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We prove that critical values set of a differentiable map lies on a line of certain smoothness
class.

1. Introduction

For those familiar with the “space-filling curves” topic, the headline of the paper is no

surprise. G. Peano in 1890 constructed the first such continuous function fp : [0,1]
onto−−→

[0,1]2. Nowadays, the topic is well developed by a number of mathematicians (see [9]).
A further question is how smooth can the line be? Or how far from rectifiable is the

line? In 1935, Whitney [10] published his example of a C1-function fW : [0,1]2 onto−−→ [0,1]
not constant on a connected set of critical points. The author in [2] constructed Whitney-
type examples of maps f ∈ Ck(Rn,Rm) for maximal possible k.

Theorem 1.1 [2]. For any n,m ∈ N, there exist a map f : [0,1]n → [0,1]m, contained in
Ck for all real k < n/m, and a connected set E ⊆ [0,1]n such that every partial derivative of
f of order < n/m vanishes on E and f (E)= [0,1]m.

Theorem 1.2 [2]. Let n, m, p be nonnegative integer numbers, n >m > p; then there exists
a map f : Rn→Rm, contained in Ck for all real k < (n− p)/(m− p), and a connected subset
E of points of rank p such that f (E) contains an open set.

The first theorem holds important information that [0,1]m can be covered by a line of
smoothness class C<1/m (i.e., we write f ∈ C<k0 if f ∈ Ck for every k < k0). In this paper,
the author determines the smoothness class of a line that can cover a critical values set of
a differentiable map.

Main theorem1. Let F : Rn Ck·λ−−→Rm, k ∈N, λ∈ [0,1); then F(Cp(F))⊆ f (Σµ f ) for some
C<µ- function f : R→ Rm, where µ = max{1/(p + ((n− p)/(k + λ))),1/m} and Σµ f :=
{x ∈R: any partial derivative of f of order < µ vanishes at x}.
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This is a Sard-type theorem, and sharpness of the µ can be seen in the results, where
necessary and sufficient conditions for the Morse-Sard theorem are establi shed, that are
in [11, 3] for the case Ck(R1,R1), and [1] for the case Ck(Rn,R1).

2. Notations and preliminary lemmas

Definition 2.1. Let f : Rm → Rn be a continuous function and λ ∈ [0,1). It is said that
f ∈ C0·λ if f satisfies a λ-Hölder condition: for every compact neighborhood U , there
exists M > 0 such that

∣∣ f (x)− f (y)
∣∣�M · |x− y|λ ∀x, y ∈U. (2.1)

Definition 2.2. For k ∈ N, λ ∈ [0,1), a function f : Rm → Rn is a Ck·λ-function (or
f ∈ Ck·λ) if f ∈ Ck and every kth partial derivative of f is a C0·λ-function. If f ∈ Cp·β for
all p+β < k+ λ, f ∈ Ck·λ.

Definition 2.3. For f : Rm C0·λ−−→ Rn, define partial derivatives of order λ: f (λ)
1 , . . . , f (λ)

m by
the formula

f (λ)
i (a)= lim

t→0
sign(t)

f
(
a1, . . . ,ai−1,ai + t,ai+1, . . . ,an

)− f (a)
|t|λ (2.2)

for a= (a1, . . . ,am)∈Rm. If all partial derivatives of order λ are continuous, f ∈ Cλ.

Definition 2.4. For k ∈ R+, a function f : Rm C[k]·k−[k]−−−−−→ Rn is a Ck-function (or f ∈ Ck)
if f ∈ C[k] and every [k]th partial derivative of f is a Ck−[k]-function, where [k] is the
integer part of k. If f ∈ Ck for every k < k0, f ∈ C<k0 .

We begin by setting Kn
0 = {Qi0 , i0 ∈ N}, where Qi0 is a closed cube in Rn with side

length 1 and every coordinate of any vertex of Qi0 is an integer. In general, having con-
structed the cubes ofKn

s−1, divide eachQi0,i1,i2,...,is−1 ∈ Kn
s−1 into 2n closed cubes of side 1/2s,

and let Kn
s be the set of all these cubes. More precisely, we will write

Kn
s =

{
Qi0,i1,i2,...,is−1,is ; Qi0,i1,i2,...,is−1,is ⊆Qi0,i1,i2,...,is−1 ∈ Kn

s−1, 1 � is � 2n
}
. (2.3)

We also define

(i) Kn =⋃s+1∈NK
n
s (note that Kn is defined for Rn);

(ii) S(δ)—the length of a side of δ ∈ Kn.

Lemma 2.5. Let E1, E2 be copies of R. For all n,m ∈ N, there exists continuous Hn,m :

[0,1]
onto−−→ [0,1]2 ⊆ E1×E2 such that

(1) if α ∈ K1
(n+m)·s, then Hn,m(α) = α′ × α′′, where α′ ∈ K1

n·s, α′′ ∈ K1
m·s, α′ ∈ E1, and

α′′ ∈ E2,
(2) if α′ × α′′ ⊆ [0,1]2 such that α′ ⊆ E1, α′′ ⊆ E2, α′ ∈ K1

n·s, and α′′ ∈ K1
m·s, then

H−1
n,m(int(α′ ×α′′))⊆ α∈ K1

(n+m)·s.

Proof. We define for every n,m∈N a space-filling function Hn,m as follows.
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Figure 2.1. HU.

Figure 2.2. HD.

If the interval [0,1] can be mapped continuously onto the square [0,1]2, then after
partitioning [0,1] into 2n+m congruent subintervals and [0,1]2 into 2n+m congruent sub-
rectangles with sides 1/2n, 1/2m, each subinterval can be mapped continuously onto one
of the subrectangles.

Next, each subinterval is, in turn, partitioned into 2n+m congruent subintervals, and
each subrectangle into 2n+m congruent subrectangles with sides 1/22n, 1/22m and the ar-
gument is repeated. If this is carried on indefinitely, [0,1] and [0,1]2 are partitioned into
2(n+m)s congruent replicas, each with sides 1/2ns, 1/2ms for s∈N.

We need to demonstrate that the subsquares can be arranged so that adjacent subin-
tervals correspond to adjacent subsquares with an edge in common, and so that the in-
clusion relationships are presented, that is, if a rectangle corresponds to an interval, then
its subrectangles correspond to the subintervals of that interval.

We will use here combination of four different methods to construct these space-filling
curves. These methods are based on an idea of Peano [9]. For future use, we designate
them as VL(n,m), VR(n,m), HD(n,m), HU(n,m).

If we have a rectangle, then using any of those methods gives us 2n+m equal subrectan-
gles which are ordered according to the order assigned by the method used.

Figures 2.1, 2.2, 2.3, and 2.4 give us a basic idea of how these four methods work.
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Figure 2.3. VL.

Figure 2.4. VR.

Note. As soon as the curves in all four methods are passing through all the subrectangles,
the only essential difference among the four methods is the disposition of start and end
points. That is denoted in abbreviations of the methods: V-vertical, H-horizontal, L-left,
R-right, U-up, D-down.

Further, to create the next iteration curve, we will give the means of how to present
each of the subrectangles from the previous iteration (see Figures 2.5, 2.6, 2.7, and 2.8).

Finally, in Figures 2.9 and 2.10, we indicate how this process is to be carried out for
the next iteration.

Now we can define Hn,m for any n,m∈N.

Definition 2.6. Every t ∈ [0,1] is uniquely determined by a sequence of nested closed
intervals (that are generated by our successive partitioning), the lengths of which shrink
to 0. With this sequence, there corresponds a unique sequence of nested closed squares,
the diagonals of which shrink into a point, and which define a unique point in [0,1]2, the
image Hn,m(t) of t.

The function Hn,m satisfies the properties (1), (2) of Lemma 2.5 by its definition. �
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Lemma 2.7. Let E1, E2 be copies of R. For all ñ,m̃ : N→N, there exists continuous function

Hñ,m̃ : [0,1]
onto−−→ [0,1]2 ⊆ E1×E2 such that

(1) if α ∈ K1∑s
i=1 ñ(i)+m̃(i) for some s ∈ N, then Hñ,m̃(α) = α′ × α′′, where α′ ∈ K1∑s

i=1 ñ(i),

α′′ ∈ K1∑s
i=1 m̃(i),
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(2) if α′ ×α′′ ⊆ [0,1]2 such that α′ ⊆ E1, α′′ ⊆ E2, α′ ∈ K1∑s
i=1 ñ(i), and α′′ ∈ K1∑s

i=1 m̃(i) for

some s∈N, then H−1
ñ,m̃(int(α′ ×α′′))⊆ α∈ K1∑s

i=1 ñ(i)+m̃(i).

Proof. The proof is similar to the proof of Lemma 2.5, with the only difference that if we
used, for instance, a method VL(n,m) to decompose a subrectangle on an iteration s in
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Figure 2.9. Next iteration when started with method VL.

Figure 2.10. Next iteration when started with method HD.

Lemma 2.5, then here we use a corresponding method VL(n(s),m(s)) on the iteration s.
�

Definition 2.8 [2]. Call a function fn : [0,1]→ [0,1]n cubes-preserving if it has the follow-
ing properties:

(i) if α⊆ [0,1] and for some s∈N, α∈ K1
n·s implies fn(α)⊆ δ for some δ ∈ Kn

s ,
(ii) if δ ⊆ [0,1]n and for some s ∈ N, δ ∈ Kn

s implies f −1
n (int(δ)) ⊆ α for some α ∈

K1
n·s,

where int(δ) is the set of interior points of δ.
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Note that a continuous cubes-preserving function fn is a space-filling and measure-
preserving function, that is, with the property that if α ⊆ [0,1] and for some s ∈ N, α ∈
K1
n·s, then fn(α)= δ for some δ ∈ Kn

s .

Theorem 2.9 (space-filling function) [2, Theorem 1]. For every n∈N, there exists a con-
tinuous cubes-preserving function

fn : [0,1]
onto−−−→ [0,1]n. (2.4)

Definition 2.10. For m,n∈ N, k ∈ R, a function ψ : B ⊆ Rm →Rn is Dk-function if there
exist K > 0 such that for all b,b′ ∈ B

∣∣ψ(b)−ψ(b′)
∣∣k � K|b− b′|. (2.5)

2.1. Properties of Dk-functions

Extension on closure property [1]. If f : A⊆Rm Dk−→Rn for some k > 0, andA is the closure

of A, then there exists a unique function f : A⊆Rm C0−→Rn such that f � A= f , and f is
a Dk-function.

Composition property [1]. If g ∈Dk and f ∈Dp, then g ◦ f ∈Dkp.

Subsets property [1]. If f : A⊆Rm Dk−→Rm for some k > 0, then f � B ∈Dk for any B ⊆A.

C<k-extension on R property. If F : B ⊆ R
D1/k−−→ Rm, k > 0, then F = f � B for some func-

tion f : R
C<k−−→Rm, with range(F)⊆ f (Σk f ).

We prove this property as follows. Let f � B be the D1/k extension of the function F on
the closed set B the closure of B, that exists and is unique by the “extension on closure
property.” Then let T be a real number such that

∀b,b′ ∈ B ∣∣ f (b)− f (b′)
∣∣1/k � T|b− b′|, (2.6)

and let A= range( f � B); then range(F)⊆ A.
We now define the function f : R→ Rm as follows: if there exists a point b ∈ R such

that b =max{b ∈ B}, then for all x � b, f (x)= f (b), respectively, if there exists a point
b ∈R such that b =min{b ∈ B}; then for all x� b, f (x)= f (b).

We designate Z(B) = {(b,b′) ⊆ R \B; b < b′, b,b′ ∈ B}; this set is countable and we
can write Z(B)= {(bn,b′n); n∈N}, where bn,b′n ∈ B.

Let f = ( f1, . . . , fi, . . . , fm), where fi : B→R, 1 � i�m, are the component functions of
the function f � B; then for all n ∈ N, for all x ∈ (bn,b′n), and for all i (1 � i � m), we
define

fi(x)= ( fi(b′n)− fi
(
bn
)) · g

(
x− bn
b′n− bn

)
+ fi

(
bn
)
, (2.7)



Azat Ainouline 765

where (following [6, page 6]) g : R1 → [0,1] is a smooth map such that

g � (−∞,0]= 0,

g � [1,∞)= 1,

g′(x) > 0 for 0 < x < 1.

(2.8)

Then f is defined for all x ∈R, continuous, smooth on R \B and A⊆ range( f ). To finish
the proof of C<k-extension on R property, it suffices to show that

f (t)
i � B = 0 ∀i (1 � i�m), ∀t ∈ {1,2, . . . , [k]

}∪ ([k],k
)
. (2.9)

It is evident for nonlimit points of B. Let B′ ⊆ B be the set of limit points of B.

Case 1. If k � 1, then for all b ∈ B′ and some fixed t : 0 � t < k,

∣∣∣ f (t)
i (b)

∣∣∣= lim
h→0

∣∣ fi(b+h)− fi(b)
∣∣

|h|t . (2.10)

Note that we may suppose without loss of generality that

h > 0,

b+h∈ (bn,b′n
)

for some n∈N,

∆n := b+h− bn.
(2.11)

Then ∣∣ fi(b+h)− fi(b)
∣∣

|h|t �
∣∣ fi(bn)− fi(b)

∣∣+
∣∣ fi(b+h)− fi

(
bn
)∣∣(∣∣bn− b∣∣+∆n

)t
�
∣∣ fi(bn)− fi(b)

∣∣(∣∣bn− b∣∣+∆n
)t +

∣∣ fi(b+h)− fi
(
bn
)∣∣(∣∣bn− b∣∣+∆n
)t

� Tk
∣∣bn− b∣∣k(∣∣bn− b∣∣)t

+

∣∣ fi(b+h)− fi
(
bn
)∣∣

∆tn
.

(2.12)

We consider each summand of (2.12) separately:

Tk
∣∣bn− b∣∣k(∣∣bn− b∣∣)t = T

k
∣∣bn− b∣∣k−t, (2.13)

where k− t > 0;∣∣ fi(b+h)− fi
(
bn
)∣∣

∆tn
=
∣∣ fi(b′n)− fi

(
bn
)∣∣(

b′n− bn
)k ·

∣∣g(∆n/(b′n− bn)
)∣∣

∆n/(b′n− bn)
· ∆1−t

n(
b′n− bn

)1−k

� Tk max(Dg)

∣∣∣∣∣ ∆n
b′n− bn

∣∣∣∣∣
1−t(

b′n− bn
)k−t

,

(2.14)

where k− t > 0, 1− t > 0, and ∆n � b′n− bn.
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Turning back to (2.12), we see that

∣∣ f (t)
i (b)

∣∣� lim
h→0

(
Tk
∣∣bn− b∣∣k−t +Tk max(Dg)

(
∆n

b′n− bn
)1−t(

b′n− bn
)k−t)= 0 (2.15)

because either ∆n/(b′n− bn) or b′n − bn tends to 0 as h tends to 0. Let Ub be a compact
neighborhood of b; then for the M required by Definition 2.1, we can take the number

max
{
Tk
∣∣bn− b∣∣k−t +Tk max(Dg)

(
b′n− bn

)k−t
: bn,b′n,b ∈Ub

}
� Tk

(
diam

(
Ub
))k−t(

1 + max(Dg)
)
.

(2.16)

Case 2. If k > 1 for every t ∈R, 1 � t < k, we can suppose by induction that

f (t̃)
i � B ≡ 0, t̃ =


[t] if t 
∈N,

t− 1 if t ∈N.
(2.17)

Then for all b ∈ B,

∣∣∣ f (t)
i (b)

∣∣∣= lim
h→0

∣∣∣ f (t̃)
i (b+h)− f (t̃)

i (b)
∣∣∣

ht−t̃
(2.18)

and using (2.11),

∣∣∣ f (t̃)
i (b+h)− f (t̃)

i (b)
∣∣∣

ht−t̃
=

∣∣∣ f (t̃)
i (b+h)

∣∣∣(∣∣bn− b∣∣+∆n
)t−t̃

�

∣∣∣ f (t̃)
i (b+h)− f (t̃)

i

(
bn
)∣∣∣

∆t−t̃n

=
∣∣∣ f (t̃+1)

i (ξ) ·∆1+t̃−t
n

∣∣∣

(2.19)

for some ξ ∈ (bn,b′n) (note that f (t̃)
i (b) = f (t̃)

i (bn) = 0 because b,bn ∈ B, and also that
fi ∈ C∞ on (bn,b′n)).

From (2.7), it follows that

∣∣∣ f (t̃+1)
i (ξ)

∣∣∣=
∣∣ fi(bn)− fi

(
b′n
)∣∣(

b′n− bn
)t̃+1

·
∣∣∣∣g(t̃+1)

(
ξ − bn
b′n− bn

)∣∣∣∣
� Tk ·∣∣bn− b′n∣∣k(

b′n− bn
)t̃+1

· rt̃+1 = Tk
(
b′n− bn

)k
(
b′n− bn

)t̃+1
· rt̃+1,

(2.20)

where rt̃+1 =max{g(t̃+1)(α); α∈ [0,1]}.
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Then for f (t)
i (b), we can write

∣∣∣ f (t)
i (b)

∣∣∣� Tk · ∆1+t̃−t
n rt̃+1(

b′n− bn
)1+t̃−k = Tkrt̃+1 ·

∣∣∣∣ ∆n
b′n− bn

∣∣∣∣
1+t̃−t

· (b′n− bn)k−t; (2.21)

it means that

∣∣∣ f (t)
i (b)

∣∣∣� lim
h→0

(
Tkrt̃+1 ·

∣∣∣∣ ∆n
b′n− bn

∣∣∣∣
1+t̃−t

· (b′n− bn)k−t
)

, (2.22)

where k > t, ∆n/(b′n− bn) � 1, 1 + t̃ � t. The limit is equal to 0 because either ∆n/(b′n −
bn) or (b′n − bn) tends to 0 as h tends to 0. Let Ub be a compact neighborhood of b;
then for the K required by Definition 2.1, we can take the number Tkrt̃+1 · (diam(Ub))k−t

so that, by finishing the proof of (2.9), we finish the proof of the “C<k-extension on R

property.”

Lemma 2.11. Let n, p ∈N, p� n, k ∈R, k � 1. Then there exists a continuous space-filling
function

πnk,p =
(
π1,π2

)
: [0,1]

onto−−−→ [0,1]n (2.23)

such that π1 : [0,1]
D(pk+n−p)/k−−−−−−→ [0,1]p and π2 : [0,1]

Dpk+n−p−−−−→ [0,1]n−p are component func-
tions of πnk,p.

Proof. We consider the following:

(a) functions ñ,m̃ : N→N such that for every s∈N,

ñ(s)= p · ([ks]− [k(s− 1)
])

,

m̃(s)= n− p,
(2.24)

where [ks] is the integer part of ks;

(b) a function Hñ,m̃ : [0,1]
onto−−→ [0,1]2 defined in Lemma 2.7 and let h1,h2 : [0,

1]→ [0,1] be the component functions of Hñ,m̃ so that for all t ∈ [0,1], Hñ,m̃(t)=
(h1(t),h2(t))∈ [0,1]2;

(c) A function πnp,k = (π1,π2) : [0,1]
onto−−→ [0,1]n, where

π1 = fp ◦h1, π2 = fn−p ◦h2. (2.25)

Additionally,

fp : [0,1]
onto−−−→ [0,1]p, fn−p : [0,1]

onto−−−→ [0,1]n−p (2.26)

are some continuous space-filling cubes-preserving functions, the existence of
which follows from Theorem 2.9.
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We establish some properties of the functions π1, π2, which we will need to finish the
proof of Lemma 2.11.

(I) If α∈ K1
p[ks]+(n−p)s for some s∈N, then

fp
(
h1(α)

)= (π1(α)
)∈ Kp

[ks],

fn−p
(
h2(α)

)= (π2(α)
)∈ Kn−p

s .
(2.27)

We prove this property as follows. As p[ks] + (n− p)s =∑s
i=1 ñ(i) + m̃(i), by prop-

erty (1) of Lemma 2.7, one has that Hñ,m̃(α) = α′ × α′′, where h1(α) = α′ ∈ K1∑s
i=1 ñ(i) =

K1
p[ks] and h2(α) = α′′ ∈ K1∑s

i=1 m̃(i) = K1
(n−p)s. Then according to Definition 2.8 of cubes-

preserving functions fp, fn−p, we can see that

fp
(
h1(α)

)∈ Kp
[ks], fn−p

(
h2(α)

)∈ Kn−p
s . (2.28)

(II) If α∈ K1
p[ks]+(n−p)s for some s∈N, then

|α| = (S(π1(α)
))(p[ks]+(n−p)s)/[ks] = (S(π2(α)

))(p[ks]+(n−p)s)/s
, (2.29)

where S(π1(α)), S(π2(α)) are lengths of sides of cubes π1(α), π2(α), respectively.

We prove this property as follows. If α∈ K1
p[ks]+(n−p)s for some s∈N, then by property

(2.27), it means that

S
(
π1(α)

)= 1
2[ks]

, S
(
π2(α)

)= 1
2s
. (2.30)

On the other hand, α∈ K1
p[ks]+(n−p)s so that

|α| = 1
2p[ks]+(n−p)s ,

|α| = (S(π1(α)
))(p[ks]+(n−p)s)/[ks]

= (S(π2(α)
))(p[ks]+(n−p)s)/s

.

(2.31)

(III) To prove that π1 ∈D(pk+n−p)/k, π2 ∈Dpk+n−p, it suffices to show that there exists
K > 0 such that for all a,b ∈ [0,1], a < b,

(
diam

(
π1
(
[a,b]

)))p+(n−p)/k
< K(b− a) >

(
diam

(
π2
(
[a,b]

)))pk+n−p
. (2.32)

We prove this property as follows. If [a,b] ⊆ [0,1], then there exists s1 ∈ N, s1 � s0,
such that

1
2p[k(s1+1)]+(n−p)(s1+1) � b− a� 1

2p[ks1]+(n−p)s1
; (2.33)

then [a,b]⊆ α′ ∪α′′ for some α′,α′′ ∈ K1
p[ks1]+(n−p)s1 , α′ ∩α′′ 
= ∅, and also

b− a� |α′|
2p([k(s1+1)]−[ks1])+(n−p) >

|α′|
22kp+n . (2.34)
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From property (2.29), we can see that

|α′| = S(π1(α′)
)(p[ks1]+(n−p)s1)/[ks1] = S(π2(α′)

)(p[ks1]+(n−p)s1)/s1 (2.35)

and using the fact that

diam
(
π1(α′ ∪α′′))� 2

√
pS
(
π1(α′)

)
,

diam
(
π2(α′ ∪α′′))� 2

√
n− pS

(
π2(α′)

)
,

(2.36)

we get

diam
(
π1(α′ ∪α′′))� 2

√
p
(
2p([k(s1+1)]−[ks1])+n−p · (b− a)

)[ks1]/(p[ks1]+(n−p)s1)
, (2.37)

diam
(
π2(α′ ∪α′′))� 2

√
n− p

(
2p([k(s1+1)]−[ks1])+n−p · (b− a)

)s1/(p[ks1]+(n−p)s1)
. (2.38)

Considering inequality (2.38), we may suppose that diam(π2([a,b])) � 1; also using

[a,b]⊆ α′ ∪α′′,[
k
(
s1 + 1

)]− [ks1] < 2k+ 1,
(2.39)

and after the routine arithmetic transformation, we find that there exists n2 ∈ N, which
does not depend on s1, such that

(
diam

(
π2
(
[a,b]

)))pk+n−p � n2(b− a). (2.40)

Now we look at inequality (2.37). Knowing that (b− a) � 1/2p[k(s1+1)]+(n−p)(s1+1), inequal-
ity (2.37) can be transformed into

diam
(
π1
(
[a,b]

))
� 2

√
p
(
22kp+n · (b− a)

)1/(p+(n−p)/k)

×
(

22kp+n · 1
2p[k(s1+1)]+(n−p)(s1+1)

)[ks1]/(p[ks1]+(n−p)s1)−1/(p+(n−p)/k)

.

(2.41)

Note that [ks1]/(p[ks1] + (n− p)s1)− 1/(p+ (n− p)/k) � 0 and there exists a number
n1 ∈N, which does not depend on s1, such that

(
diam

(
π1
(
[a,b]

)))p+(n−p)/k � n1(b− a). (2.42)

The existence of such n1 only depends on whether the expression

−(p[k(s1 + 1
)]

+ (n− p)
(
s1 + 1

))( [
ks1
]

p
[
ks1
]

+ (n− p)s1
− 1
p+ (n− p)/k

)
(2.43)
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is bounded above. Expression (2.43) can be easily transformed into

p
[
k
(
s1 + 1

)]
+ (n− p)

(
s1 + 1

)
p
[
ks1
]

+ (n− p)s1
× (n− p)

(
ks1−

[
ks1
])

pk+n− p
; (2.44)

noticing that the first multiple is bounded and ks1− [ks1] < 1, it follows that expression
(2.43) is bounded above.

Now choosing K =max{n1,n2}, we finish the proof of property (2.32).

(IV) πnk,p is continuous space-filling function.

This is proved as follows. (1) Continuity of πnk,p follows from the continuity of the
component functions π1, π2 that are continuous as compositions of the continuous func-
tions fp with h1 and fn−p with h2, respectively.

(2) Now let y = (y1, y2)∈ [0,1]n, where y1 ∈ [0,1]p, y2 ∈ [0,1]n−p.
Functions fp : [0,1]→ [0,1]p and fn−p : [0,1]→ [0,1]n−p are space filling so that there

exist z1,z2 ∈ [0,1] such that fp(z1) = y1, fn−p(z2) = y2. On the other hand, the point

(z1,z2)∈[0,1]2 andHñ,m̃ : [0,1]
onto−−→ [0,1]2 so that there exists t ∈ [0,1] :Hñ,m̃(t)=(z1,z2)

or h1(t)= z1, h2(t)= z2, and by the definition of πnk,p : πnk,p(t)= y.
From (1) and (2), it follows that πnk,p is a continuous space-filling function. �

Lemma 2.12. If f ∈ Ck·λ(Rn,Rn), k � 1, λ∈ [0,1), and D fx is a linear isomorphism, then
f is invertible in a neighborhood of x and f −1 is of class Ck·λ.

Proof. Similar to the proof of the Ck+β+ inverse function theorem in [7]. �

Lemma 2.13. If k � 1, f ∈ Ck·λ(Rn,R), x ∈Rn, f (x)= 0,D f (x) 
= 0, then there is a neigh-
borhood N of x in Rn and Ck·λ(n− 1)-submanifold S⊆Rn such that f −1(0)∩N ⊂ S.

Proof. Similar to the proof of Zygmund preimage theorem in [8]. �

Lemmas 2.14 and 2.15 are generalized Morse vanishing lemma and Morse theorem;
see Morse [5], and for more general version of the lemmas, see also Norton [7, 8] and
Moreira [4].

Lemma 2.14. Let k, n be nonnegative integers, λ∈ [0,1), andA⊆Rn =Rn−p×Rp for some
p � n. Then there are sets A1,A2, . . .⊆ A such that A=⋃∞i=1Ai, where for each i= 1,2, . . . ,

there is a function ψi :Vi×Bi C1−→Rn, Vi is a bounded ball in Rp and Bi is a bounded ball in
some Rri (0 � ri � n− p) such that

ψi(x, y)= (x, ψ̃i(x, y)
)
,∣∣ψi(x1, y1

)−ψi(x2, y2
)∣∣�

∣∣(x1, y1
)− (x2, y2

)∣∣ ∀(x1, y1
)
,
(
x2, y2

)∈Vi×Bi,
Ai ⊂ ψi

(
Vi×Bi

) (2.45)

with the following property: every f ∈ Ck·λ(Rn,R) vanishing on A satisfies for each i and
some Ki � 0, ∣∣ f (ψi(x0, y

))− f
(
ψi
(
x0, y0

))∣∣
� Ki

∣∣y− y0
∣∣k+λ ∀(x0, y

)∈Vi×Bi, ψi
(
x0, y0

)∈Ai. (2.46)
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Proof. Fix λ. The proof is by double induction on n and k. Let 〈n,k〉 stand for the state-
ment of the lemma for Rn and Ck·λ. We will prove 〈0,k〉 for all k, 〈n,0〉 for all n, and
〈n− 1,k〉 and 〈n,k− 1〉 imply 〈n,k〉.

(a) Proof of 〈0,k〉 for all k is trivial.
(b) Proof of 〈n,0〉 for all n follows directly from the definition of f ∈ C0·λ.
(c) Induction step: we assume 〈n− 1,k〉 and 〈n,k− 1〉, and we prove 〈n,k〉.

Define

A∗∗ = {(x, y)∈A : x ∈R
p, y ∈R

n−p, and every g ∈ Ck·λ(Rn,R
)

vanishing on A satisfies Dyg ≡ 0 on A
}

,

A∗ = A \A∗∗.
(2.47)

We prove the result separately for A∗∗ and A∗.

On A∗∗. Since f vanishes on A, Dy f = (Dyj f )p<j�n ≡ 0 on A∗∗, where y = (yp+1, . . . ,
yj , . . . , yn) so that for each j (p < j � n), if any, Dyj f vanishes on A∗∗, and Dyj f ∈
Ck−1·λ(Rn,R). Hence by the 〈n,k− 1〉 hypothesis, we have A∗∗ = ⋃∞

i=1A
∗∗
i , A∗∗i ⊂

ψi(Vi×Bi), ψi as in the statement, and

(
x0, y

)
,
(
x0, y0

)∈Vi×Bi,
ψi
(
x0, y0

)∈ A∗∗i =⇒∃Kij � 0 such that∀ j (p < j � n),∣∣Dyj f
(
ψi
(
x0, y

))−Dyj f
(
ψi
(
x0, y0

))∣∣� Kij
∣∣y− y0

∣∣k−1+λ
,

(2.48)

or let Ki =√n− pmaxp<j�nKi j , then

(
x0, y

)
,
(
x0, y0

)∈Vi×Bi,
ψi
(
x0, y0

)∈ A∗∗i =⇒ ∣∣Dy f
(
ψi
(
x0, y

))−Dy f
(
ψi
(
x0, y0

))∣∣� Ki
∣∣y− y0

∣∣k−1+λ
.

(2.49)

Now by the mean value theorem,

(
x0, y

)
,
(
x0, y0

)∈Vi×Bi,
ψi
(
x0, y0

)∈ A∗∗i =⇒ f
(
ψi
(
x0, y

))− f
(
ψi
(
x0, y0

))
=D( f ◦ψi)(x0,θ

) · ((x0, y
)− (x0, y0

))
(
for some θ ∈ Bi lying on a line segment betweeny and y0

)
= (D f [ψi(x0,θ

)] ·Dψi(x0,θ
)) · (0, y− y0

)
=D f [ψi(x0,θ

)] · (Dψi(x0,θ
) · (0, y− y0

))
.

(2.50)

We recall that ψi(x, y) = (x, ψ̃i(x, y)) so that Dψi(x, y) is presented in the following
matrix consisting of n rows, where the last n− p rows constitute the Jacobian matrix for
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the function ψ̃i(x, y):




1 Zeros
0 1 Zeros

··· ···
Zeros 1 Zeros

Dψ̃i(x, y)



. (2.51)

Thus

Dψi
(
x0,θ

) · (0, y− y0
)= (0,Dψ̃i

(
x0,θ

) · (0, y− y0
))
. (2.52)

Knowing that (a,b) · (0,c)= (0,b) · (0,c), we get

D f
[
ψi
(
x0,θ

)] · (0,Dψ̃i
(
x0,θ

) · (0, y− y0
))

= (0,Dy f
[
ψi
(
x0,θ

)]) · (0,Dψ̃i
(
x0,θ

) · (0, y− y0
))
.

(2.53)

Now using (2.52), (2.53), (2.49) in (2.50), we have

∣∣ f (ψi(x0, y
))− f

(
ψi
(
x0, y0

))∣∣
�
∣∣Dy f

[
ψi
(
x0,θ

)]∣∣ ·∣∣0,Dψ̃i
(
x0,θ

) · (0, y− y0
)∣∣

�
∣∣Dy f

[
ψi
(
x0,θ

)]−Dy f
(
ψi
(
x0, y0

))∣∣K̃i∣∣(0, y− y0
)∣∣(

where Dy f
(
ψi
(
x0, y0

))= 0 because ψi
(
x0, y0

)∈ A∗∗,

and K̃i is a Lipschitz constant of the C1-function ψ̃i

on the bounded cube Vi×Bi, that we may suppose to exist)

� Ki
∣∣θ− y0

∣∣k−1+λ
K̃i
∣∣y− y0

∣∣� KiK̃i
∣∣y− y0

∣∣k+λ
.

(2.54)

On A∗. If (x0, y0)∈ A∗, there is g as above, and by Lemma 2.13, there is ε > 0 such that

g−1(0)∩ Bε(x0, y0) is contained in the image of ψ : V × B Ck·λ−−→ U , where B is a ball in
Rn−p−1, V is a ball in Rp as in the statement, and A∩Bε(x0, y0)⊆ g−1(0). Taking a count-
able subcovering of A∗ by these balls, we reduce the proof in this case to a case with
smaller n. �

Lemma 2.15. Let k, n be nonnegative integers, λ∈ [0,1), andA⊆Rn =Rn−p×Rp for some
p � n. Then there are sets A1,A2, . . .⊆ A such that A=⋃∞i=1Ai, where for each i= 1,2, . . . ,

there is a function ψi : Vi ×Bi C1−→ Rn, Vi is a bounded ball in Rp and Bi is a bounded ball
in some Rri (0 � ri � n− p) such that (2.45) holds with the following property: every f ∈
Ck·λ(Rn,R), such that Dy f ≡ 0 in A, satisfies (2.46) for each i, and some Ki � 0.



Azat Ainouline 773

Proof. The same as in the case “On A∗∗” of Lemma 2.14 if we make there the following
corrections:

(1) delete “ f vanishes on A,”
(2) replace “〈n,k− 1〉 hypothesis” with “Lemma 2.14,”
(3) replace A∗∗ with A,
(4) replace A∗∗i with Ai. �

3. Proof of the main theorem

It follows from [2, Theorem 1] and Theorems 3.2, 3.3, and 3.4.

Definition 3.1. A setA⊆Rm is a Zk-set for some positive k ∈R ifA is a subset of Φ([0,1])
for some continuous function Φ : [0,1]→Rm such that there exists P > 0 such that for all
a∈Φ−1(A), b ∈ [0,1], the following is true:

∣∣Φ(a)−Φ(b)
∣∣� P|a− b|k. (3.1)

If a set A =⋃i∈NAi and every Ai is a Zk-set for some fixed k, then the set A is called a
σ −Zk-set.

Theorem 3.2. Let F : Rn Ck·λ−−→ Rm, k ∈ N, λ ∈ [0,1). Then F(Cp(F)) is σ −
Z1/(p+(n−p)/(k+λ))-set in Rm for every p <min{m,n}.
Proof. Since Cp(F)=⋃p

r=0{x ∈Rn : rank(DF(x))= r} and r + (n− r)/(k+ λ) � p+ (n−
p)/(k+ λ) for 0 � r � p, we may restrict our attention to C̃p(F)= {x ∈R : rank(DF(x))=
p}.

If x0 ∈ C̃p(F), we can consider with accuracy to within a change of coordinates of class
Ck·λ that

F(z, y)= (z,G(z, y)
)
, (z, y)∈R

p×R
n−p,

G(z, y)∈R
m−p in a neighborhood U of x0 =

(
z0, y0

)
.

(3.2)

We have x = (z, y) ∈ C̃p(F) if and only if DyG(z, y) = 0. By applying the results of
Lemma 2.15 to a set A= {(z, y)∈U : DyG(z, y)= 0}, we obtain the decomposition A=⋃∞
i=1Ai,Ai ⊂ ψi(Vi×Bi). It is not difficult to see that the proof of the theorem is reducible

to a proof of the following statement: for each i, and some Ki � 0,

F
(
Ai∩ψi

(
Vi×Bi

))
is a Zp+(n−p)(k+λ)-set. (3.3)

Since every component function Fj : Rn →R (1 � j �m) of the function F = (F1, . . . ,Fj ,
. . . ,Fm) satisfies Fj ∈ Ck·λ, DyFj ≡ 0 on A, then by Lemma 2.15, Fj satisfies (2.46), and
then it is not difficult to see that F itself satisfies (2.46), it means that for each i; and for
some Ki � 0,

∣∣F(ψi(x0, y
))−F(ψ(x0, y0

))∣∣
� Ki

∣∣y− y0
∣∣k+λ ∀(x0, y

)∈Vi×Bi,
(
x0, y0

)∈Ai. (3.4)
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Now we fix such Ai. We may suppose without loss of generality that Vi ∈ K
p
[(k+λ)s0], Bi ∈

K
n−p
s0 for some s0 ∈N, where [(k+ λ)s0] is an integer part of (k+ λ)s0.

We consider the following:

(a) a set α0 ∈ K1
p[(k+λ)s0]+(n−p)s0 ;

(b) a set D = {α∈ K1
p[(k+λ)s]+(n−p)s, α⊆ α0};

(c) a function π = (π∗,π∗∗), where π∗ = I1 ◦ π1 � α0, π∗∗ = I2 ◦ π2 � α0; π1, π2

are the component functions of a function πnk+λ,p, defined in Lemma 2.11; I1 :

π∗(α0)
onto−−→Vi, I2 : π∗∗(α0)

onto−−→ Bi are the identity maps;
(d) and finally a function Φ : [0,1]→ F(ψi(Vi×Bi))⊆Rm such that

Φ(a)= F(ψi(π(a)
)) ∀α∈ α0,

Φ(a)=Φ(a) ∀a� a=min
x∈α0

x,

Φ(a)=Φ(a) ∀a� a=max
x∈α0

x.

(3.5)

It follows from property (3.2) of F and the property of ψi (see Lemma 2.15) that Φ(a)=
(π∗(a),G(ψi(π(a)))) for every a∈ [0,1].

Now, we are ready to prove (3.3).
From (c) and (d), we see that F(Ai∩ψi(Vi×Bi))⊆Φ([0,1]).
The function Φ : [0,1]→Rm is continuous as a composition of continuous functions

(see (d)). To finish the proof of property (3.3), we need to evaluate Φ([a,b]) for any
[a,b]⊆ α0 such that ψi(π(a))∈Ai or ψi(π(b))∈Ai.

We suppose that ψi(π(a))∈ Ai (the other case is similar to this one). Then

∣∣Φ(b)−Φ(a)
∣∣

= ∣∣F(ψi(π(b)
))−F(ψi(π(a)

))∣∣
�
∣∣F(ψi(π∗(a),π∗∗(b)

))−F(ψi(π∗(a),π∗∗(a)
))∣∣

+
∣∣F(ψi(π∗(b),π∗∗(b)

))−F(ψi(π∗(a),π∗∗(b)
))∣∣

� Ki
∣∣π∗∗(b)−π∗∗(a)

∣∣(k+λ)
+L
∣∣π∗(b)−π∗(a)

∣∣
(
by (3.4) and that L is a Lipschitz constant of the C1

function F ◦ψi �Vi which we may suppose to exist
)

� Ki
(
K∗|a− b|)(k+λ)/(p(k+λ)+n−p)

+L
(
K∗∗|a− b|)(k+λ)/(p(k+λ)+n−p)

(
for some positive numbers K∗, K∗∗ by (c) and Lemma 2.11

)
� P · |a− b|(k+λ)/(p(k+λ)+n−p),

(3.6)

where P = (Ki +L)(max{K∗,K∗∗})(k+λ)/(p(k+λ)+n−p).
We finish the proof of property (3.3) and thereby the proof of Theorem 3.2. �
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Theorem 3.3. If A⊆Rm is a Zk-set in Rm, then A⊆ f (Σk f ) for some f : [a,b]⊆R1 C<k−−→
Rm.

Proof. If A ⊆ Rm is a Zk-set in Rm, then by Definition 3.1, A is a subset of Φ([0,1]) for
some continuous function Φ : [0,1]→ Rm such that there exists P > 0 such that for all
a∈Φ−1(A), b ∈ [0,1], the following is true:

∣∣Φ(a)−Φ(b)
∣∣� P|a− b|k (3.7)

so that a function F =Φ �Φ−1(A) is a D1/k-function such that A⊆ range(F).
Now, the conclusion of this theorem follows from the “C<k-extension on R property.”

�

Theorem 3.4. IfA=⋃i∈N,Ai ⊆Rm, and for all i∈N, there exist fi : [ai,bi]⊆R1 Ck(<k)−−−→Rm

such that Ai ⊆ fi(Σk fi). Then there exists f : R1 Ck(<k)−−−→Rm such that A⊆ f (Σk f ).

Proof. We may suppose without loss of generality that for all i∈N,

(i) Ai is closed,
(ii) ai,bi ∈ Σk fi,

(iii) {[ai,bi], i∈N} is disjoint,
(iv) |[bi,ai+1]| >max{| fi+1(a)− f j(b)|}; j � i, a∈ [ai+1,bi+1], b ∈⋃i

j=1[aj ,bj].

Using functions similar to (2.7), we can construct C∞-function f0 : R1 \⋃i∈N(ai,bi)→
Rm such that {ai,bi; i ∈ N} ⊆ Σ∞ f0. Then define the required function f : R1 → Rm as
follows:

f �
(

R
1 \
⋃
i∈N

(
ai,bi

))= f0,

f �
[
ai,bi

]= fi, i∈N.

(3.8)

�
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