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JIŘÍ BENEDIKT

Received 15 August 2003

We are interested in a nonlinear boundary value problem for (|u′′|p−2u′′)′′ = λ|u|p−2u
in [0,1], p > 1, with Dirichlet and Neumann boundary conditions. We prove that eigen-
values of the Dirichlet problem are positive, simple, and isolated, and form an increasing
unbounded sequence. An eigenfunction, corresponding to the nth eigenvalue, has pre-
cisely n− 1 zero points in (0,1). Eigenvalues of the Neumann problem are nonnegative
and isolated, 0 is an eigenvalue which is not simple, and the positive eigenvalues are sim-
ple and they form an increasing unbounded sequence. An eigenfunction, corresponding
to the nth positive eigenvalue, has precisely n+ 1 zero points in (0,1).

1. Main results

We are concerned with structure of eigenvalues and eigenfunctions of the nonlinear
Dirichlet boundary value problem for the p-biharmonic operator

(∣∣u′′(t)∣∣p−2
u′′(t)

)′′ = λ∣∣u(t)
∣∣p−2

u(t), t ∈ [0,1],

u(0)= u′(0)= u(1)= u′(1)= 0,
(1.1)

and the Neumann boundary value problem

(∣∣u′′(t)∣∣p−2
u′′(t)

)′′ = λ∣∣u(t)
∣∣p−2

u(t), t ∈ [0,1],

u′′(0)=
(∣∣u′′(t)∣∣p−2

u′′(t)
)′∣∣∣

t=0
= u′′(1)=

(∣∣u′′(t)∣∣p−2
u′′(t)

)′∣∣∣
t=1
= 0,

(1.2)

where λ∈R and p > 1.
Drábek and Ôtani proved in [4, Theorem 1.3] that the Navier boundary value prob-

lem (u(0) = u′′(0) = u(1) = u′′(1) = 0) for the p-biharmonic operator possesses infin-
itely many eigenvalues, all simple, forming a sequence 0 < λ1(p) < λ2(p) < ··· → +∞. An
eigenfunction, corresponding to λn(p), has precisely n− 1 zero points in (0,1). We prove
a similar result for the Dirichlet and the Neumann problem. Note that the method used
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in [4] is based on transferring the Navier problem to a Dirichlet problem for a system of
two second-order equations (for u and |u′′|p−2u′′). Hence this method cannot be adopted
for the problem (1.1) or (1.2).

The Dirichlet problem (1.1) (with nonconstant coefficients) was studied by Kratochvı́l
and Nečas in [7]. They proved that eigenvalues of this problem form a sequence 0 <
λ1(p) < λ2(p) < ··· → +∞, and the set of the corresponding eigenfunctions is discrete.
Moreover, it is shown in [7] that for every eigenvalue, there are only finitely many lin-
early independent corresponding eigenfunctions. This result was proved in [7] only for
p ≥ 2, not for p ∈ (1,2).

Boundary value problems with p-biharmonic operator and general Robin-type
boundary conditions were studied in [1, Corollary 4]. It is proved there that (1.1) has
only positive simple eigenvalues (see [1, Example 8]). Problem (1.2) has only nonnega-
tive eigenvalues, the positive ones are simple, and, clearly, (1.2) has also the eigenvalue
λ= 0 which is not simple since any linear function u is a solution of (1.2) with λ := 0 (see
[1, Example 9]).

Our main results follow (see Section 2 for related definitions).

Theorem 1.1 (Dirichlet problem). The set of all eigenvalues of (1.1) forms a sequence
0 < λD

1 (p) < λD
2 (p) < ··· → +∞. Every λD

n (p), n∈N, is a simple eigenvalue and any corre-
sponding eigenfunction has precisely n− 1 zero points in (0,1). The set of all eigenfunctions
is discrete in the sense that in some C2[0,1]-neighborhood of every eigenfunction, the only
other eigenfunctions are its multiples.

Theorem 1.2 (Neumann problem). The set of all eigenvalues of (1.2) forms a sequence
0= λN

0 (p) < λN
1 (p) < ··· → +∞. Every λN

n (p), n > 0, is a simple eigenvalue while λN
0 (p)= 0

is not. An eigenfunction, corresponding to λN
n (p), n > 0, has precisely n + 1 zero points in

(0,1). The set of all eigenfunctions, corresponding to the positive eigenvalues, is discrete in
the above sense. Moreover, there is a relation between the positive eigenvalues of (1.2) and
(1.1):

λN
n (p)=

(
λD
n

(
p

p− 1

))p−1

, n∈N. (1.3)

For n > 0, any eigenfunction u of (1.2), corresponding to λN
n (p), and any eigenfunction v of

(1.1) for p replaced by p/(p− 1), corresponding to λD
n (p/(p− 1)), there exists a κ∈R \ {0}

such that

u= κ∣∣v′′∣∣(2−p)/(p−1)
v′′. (1.4)

Taking p = 2 in (1.1), we obtain the one-dimensional linear clamped plate equation. It
is known (see [3, 6]) that the first eigenvalue of the clamped plate equation on a ball in RN

is simple, and the corresponding eigenfunction has a fixed sign. On the other hand, there
are numerous counterexamples showing that on some domains in RN , the first eigenvalue
of the clamped plate equation can be negative and the corresponding eigenfunction can
change its sign. Theorem 1.1 states that on [0,1] (a ball in R), the first eigenvalue of (1.1)
is positive and the corresponding eigenfunction is of fixed sign even for p > 1 arbitrary.
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Nevertheless, the proof for p = 2 relies on the positivity of Green’s function, and so it is
useless for the nonlinear p-biharmonic operator.

The organization of this paper is as follows. In Section 2, we define the solution, the
spectrum, the eigenfunctions, and the simplicity of the eigenvalues of (1.1) and (1.2). In
Section 3, we prove Theorem 1.1 and in Section 4, we give a proof of Theorem 1.2. In
Section 5, we introduce some open problems.

2. Preliminaries

We define the solution of (1.1) and (1.2) in accordance with [1]. We adopt the notation
ψp(s) = |s|p−2s, s ∈ R \ {0}, ψp(0) = 0, p > 1. We denote p′ = p/(p− 1) (ψp and ψp′ are
then inverse functions).

We put u1 := u and u3 := ψp(u′′). Then (1.1) is equivalent to the boundary value prob-
lem for a system of four first-order equations

u′1(t)= u2(t),

u′2(t)= ψp′
(
u3(t)

)
,

u′3(t)= u4(t),

u′4(t)= λψp
(
u1(t)

)
, t ∈ [0,1],

u1(0)= u2(0)= u1(1)= u2(1)= 0.

(2.1)

Similarly, the Neumann problem (1.2) is equivalent to

u′1(t)= u2(t),

u′2(t)= ψp′
(
u3(t)

)
,

u′3(t)= u4(t),

u′4(t)= λψp
(
u1(t)

)
, t ∈ [0,1],

u3(0)= u4(0)= u3(1)= u4(1)= 0.

(2.2)

Definition 2.1. A vector function u = [u1,u2,u3,u4]T ∈ (C1[0,1])4 is called a solution of
(2.1) or (2.2) if it satisfies the equations in (2.1) or (2.2), respectively, for all t ∈ [0,1],
and fulfills the boundary conditions.

By a solution of (1.1) or (1.2), we understand a function u∈ C2[0,1] such that [u,u′,
ψp(u′′),(ψp(u′′))′]T is a solution of the corresponding problem (2.1) or (2.2), respec-
tively.

Definition 2.2. By an eigenvalue of (1.1) or (1.2), we mean λ∈R for which (1.1) or (1.2),
respectively, has a nontrivial solution, called an eigenfunction, corresponding to the eigen-
value λ.

We say that an eigenvalue λ is simple if all corresponding eigenfunctions are multiples
of one of them.

The spectrum (i.e., the set of all eigenvalues) of (1.1) is sketched in Figure 2.1.
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Figure 2.1. Spectrum of (1.1).

In order to prove Theorems 1.1 and 1.2, we use the fact that the corresponding initial
value problem

u′1(t)= u2(t), u1
(
t0
)= α,

u′2(t)= ψp′
(
u3(t)

)
, u2

(
t0
)= β,

u′3(t)= u4(t), u3
(
t0
)= γ,

u′4(t)= λψp
(
u1(t)

)
, u4

(
t0
)= δ,

(2.3)

t ∈ [t0, t1], has a unique solution (see [2, Corollaries 1.4 and 1.8]). The solution of (2.3) is
defined in [2] in accordance with Definition 2.1 as a vector function u=[u1,u2,u3,u4]T∈
(C1[t0, t1])4 satisfying the equations in (2.3) at every t ∈ [t0, t1] and the initial conditions.

In the sequel, we often use the following lemma concerning the integration of a differ-
ential inequality. Notice that by u≤ v and u < v, we mean ui ≤ vi and ui < vi, respectively,
for all i∈ {1,2,3,4}. By u �= v, we mean ui �= vi for at least one i∈ {1,2,3,4}.
Lemma 2.3. Let u and v be solutions of (2.3), where λ > 0. If u(t0)≤ v(t0) and u(t0) �= v(t0),
then

u(t) < v(t) ∀t ∈ (t0, t1
]
. (2.4)

Proof. See, for example, [5, Chapter III, Section 4] and compare to [1, Lemma 20]. �

The next lemma is important for investigation of the number of zero points of the
eigenfunctions.

Lemma 2.4. Let t0 < tm < t1 < tr . Let u be a solution of (2.3) on the interval [t0, t1] and let v
be a solution of (2.3) on [t0, tr]. Let λ > 0.
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Figure 2.2. Lemma 2.4.

Assume u1(t0) = u1(tm) = u1(t1) = 0, u1(t) > 0 for t ∈ (t0, tm), and u1(t) < 0 for t ∈
(tm, t1). Let further v1(tr) = 0 and let v1 have finitely many zero points in (tm, t1), all be-
ing simple. Moreover, let u(t) < v(t) for all t ∈ (t0, t1]. (See Figure 2.2.)

Then v1 has exactly two zero points in (t0, t1].

Proof. Since v1(t) > u1(t) ≥ 0 for all t ∈ (t0, tm]∪{t1}, all zero points of u1 from (t0, t1]
are in (tm, t1). The number of them is finite and even, because they are simple.

By contradiction, we eliminate the possibility that v1 has no zero point in (tm, t1), that
is, v1 > 0 on [t0, t1]. We prove that it would mean v(t1) > 0. Obviously, v1(t1) > u1(t1)= 0
and v2(t1) > u2(t1)≥ 0. The maximum principle for linear second-order equations yields
u′′1 (t̃1) < 0 for some t̃1 ∈ (t0, tm), and u′′1 (t̃2) > 0 for some t̃2 ∈ (tm, t1). Thus u3(t̃1) =
ψp(u′′1 (t̃1)) < 0 and u3(t̃2) > 0. The mean value theorem implies the existence of a point
t̃m ∈ (t̃1, t̃2), such that u4(t̃m) = u′3(t̃m) > 0, and so v4(t̃m) > u4(t̃m) > 0. Since we suppose
that v1 > 0 on [t0, t1] and λ > 0, we have

v4(t)= v4
(
t̃m
)

+ λ
∫ t
t̃m
ψp
(
v1(τ)

)
dτ > 0 (2.5)

for any t ∈ [t̃m, t1]. It remains to show that v3(t1) > 0. Since t̃2 > t̃m, (2.5) yields v4 > 0 on
[t̃2, t1]. Moreover, v3(t̃2) > u3(t̃2) > 0, and so

v3
(
t1
)= v3

(
t̃2
)

+
∫ t1
t̃2
v4(t)dt > 0. (2.6)

Now that we proved v(t1) > 0, we apply Lemma 2.3 (we take the zero solution as u) to
conclude that v(tr) > 0, and so v1(tr) > 0, a contradiction.

It remains to show that v1 cannot have more than two zero points in (tm, t1). We sup-
pose that it has at least three. Since the number of them is finite, we can denote the first
three by t̄1 < t̄2 < t̄3. Consequently, v1 < 0 on (t̄1, t̄2) and v1 > 0 on (t̄2, t̄3). At the same
time, u1 < 0 on [t̄1, t̄3]. Hence û :=−v, v̂ :=−u, t̂0 := t̄1, t̂m := t̄2, t̂1 := t̄3, and t̂r := t1 sat-
isfy the assumptions of this lemma. We already proved that v̂1 has at least two zero points
in (t̂m, t̂1), that is, u1 has at least two zero points in [t̄1, t̄3], a contradiction. This completes
the proof. �
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3. Dirichlet problem

We already know (see [1, Example 8]) that all eigenvalues of (1.1) are simple and positive.
First, we prove some basic properties of the eigenfunctions of (1.1).

Lemma 3.1. Let u be a solution of (2.1) with λ > 0. If u1(t0)= u2(t0)= u3(t0)= 0 for some
t0 ∈ [0,1], then u(t)= 0 for all t ∈ [0,1].

Proof. We prove by contradiction that u4(t0) = 0. If u4(t0) �= 0, we can assume u4(t0) >
0. Let v be the zero vector function on [0,1]. Thus u(t0) ≥ v(t0) and u(t0) �= v(t0). If
t0 < 1, then by Lemma 2.3, u1(1) > 0, a contradiction. If t0 = 1, then we consider ũ :=
[u1(1− t),−u2(1− t),u3(1− t),−u4(1− t)]T, which is clearly also a solution of (2.1).
Hence ũ(0)≤ v(0) and ũ(0) �= v(0) similarly yield u1(0)= ũ1(1) < 0. It contradicts again
the Dirichlet boundary conditions.

We have proved u4(t0)= 0. Since the zero function is a solution of (2.3) on [t0,1], the
uniqueness of the solution of (2.3) implies u(t) = 0 for t ∈ [t0,1]. Similarly u(t) = 0 for
t ∈ [0, t0]. �

Lemma 3.2. Let λ be an eigenvalue of (1.1) and u a corresponding eigenfunction. Then
(i) u has finitely many zero points in [0,1];
(ii) if u(t0)= 0 for some t0 ∈ (0,1), u′(t0) �= 0;
(iii) u′′(0) �= 0.

Proof. We denote by u := [u,u′,ψp(u′′),(ψp(u′′))′]T the corresponding solution of (2.1).
We have λ > 0 by [1, Corollary 4(iii)].

(i) Assume by contrary that there is a sequence {tn}∞n=1 ⊂ [0,1], u(tn) = 0. We can
suppose that tn→ t0 for some t0 ∈ [0,1], and tn �= t0 for all n∈N. Clearly,

u1
(
t0
)= lim

n→∞u
(
tn
)= 0, u2

(
t0
)= lim

n→∞
u
(
tn
)

tn− t0 = 0,

u′2
(
t0
)= lim

n→∞
2u
(
tn
)

(
tn− t0

)2 = 0,
(3.1)

and so u3(t0) = ψp(u′2(t0)) = 0. Since λ > 0, Lemma 3.1 yields u ≡ 0, a contradiction to
the nontriviality of u= u1.

(ii) We proceed again by contradiction. Let u1(t0)= u2(t0)= 0, t0 ∈ (0,1). Lemma 3.1
implies u3(t0) �= 0, and we can assume u3(t0) > 0.

Let, first, u4(t0) ≥ 0. Hence u(t0) ≥ 0, u(t0) �= 0, and Lemma 2.3 then implies u(1) =
u1(1) > 0, a contradiction.

It remains now to investigate the opposite case u4(t0) < 0. We denote by ũ(t) := [u1(1−
t),−u2(1− t),u3(1− t),−u4(1− t)]T a solution of (2.1). Then, ũ(1− t0) = [0,0,u3(t0),
−u4(t0)]T ≥ 0, �= 0. Hence, by Lemma 2.3, u(0)=u1(0)= ũ1(1)>0, a contradiction again.

(iii) It is a direct consequence of Lemma 3.1. �
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We use the results [4, Theorems 1.1 and 1.3] by Drábek and Ôtani that the Navier
problem

(∣∣u′′(t)∣∣p−2
u′′(t)

)′′ = λ∣∣u(t)
∣∣p−2

u(t), t ∈ [0,1],

u(0)= u′′(0)= u(1)= u′′(1)= 0
(3.2)

has the least positive eigenvalue, which we denote by λ̃1(p). There is a corresponding
eigenfunction ũ1(p) that satisfies ũ1(p) > 0 and ũ1(p)′′ < 0 in (0,1), and ũ1(p)′(0) = 1.
Moreover, ũ1(p) is even with respect to 1/2, and so

ũ1(p)′(1)=−ũ1(p)′(0),
(
ψp
(
ũ1(p)′′

))′∣∣
t=1 =−

(
ψp
(
ũ1(p)′′

))′∣∣
t=0. (3.3)

The eigenfunctions, corresponding to higher eigenvalues, are all constructed from ũ1(p)
in [4]. We will construct the eigenfunctions of the Dirichlet problem (1.1) using the func-
tion ũ1(p) too.

For fixed p > 1, we define a function ũ : [0,+∞)→R by

ũ(t)= (−1)nũ1(p)(t−n) for t ∈ [n,n+ 1), n∈ {0,1,2, . . .}. (3.4)

We denote ũ := [ũ, ũ′,ψp(ũ′′),(ψp(ũ′′))′]T. The properties of ũ1(p) guarantee that ũ is
a solution of (2.3) on [0,+∞) for λ := λ̃1(p) > 0, and with the initial condition ũ(0) =
[0,1,0, ũ4(0)]

T
. Obviously, ũ4(0) < 0 since otherwise, ũ(0)≥ 0, ũ(0) �= 0, and Lemma 2.3

would imply ũ1 > 0 on (0,+∞).

Lemma 3.3. Let n ∈ N be arbitrary. Then there exists an eigenfunction u4n−2 of (1.1),
u′′4n−2(0)= 1, having precisely 4n− 3 zero points in (0,1).

Proof. Let a mapping T : R→ (C[0,2n])4 assign to a ξ ∈ R the solution of (2.3), where
t0 :=0, t1 :=2n, λ := λ̃1(p), and [α,β,γ,δ]T := [0,1,0,ξ]T. Clearly, T(ũ4(0))= ũ. Let w :=
T(0). Then w(0)≥ 0, w(0) �= 0, and Lemma 2.3 implies w > 0 on (0,2n]. The continuous
dependence of the solution of the initial value problem (2.3) on the initial conditions (see
[2, Corollary 1.10]) means that T is continuous.

We define a mapping f : (C[0,2n])4 →R by

f (u) := min
t∈[2n−1,2n]

u1(t), u∈ (C[0,2n]
)4
. (3.5)

Then f and also g : R→ R, g := f ◦ T , are continuous. Now clearly g(ũ4(0)) < 0 and
g(0) > 0. Consequently, there exists a constant K ∈ (ũ4(0),0) (we recall that ũ4(0) < 0)
such that g(K)= 0. We denote v := T(K).

Since v(0)≥ ũ(0) and v(0) �= ũ(0), Lemma 2.3 yields v > ũ on (0,2n]. We have

min
t∈[2n−1,2n]

v1(t)= 0 (3.6)

(see Figure 3.1). Due to the continuity of v1, we can take the first point in [2n− 1,2n],
where the minimum (3.6) is achieved, and denote it by t̄. Since v1(2n− 1) > ũ1(2n− 1)=
0 and v1(2n) > ũ1(2n)= 0, it must be t̄ ∈ (2n− 1,2n). Hence v1(t̄)= v2(t̄)= 0.
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w1

0 1 2n−2 2n−1 t̄

v1

ũ1

2n

Figure 3.1. Proof of Lemma 3.3 for n= 2.

We now define a function û4n−2 : [0,1]→R by

û4n−2(t) :=



v1
(
t̄(1− 2t)

)
for t ∈

[
0,

1
2

]
,

−v1
(
t̄(2t− 1)

)
for t ∈

(
1
2

,1
]
.

(3.7)

We immediately get û4n−2(0)= û′4n−2(0)= û4n−2(1)= û′4n−2(1) = 0. Since v1(0) = v3(0) =
0, the vector function

û4n−2 :=
[
û4n−2, û′4n−2,ψp

(
û′′4n−2

)
,
(
ψp
(
û′′4n−2

))′]T
(3.8)

is of class C1[0,1], and one can easily check that û4n−2 is a solution of (2.1) with λ :=
(2t̄)2pλ̃1(p). Hence, û4n−2 is an eigenfunction of (1.1), corresponding to the eigenvalue
λD

4n−2(p) := (2t̄)2pλ̃1(p). Since t̄ ∈ (2n− 1,2n), we obtain the estimate

λD
4n−2(p)∈ ((4n− 2)2pλ̃1(p),(4n)2pλ̃1(p)

)
, n∈N. (3.9)

Lemma 3.2(iii) implies û′′4n−2(0) �= 0, and so

u4n−2 := 1
û′′4n−2(0)

û4n−2 (3.10)

is an eigenfunction of (1.1), corresponding to λD
4n−2(p) and satisfying, moreover,

u′′4n−2(0)= 1.
We now show that u4n−2 has precisely 4n− 3 zeros in (0,1). Lemma 3.2(i) and (ii) state

that u4n−2 has finitely many zero points in (0,1), which all are simple.
Let k ∈ {0,1, . . . ,n− 2} be arbitrary. Then we have already verified all assumptions of

Lemma 2.4, where u := ũ, v := v, t0 := 2k, tm := 2k + 1, t1 := 2k + 2, and tr := t̄. Hence
Lemma 2.4 yields that v1 has exactly two zeros in (2k,2k+ 2], that is, v1 has exactly 2n− 2
zeros in (0,2n− 2]. By the choice of t̄, v1 > 0 on (2n− 2, t̄), and so v1 has precisely 2n− 2
zeros even in (0, t̄). The definitions (3.10) of u4n−2 and (3.7) immediately yield that u4n−2

has precisely 2(2n− 2) + 1= 4n− 3 zeros in (0,1), and the proof is complete. �

Lemma 3.4. Let n∈N be arbitrary. Then there exists an eigenfunction u4n of (1.1), u′′4n(0)=
1, having precisely 4n− 1 zero points in (0,1).
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0 = t0 t4n−3

t̃2 t̃3 t̃0 t̃1

t̄ th1
=

t4n−2

w1 û4n

υ1

Figure 3.2. Proof of Lemma 3.4 for n= 1.

Proof. We denote

th :=
(
λD

4n+2(p)

λD
4n−2(p)

)1/(2p)

>

(
(4n+ 2)2pλ̃1(p)

(4n)2pλ̃1(p)

)1/(2p)

> 1. (3.11)

(We used estimate (3.9).) We define a function v1 : [0, th]→R by

v1(t)= t2hu4n+2

(
t

th

)
, t ∈ [0, th

]
(3.12)

(see Figure 3.2), where the functions u4n+2, n ∈ N, were defined in the previous proof.
We denote v := [v1,v′1,ψp(v′′1 ),(ψp(v′′1 ))′]T. Clearly, v1(0) = v2(0) = v1(th) = v2(th) = 0,
v3(0)= 1, and v1 has precisely 4n+ 1 zero points in (0, th). Since u4n+2 is a solution of (1.1)
with λ := λD

4n+2(p), we get by substituting v into (2.3) that v is a solution of (2.3) on [0, th],

with λ := λD
4n+2(p)t

−2p
h = λD

4n−2(p) and the initial condition [α,β,γ,δ]T := [0,0,1,v4(0)]T.
Similarly, as in the proof of Lemma 3.3, we define a mapping T : R→ (C[0, th])4 that

assigns to ξ ∈ R the solution of (2.3), with t0 := 0, t1 := th, λ := λD
4n−2(p), and [α,β,

γ,δ]T := [0,0,1,ξ]T.T is again continuous by [2, Corollary 1.10]. Obviously, v=T(v4(0)).
We denote K1 := (ψp(u′′4n−2(t)))′|t=0 and w := T(K1). The uniqueness of the solution

of the initial value problem impliesw1 = u4n−2 on [0,1]. It must beK1 < 0 since otherwise,
w ≥ 0, w �= 0, and so w > 0 on (0, th] by virtue of Lemma 2.3. But w1(1)= u4n−2(1)= 0.
From the definition of u4n−2, we see that u4n−2 is odd with respect to 1/2. Thus w1(t) =
−w1(1− t) and w3(t) = −w3(1− t) for all t ∈ [0,1]. Hence w3(1) = −w3(0) = −1 and
w4(1)=w4(0)= K1 < 0. Now, w(1)≤ 0, w(1) �= 0, and Lemma 2.3 gives w < 0 on (1, th].

Now we prove that K1 < v4(0). If K1 > v4(0), then w > v on (0, th] by Lemma 2.3. But
w1(th) < 0 = v1(th). If K1 = v4(0), then w = v by the uniqueness of the solution of (2.3).
This is not possible for the same reason. Hence K1 < v4(0), and Lemma 2.3 implies w < v
on (0, th].

Since w1 coincides with u4n−2 on [0,1], it has precisely 4n− 1 zero points in [0,1],
which we denote by 0 = t0 < t1 < ··· < t4n−3 < t4n−2 = 1. We take k ∈ {0,1, . . . ,2n− 2}
arbitrary. Now all assumptions of Lemma 2.4, where u := w, v := v, t0 := t2k, tm := t2k+1,
t1 := t2k+2, and tr := th, are satisfied. Hence v1 has exactly two zeros in each (t2k, t2k+2], and
so exactly 4n− 2 zeros in (0,1]. We already know that v1 has 4n+ 1 zeros in (0, th). We
denote by t̃0 < t̃1 the last two. Obviously, t̃0, t̃1 > 1. Since v′′1 (0)= 1, Lemma 3.2(ii) yields
v1 > 0 on (t̃0, t̃1).
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Similarly, as in the previous proof, we define a mapping f : (C[0, th])4 →R by

f (u) := max
t∈[t̃0,t̃1]

u1(t), u∈ (C[0, th
])4

. (3.13)

Again f and g : R → R, g = f ◦ T , are continuous. We have g(K1) = f (w) < 0 and
g(v4(0)) = f (v) > 0. Thus there exists K ∈ (K1,v4(0)) such that g(K) = 0. We denote
û4n := T(K) and û4n, the first component of û4n. Since K < v4(0), we have û4n(0) ≤
v(0) and û4n(0) �= v(0), and Lemma 2.3 yields û4n < v on (0, th]. In particular, û4n(t̃0) <
v1(t̃0)= 0 and û4n(t̃1) < v1(t̃1)= 0. Thus the maximum

max
t∈[t̃0,t̃1]

û4n(t)= 0 (3.14)

must be achieved in (t̃0, t̃1). We again denote by t̄ the least zero point of û4n in (t̃0, t̃1).
Obviously, û4n(0)= û′4n(0)= û4n(t̄)= û′4n(t̄)= 0, and so the function u4n, defined by

u4n(t)= 1
t̄2
û4n
(
t̄t
)
, t ∈ [0,1], (3.15)

is an eigenfunction of (1.1), satisfying u′′4n(0)=1. Lemma 3.2(i) and (ii) yield that u4n in
[0,1], and also û4n in [0, t̄], have finitely many zero points, all being simple.

Since K1 < K , we can show (similarly as we did for v) that û4n satisfies w < û4n on
(0, th], and û4n has exactly 4n− 2 zeros in (0,1]. We denote by t̃2 and t̃3 the (4n− 2)th
and the (4n− 1)th, respectively, zero point of v1 in (0, th). Hence t̃2 ≤ 1 < t̃3 and v1 > 0 on
(t̃2, t̃3). We showed that û4n(t̃2) < v1(t̃2)= 0, û4n(1) > w1(1)= 0, and û4n(t̃3) < v1(t̃3)= 0.
Consequently, t̃2 < 1 and û4n has at least one zero point in each of the intervals (t̃2,1) and
(1, t̃3).

If û4n had at least two zeros in (1, t̃3), then all assumptions of Lemma 2.4, where u :=
û4n, v := v, tr := t̃3, and t0, tm, t1 are the first three zero points of û4n in (t̃2, t̃3), would be
verified, and Lemma 2.4 would imply that v1 had at least two zeros in (t̃2, t̃3). But v1 > 0
there. Hence û4n has exactly 4n− 1 zeros in (0, t̃3). Since û4n < v1 ≤ 0 on [t̃3, t̃0], and due
to the choice of t̄, û4n has precisely 4n− 1 zero points even in (0, t̄), so as u4n in (0,1). This
finishes the proof. �

Lemma 3.5. Let n∈N be arbitrary. Then there exists an eigenfunction un of (1.1), u′′n (0)=
1, having precisely n− 1 zero points in (0,1).

Proof. It remains to prove the existence of an eigenfunction with 2m− 2 zeros in (0,1),
m∈N. The proof is very similar to that of Lemma 3.3.

First, we define a mapping T : R→ (C[0,1])4 assigning to a ξ ∈R the solution of (2.3)
with t0 := 0, t1 := 1, λ := λD

2m(p), and [α,β,γ,δ]T := [0,0,1,ξ]T. Again, [2, Corollary 1.10]
guarantees the continuity of T . The constants λD

2m(p) were defined in the previous two
proofs.

We denote u2m := [u2m,u′2m,ψp(u′′2m),(ψp(u′′2m))′]T, where the eigenfunctions u2m of
(1.1) were constructed in the previous two proofs too. We denoteK1 := (ψp(u′′2m(t)))′|t=0.
The uniqueness of the solution of (2.3) implies that T(K1)= u2m. Let w := T(0). As in the
proof of Lemma 3.3, w > 0 on (0,1] (see Figure 3.3).
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0 = t0 t1 t2m−2 t2m−1 t̄

1 = t2m

u2m

û2m−1w1

Figure 3.3. Proof of Lemma 3.5 for m= 2.

We denote by 0 = t0 < t1 < ··· < t2m−1 < t2m = 1 all the zero points of u2m. Then f :
(C[0,1])4 →R defined by

f (u) := min
t∈[t2m−1,t2m]

u1(t), u∈ (C[0,1]
)4

, (3.16)

and g : R→R, g = f ◦T , are both continuous. SinceK1 < 0, g(K1) < 0, and g(0) > 0, there
is a K ∈ (K1,0) such that g(K) = 0. We denote û2m−1 := T(K), and denote by û2m−1 the
first component of û2m−1. Since K1 < K , we have u2m < û2m−1 on (0,1] by Lemma 2.3. Let
t̄ be the first t ∈ (t2m−1, t2m), where û2m−1(t)= 0. Hence û2m−1(t̄)= û′2m−1(t̄)= 0, and the
function

u2m−1(t) := 1
t̄2
û2m−1

(
t̄t
)
, t ∈ [0,1], (3.17)

is an eigenfunction of (1.1) with u′′2m−1(0)= 1.
Due to Lemma 3.2(i) and (ii), u2m−1 and even û2m−1 have in [0,1] and [0, t̄], respec-

tively, finitely many zeros, all being simple. Thus, similarly as in the proof of Lemma 3.3,
we can use Lemma 2.4 to show that û2m−1 has exactly two zeros in each of the intervals
(0, t2],(t2, t4], . . . , (t2m−4, t2m−2]. Since u′′2m(0)=1, we have û2m−1>u2m ≥ 0 on (t2m−2, t2m−1]
by virtue of Lemma 3.2(ii), and obviously û2m−1 > 0 on (t2m−1, t̄). Consequently, û2m−1,
as well as u2m−1, have precisely 2m− 2 zero points in (0, t̄) and (0,1), respectively. �

Lemma 3.6. Let u1 and u2 be eigenfunctions of (1.1), corresponding to eigenvalues λ1 and
λ2, respectively, and having precisely n1 − 1 and n2 − 1, respectively, zero points in [0,1],
n1,n2 ∈N. Assume u′′1 (0)= u′′2 (0)= 1. Then

(i) n1 < n2 ⇔ λ1 < λ2,
(ii) n1 = n2 ⇔ λ1 = λ2 ⇔ u1 = u2 on [0,1].

Proof. It suffices to show that

(1) λ1 < λ2 ⇒ n1 < n2,
(2) λ1 = λ2 ⇒ u1 = u2 on [0,1].

Since u′′1 (0) = u′′2 (0) = 1, the second implication is a consequence of the positivity and
the simplicity of all eigenvalues of (1.1) (see [1, Example 8]). So, it remains to prove the
first one.

Let λ1 < λ2. Substituting into (1.1), we realize that û1(t) := u1(1− t), t ∈ [0,1], is an
eigenfunction of (1.1), corresponding to λ1. Hence the simplicity of λ1 implies existence



788 Discreteness of the spectra of p-biharmonic problems

of κ∈R such that û1 = κu1. Taking any t0 ∈ [0,1], where u1(t0) �= 0, we get

u1
(
t0
)= û1

(
1− t0

)= κu1
(
1− t0

)= κû1
(
t0
)= κ2u1

(
t0
) �= 0. (3.18)

Thus κ2 = 1, that is, the function u1 is either even or odd with respect to 1/2. We discuss
the former case only; for the latter one, the proof is analogous.

Now u1 is even, and so u′1 is odd with respect to 1/2. Thus u′1(1/2) = 0 and, due to
Lemma 3.2(ii), u1(1/2) �= 0. Consequently, u1 has an even number of zero points in (0,1),
and n1 is odd.

Let

t̃ :=
(
λ2

λ1

)1/(2p)

> 1. (3.19)

Let v be the solution of (2.3), where t0 := 0, t1 := t̃, λ := λ1, and [α,β,γ,δ]T := [0,0,1,K]T,
K = (ψp(u′′1 (t)))′|t=0. The uniqueness of the solution of (2.3) implies v1 = u1 on [0,1].
Since u1 is even with respect to 1/2, we have v3(1) = ψp(u′′1 (1)) = 1 and v4(1) = −K .
Clearly, K < 0 because if K ≥ 0, then v ≥ 0, v �= 0, and thus v > 0 on (0,1] by Lemma 2.3.
But v1(1)= 0. Hence v4(1) > 0, v(1)≥ 0, v(1) �= 0, and Lemma 2.3 yields v > 0 on (1, t̃].

We define a function w1 : [0, t̃]→R by

w1(t) := t̃2u2

(
t

t̃

)
, t ∈ [0, t̃]. (3.20)

We denote w := [w1,w′1,ψp(w′′1 ),(ψp(w′′1 ))′]T. Then w is a solution of (2.3), with t0 := 0,
t1 := t̃, λ := λ2 t̃−2p = λ1, and [α,β,γ,δ]T := [0,0,1,w4(0)]T. We prove that K > w4(0). If
K < w4(0), then v(0)≤w(0), v(0) �=w(0), and so v < w on (0, t̃] by Lemma 2.3, which is
not possible since v1(t̃) > 0= w1(t̃). If K = w4(0), then the uniqueness of the solution of
(2.3) would imply v =w on [0, t̃], which cannot be true for the same reason.

We denote by 0= t0 < t1 < ··· < tn1−1 < tn1 = 1 all zero points of v1 = u1 in [0,1]. We
have v(0)≥w(0), v(0) �=w(0), and so Lemma 2.3 yields v > w on (0, t̃]. Since w′′1 (0)= 1,
it must be w1 > 0 on (0,ε) for some ε > 0. We have w1(t1) < v1(t1) = 0, and so w1 has at
least one zero in (0, t1). We prove that it has only one. Assume by contrary that it has at
least two. Then all assumptions of Lemma 2.4, where t0 := 0, tm < t1 are the first two zeros
of w1 in (0, t1), tr := t1, u := w, and v := v, are satisfied, and thus v1 has at least two zero
points in (0, t1). This is a contradiction.

We prove that w1 has exactly n1 zeros in (0,1]. For n1 = 1, we have proved it al-
ready. For n1 > 1, take arbitrary k ∈ {0,1, . . . , (n1 − 3)/2}. We have verified all assump-
tions of Lemma 2.4 with u :=−v, v :=−w, t0 := t2k+1, tm := t2k+2, t1 := t2k+3, and tr := t̃.
Consequently, both −w1 and w1 have exactly two zeros in (t2k+1, t2k+3], and altogether
1 + 2((n1− 3)/2 + 1)= n1 zeros in (0,1]. Thus the number of zeros of w1 in (0, t̃), which
is equal to the number of zeros of u2 in (0,1), is at least n1. Hence n2 > n1, and the proof
is finished. �

Proof of Theorem 1.1. Lemma 3.5 gives us the existence of the sequence {un}∞n=1, u′′n (0)=
1, of eigenfunctions of (1.1) having precisely n− 1 zero points in (0,1). We denote the cor-
responding eigenvalues by λD

n (p) > 0 in accordance with the proof of Lemma 3.3. Then
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Lemma 3.6(i) yields

λD
1 (p) < λD

2 (p) < ··· , (3.21)

and estimate (3.9) implies λD
n (p)→ +∞ as n→∞.

On the other hand, if we take any eigenfunction u of (1.1), then u′′(0) �= 0 according
to Lemma 3.2(iii), and u has a finite number of zero points in (0,1) (denote it by n0) by
Lemma 3.2(i). Lemma 3.6(ii) then yields

u

u′′(0)
= un0 . (3.22)

Consequently, the sequences {λD
n (p)}∞n=1 and {un}∞n=1 contain all eigenvalues and eigen-

functions (up to normalization) of (1.1).
Simplicity of the eigenvalues λD

n (p) of (1.1) is a consequence of [1, Corollary 4(i)].
It now remains to prove the discreteness of the set of eigenfunctions of (1.1), which is a

standard consequence of the above facts. We take an eigenfunction un of (1.1). We denote
by 0= t0 < t1 < t2 < ··· < tn−1 < tn = 1 all the zero points of un. We know that u′′n (0) �= 0
(Lemma 3.2(iii)) and u′n(ti) �= 0, i ∈ {1,2, . . . ,n− 1} (Lemma 3.2(ii)). Since un is even or
odd with respect to 1/2 (see the proof of Lemma 3.6), we have |u′′n (1)| = |u′′n (0)| �= 0.

Consequently, there exist neighborhoods �i ⊂ [0,1] of ti, where i∈ {0,1, . . . ,n− 1,n},
and a constant K > 0 such that∣∣u′′n (t)

∣∣≥ K for t ∈�0∪�n,∣∣u′n(t)
∣∣≥ K for t ∈

⋃
i∈{1,2,...,n−1}

�i,

∣∣un(t)
∣∣≥ K for t ∈ [0,1] \

⋃
i∈{0,1,...,n}

�i.

(3.23)

Now, if we take 0 < ε < K , then any eigenfunction u of (1.1) such that ‖u−un‖C2[0,1] < ε
has n− 1 zero points in (0,1), so as un. Thus

u

u′′(0)
= un (3.24)

by Lemma 3.6(ii). This completes the proof of Theorem 1.1. �

4. Neumann problem

We describe the set of positive eigenvalues and the corresponding eigenfunctions of (1.2)
by means of the (positive) eigenvalues and the corresponding eigenfunctions of (1.1),
showing that they are in one-to-one correspondence. The zero eigenvalue must be treated
separately, and by [1, Corollary 4(ii)], neither (1.1) nor (1.2) has a negative eigenvalue.

We divide the proof of Theorem 1.2 into the following three assertions.

Proposition 4.1. The set of all eigenvalues of (1.2) forms a sequence 0= λN
0 (p) < λN

1 (p) <
··· → +∞. Every λN

n (p), n > 0, is a simple eigenvalue while λ0 = 0 is not. Moreover, (1.3)
holds true, and for n > 0, for any eigenfunction u of (1.2), corresponding to λN

n (p), and for
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any eigenfunction v of (1.1), corresponding to λD
n (p/(p− 1)), (1.4) holds true for some κ∈

R \ {0}.
Proof. We take any positive eigenvalue λ of (1.2) and a corresponding eigenfunction u1.
It means that u = [u1,u′1,ψp(u′′1 ),(ψp(u′′1 ))′]T is a solution of (2.2). Since λ > 0, we can
multiply the first two equations in (2.2) by ψp′(λ) to obtain the equivalent problem

u′3(t)= u4(t),

u′4(t)= ψ(p′)′
(
ψp′(λ)u1(t)

)
,(

ψp′(λ)u1(t)
)′ = (ψp′(λ)u2(t)

)
,(

ψp′(λ)u2(t)
)′ = (ψp′(λ)

)
ψ(p′)

(
u3(t)

)
, t ∈ [0,1],

u3(0)= u4(0)= u3(1)= u4(1)= 0.

(4.1)

We immediately see that [u3,u4,ψp′(λ)u1,ψp′(λ)u2]T is a solution of the Dirichlet prob-
lem (2.1), with p := p′ and λ := ψp′(λ). The function u3 cannot be the zero function since
otherwise, u1 = ψp′(u′′3 /λ)= 0 on [0,1]. But u1 is an eigenfunction of (1.2). Consequently,
u3 is an eigenfunction of the Dirichlet problem (1.1) with p := p′ and λ := ψp′(λ), and so
ψp′(λ)= λD

n (p′) for some n∈N. Hence λ= ψp(λD
n (p′)). Thus we proved that any positive

eigenvalue λ of (1.2) equals λN
n (p) for some n ∈ N. The sequence {λN

n (p)}∞n=1 is defined
by (1.3).

To show that λN
n (p) is an eigenvalue of (1.2) for any n ∈ N, we take the eigenvalue

λD
n (p′) of (1.1), with p := p′, and a corresponding eigenfunction, denoted by v1 here.

Then v := [v1,v′1,ψp′(v′′1 ),(ψp′(v′′1 ))′]T is a solution of the Dirichlet problem (2.1), where
p := p′ and λ := λD

n (p′). Substituting into (4.1), one can check that it is equivalent to the
claim that

u=
[

v3

λD
n

(
p′
) ,

v4

λD
n

(
p′
) ,v1,v2

]T

(4.2)

is a solution of (4.1), with λ := ψp(λD
n (p′)) = λN

n (p) > 0. But for λ > 0, (4.1) is equiva-
lent to (2.2), and so u is also a solution of the corresponding problem (2.2). Again, v3

is not the zero function since if it was, then we would conclude from (2.1) that v1 =
ψ(p′)′(v′′3 /λD

n (p′)) = 0 on [0,1], which is not true. Hence u1 is an eigenfunction of (1.2),
corresponding to the eigenvalue λN

n (p). This proves that the positive eigenvalues of (1.2)
form the sequence λN

n (p), n∈N, defined by (1.3). Their simplicity is a consequence of [1,
Corollary 4(i)].

We showed (see (4.2)) that any eigenfunction ζu1, ζ ∈R \ {0}, of (1.2), corresponding
to λN

n (p) > 0, can be written as κv3 = κψp′(v′′1 ), where κ = ζ/λD
n (p′), and v1 is an eigen-

function of the Dirichlet problem (1.1) for p := p′, corresponding to λD
n (p′). This proves

(1.4).
Obviously, λN

0 (p)= 0 is an eigenvalue of (1.2) since any linear function is a solution of
(1.2) with λ := 0. Consequently, λN

0 (p)= 0 is not a simple eigenvalue. Thus we proved that
all eigenvalues of (1.2) form the sequence 0 = λN

0 (p) < λN
1 (p) < ··· . Since λD

n (p′)→ +∞
as n→∞, the relation (1.3) immediately yields that even λN

n (p)→ +∞ as n→∞. �
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Now we prove that an eigenfunction, corresponding to an eigenvalue λN
n (p) of (1.2),

n > 0, has precisely n+ 1 zero points in (0,1). Due to (1.4), the zero points of an eigen-
function of (1.2), corresponding to λN

n (p), n∈N, coincide with zero points of the second
derivative of an (arbitrary) eigenfunction of (1.1) for p := p′, corresponding to λD

n (p′).
Hence we can restate the assertion as follows.

Lemma 4.2. Let u be an eigenfunction of (1.1), corresponding to λD
n (p′) and satisfying

u′′(0)= 1. Then u′′ has precisely n+ 1 zero points in (0,1).

Proof. We denote by 0 = t0 < t1 < ··· < tn−1 < tn = 1 all the zero points of u. In each
interval (ti, ti+1), i ∈ {0,1, . . . ,n− 1}, u has at least one local maximum for i even, and
minimum for i odd. We choose one in each interval and denote it by t̃i ∈ (ti, ti+1). Hence
we have sgn(u(t̃i))= (−1)i and u′(t̃i)= 0. We denote u := [u,u′,ψp′(u′′),(ψp′(u′′))′]T.

First, we prove that u′′(t̃i) �=0 for all i∈{0,1, . . . ,n− 1}. We proceed by contradiction—
assume u′(t̃i) = u′′(t̃i) = 0. We suppose that u(t̃i) > 0; for u(t̃i) < 0, the proof is simi-
lar. Similarly as in the proof of Lemma 3.2(ii), we distinguish two cases. For u4(t̃i) ≥ 0,
Lemma 2.3 yields u > 0 on (t̃i,1], and for u4(t̃i) < 0, the same lemma implies u > 0 on
[0, t̃i), a contradiction in both cases. This proves that sgn(u′′(t̃i))= (−1)i+1.

Clearly, u > 0 on (0, t̃0). Now we show that u′′ has exactly one zero point in (0, t̃0).
Since u′′(0) = 1 and u′′(t̃0) < 0, it has at least one. Assume by contrary that u′′(a1) =
u′′(a2) = 0, 0 < a1 < a2 < t̃0. Then u3(a1) = u3(a2) = 0 and u3(t̃0) < 0. The mean value
theorem implies the existence of b1 ∈ (a1,a2) and b2 ∈ (a2, t̃0) such that u4(b1) = 0 and
u4(b2) < 0. Hence u′4(c) < 0 for some c ∈ (b1,b2). This is a contradiction since

u(c)= u1(c)= ψp
(
u′4(c)
λD
n

(
p′
)
)
< 0, (4.3)

but c ∈ (0, t̃0). Similarly, one can prove that u′′ has exactly one zero point in (t̃n−1,1).
We now consider an interval (t̃i, t̃i+1) for arbitrary i∈ {0,1, . . . ,n− 2}. We assume that

i is even; for i odd, the proof is analogous. Thus u1 > 0 on [t̃i, ti+1), u1 < 0 on (ti+1, t̃i+1],
u3(t̃i) < 0, and u3(t̃i+1) > 0. Again, u′′ has at least one zero in (t̃i, t̃i+1), and we prove by con-
tradiction that it has exactly one. So, let u3(a1)= u3(a2)= 0, t̃i < a1 < a2 < t̃i+1. Then the
mean value theorem yields u4(b1) > 0, u4(b2) = 0, and u4(b3) > 0 for some b1 ∈ (t̃i,a1),
b2 ∈ (a1,a2), and b3 ∈ (a2, t̃i+1). Hence u′4(c1) < 0 and u′4(c2) > 0 for some c1 ∈ (b1,b2) and
c2 ∈ (b2,b3). Since u1 = ψp(u′4/λD

n (p′)), we have u1(c1) < 0 and u1(c2) > 0. Consequently,
c1 > ti+1 and c2 < ti+1, a contradiction.

We now see that u′′ has precisely n+ 1 zero points in (0,1). �

Proposition 4.3. For any eigenfunction u of (1.2), corresponding to a positive eigenvalue,
there exists an ε > 0 such that if v is an eigenfunction of (1.2) and ‖u− v‖C2[0,1] < ε, then
v = κu for some κ∈R.

Proof. The reader is invited to verify that Lemma 3.2(ii) holds true even for the eigen-
functions of (1.2), corresponding to positive eigenvalues. Then, similarly as in the proof
of Theorem 1.1, we can take ε > 0 so small that v has the same number of zeros as u.
The assertion is then a consequence of Lemma 4.2, (1.4), and the simplicity of positive
eigenvalues of (1.2) (see [1, Example 9]). �
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Proving Proposition 4.3, we finished the proof of Theorem 1.2.

5. Open problems

There are many open questions concerning the functions p �→ λD
n (p) and p �→ λN

n (p), p ∈
(1,∞), n∈N. We know only that they are positive.

(1) Are λD
n (p) and λN

n (p), n ∈ N, continuous as in the case of the Navier problem
(3.2) (see [4])? Or even of the class C∞ as in the second-order case? Are they
monotone?

(2) Is it possible to investigate limp→1+ λ
D
n (p), limp→∞ λD

n (p), limp→1+ λ
N
n (p), and

limp→∞ λN
n (p)?

(3) Is there a relation between λD
n (p) and λN

n (p), n∈N? (Note that (1.3) is a relation
between λD

n (p) and λN
n (p′).) Can they be compared with the eigenvalues of the

Navier problem? We already know that λD
4n−2(p), n ∈ N, lies between the (4n−

2)th and the (4n)th eigenvalues of the Navier problem (see (3.9) and [4]). When
do we have λD

n (p) = λN
n (p), λD

n (p) < λN
n (p), and λD

n (p) > λN
n (p)? We only know

that for p = 2 and any n∈N, the equality holds true.
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