ε(x)

∥
∥

r
+α.

(3.13)

�

Remark 3.5. In [7, Theorem 2.2], Zhao and Hu need stronger restriction on α, ε, ensuring
that the map qε : Rn→Rn defined by qε = x− (1/α)Φα,ε(x) is contractive, that is, ‖qε(x)−
qε(y)‖ ≤ r‖x− y‖, where r =

√
(1− ε/α)2 + 2ε/α2β ∈ (0,1).

Thus Φα,ε = α(I − qε), where I is the identity operator, and strongly monotone with
modulus α(1− r). By Lemma 2.6, for any x ∈ Rn, we have

‖x− x∗‖ ≤
∥
∥Φα,ε(x)

∥
∥

α(1− r)
. (3.14)

As a direct consequence of Theorem 3.4, we have the following corollary, which shows
us a global bound for cocoercive VIP(K , f ).



F. Jianghua and W. Xiaoguo 7

Corollary 3.6. Let f : Rn→Rn be cocoercive with modulus β > 0. Suppose that the solution
set of VIP(K , f ) is nonempty and bounded, and let α be a constant satisfying α > 1/4β. Then
there exists a constant δ > 0, and for any ε satisfying 0 < ε < min{δ/C∗,α} such that

dist(x, SOL(K , f ))≤ d(x,K) +

∥
∥Φα,ε(x)

∥
∥

r
+α, ∀x ∈ Rn, (3.15)

where C∗ = supx∈Ω‖ΠK (x)‖, r =min{ε,α− 1/4β}, Ω : = SOL(K , f ) +αB.

Proof. For any x ∈ Rn, by Theorem 3.4, we have

dist(x,Φ−1
α (0))≤

∥
∥Φα,ε(x)

∥
∥

r
+α. (3.16)

This implies that there exists y∗ ∈Φ−1
α (0) such that ‖x− y∗‖ ≤ ‖Φα,ε(x)‖/r +α.

Since y∗ ∈Φ−1
α (0), thus we have ΠK (y∗)∈ SOL(K , f ).

Denote ΠK (y∗) by x∗, then we have

‖x− x∗‖ = ∥∥x−ΠK (y∗)
∥
∥≤ ‖x−ΠK (x)‖+

∥
∥ΠK (x)−ΠK (y∗)

∥
∥

≤ d(x,K) +‖x− y∗‖ ≤ d(x,K) +

∥
∥Φα,ε(x)

∥
∥

r
+α.

(3.17)

Next, we establish two new error bounds by using the fixed-point and normal maps
when f is strongly monotone and Lipschitz continuous. The approaches are different
from those in [5, 7]. �

Theorem 3.7. Let f : Rn→Rn be strongly monotone with modulus c > 0 and let f be Lips-
chitz continuous with constant L > 0. Let α be a fixed scalar such that 0 < α < 4c/L2. Denote
by x∗ the unique solution of VIP(K , f ). Then one has

‖x− x∗‖ ≤
∥
∥πα(x)

∥
∥

α(c−αL2/4)
, ∀x ∈ Rn. (3.18)

Proof. Since f is strongly monotone with modulus c and Lipschitz continuous with con-
stant L, by Lemma 2.4(iii), the fixed-point map πα(x) is strongly monotone with modulus
α(c−αL2/4), where 0 < α < 4c/L2.

Since x∗ is the unique solution of VIP(K , f ), we have πα(x∗)= 0. By Lemma 2.6, we
have

‖x− x∗‖ ≤
∥
∥πα(x)

∥
∥

α(c−αL2/4)
, ∀x ∈ Rn.

(3.19)

�

Theorem 3.8. Let f : Rn→Rn be strongly monotone with modulus c > 0 and let f be Lips-
chitz continuous with constant L > 0. Let α be a fixed scalar such that 0 < α < L2/(4c). Then
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one has

∥
∥x−Φ−1

α (0)
∥
∥≤

∥
∥Φα(x)

∥
∥

r
, ∀x ∈ Rn, (3.20)

where 0 < r < α/2 and 2r +L2/4(α− 2r) < c.

Proof. Since f is strongly monotone with modulus c and Lipschitz continuous with con-
stant L, by Lemma 2.4(iv), the normal map Φα(x) is strongly monotone with modulus r,
where 0 < α < L2/(4c), 0 < r < α/2 and 2r +L2/4(α− 2r) < c.

By Lemma 2.6, we have

‖x−Φ−1
α (0)‖ ≤

∥
∥Φα(x)

∥
∥

r
, ∀x ∈ Rn. (3.21)

To conclude this section, we present a global bound for cocoercive VIP(K , f ) in the
term of Φα(x). �

Corollary 3.9. Let f : Rn→Rn be strongly monotone with modulus c > 0 and let f be
Lipschitz continuous with constant L > 0. Let α be a fixed scalar such that 0 < α < L2/(4c).
Then one has

dist(x, SOL(K , f ))≤ d(x,K) +

∥
∥Φα(x)

∥
∥

r
, ∀x ∈ Rn, (3.22)

where 0 < r < α/2 and 2r +L2/4(α− 2r) < c.

Proof. For any x ∈ Rn, by Theorem 3.8, we have

‖x−Φ−1
α (0)‖ ≤

∥
∥Φα(x)

∥
∥

r
, (3.23)

which means that there exists y∗ ∈Φ−1
α (0) such that ‖x− y∗‖ ≤ ‖Φα(x)‖/r.

Since y∗ ∈Φ−1
α (0), then we have ΠK (y∗)∈ SOL(K , f ).

Denote ΠK (y∗) by x∗, then we obtain

‖x− x∗‖ = ∥∥x−ΠK (y∗)
∥
∥≤ ∥∥x−ΠK (x)

∥
∥+

∥
∥ΠK (x)−ΠK (y∗)

∥
∥

≤ d(x,K) +‖x− y∗‖ ≤ d(x,K) +

∥
∥Φα(x)

∥
∥

r
.

(3.24)

�
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