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A 1-harmonic map flow equation, a gradient system of total variation where values of
unknowns are constrained in a compact manifold in RN , is formulated by the use of
subdifferentials of a singular energy—the total variation. An abstract convergence result
is established to show that solutions of approximate problem converge to a solution of the
limit problem. As an application of our convergence result, a local-in-time solution of 1-
harmonic map flow equation is constructed as a limit of the solutions of p-harmonic
(p > 1) map flow equation, when the initial data is smooth with small total variation
under periodic boundary condition.

1. Introduction

We consider a gradient system of total variation of mappings with constraint of their
values. We are interested in the solvability of its initial value problem.

To see the difficulty, we write the equation at least formally. For a mapping u : Ω→RN ,
let Ep(u) denote its energy:

Ep(u)= 1
p

∫
Ω
|∇u|pdx, (1.1)

where Ω is a domain in Rn and p ≥ 1. The energy E1 is the total variation of u. Let M be a
smoothly embedded compact submanifold (without boundary) of RN . Then the gradient
system for u : Ω× (0,T)→RN of Ep with constraint of values in M is of the form

ut(x, t)=−πu(x,t)
(−div

(|∇u|p−2∇u)(x, t)
)
; (1.2)

here, πv denotes the orthogonal projection of RN to the tangent space TvM ofM at v ∈M
and ut = ∂u/∂t. This equation is called the p-harmonic map flow equation since the case
p = 2 is called the harmonic map flow equation. Because of π, the values of a solution of
(1.2) are constrained in M if they are in M initially. If M is a unit sphere SN−1, then the
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explicit form of (1.2) is of the form

ut = div
(|∇u|p−2∇u)+ |∇u|pu (1.3)

since πv(w) = w − 〈w,v〉v, where 〈·,·〉 denotes the standard inner product in RN . An
explicit form for (1.2) is given, for example, in [23]. Our constrained gradient system of
total variation of mapping is the 1-harmonic flow of the form (1.2) for p = 1, that is,

ut =−πu
(
−div

( ∇u
|∇u|

))
. (1.4)

This equation has a strong singularity at ∇u= 0 so that the evolution speed is expected
to be determined by a nonlocal quantity. Even if one considers the corresponding uncon-
strained problem

ut = div
( ∇u
|∇u|

)
, (1.5)

the speed where u is constant is determined by a nonlocal quantity (like the length of
spatial interval where u is a constant when n = 1) [13, 14, 19]. The equation (1.5) is a
nonlocal diffusion equation, so even the notion of a solution is a priori not clear. Fortu-
nately, for (1.5), a general nonlinear semigroup theory (initiated by Kōmura [21]) applies
under appropriate boundary conditions since the energy is convex. The theory yields the
unique global solvability of the initial value problem for (1.5) under Dirichlet boundary
condition (see, e.g., [6, 8] and also [13, 17, 19]), for a recent L1-theory, see [1, 2, 3, 7].
However, for (1.4), such a theory does not apply since it cannot be viewed as a gradi-
ent system of a convex functional. For a scalar function, a more general form of (1.4)
without gradient structure is studied when n = 1 by extending the notion of viscosity
solution [11, 12]. However, such a theory does not apply since (1.4) has no pointwise
order-preserving structure. For other examples of singular diffusion equations with non-
local effects, the reader is referred to a recent review article [14].

Our goal is to give a suitable notion of a solution of (1.4) and to solve its initial value
problem under suitable boundary condition. We formulate (1.4) with Dirichlet boundary
condition and periodic boundary condition by using the subdifferential of energy, which
is an extended notion of differentials for nonsmooth functional like E1. A similar formu-
lation is given in a recent work in [15]. In fact, they constructed a global solution for any
piecewise constant initial data, when n= 1, N = 2, andM = S1, under Dirichlet boundary
condition. They also studied its behavior and provided a numerical simulation. However,
their analysis is limited to one-dimensional piecewise constant mappings although their
formulation of the problem is general. Our formulation is close to theirs, but is slightly
different since we use the subdifferential of space-time functional

∫ T
0 E1(u)dt instead of

E1 itself.
To solve (1.4), we prepare an abstract convergence result. Roughly speaking, it asserts

that if a sequence of approximate energy converges to our energy in the sense of Mosco,
the corresponding sequence of the solutions of the approximate problem converges to
our original problem. (For this purpose, the interpretation of−div(∇u/|∇u|) by a subd-
ifferential of

∫ T
0 E1(u)dt is convenient.) We use this abstract result by approximating E1 by
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Ep (1 < p < 2). Compared with the harmonic map flow equation, less is known for (1.2)
for p ∈ (1,2). Misawa [24] proved the global existence of weak solution of the initial value
problem with a Dirichlet boundary condition whenM = SN−1. However, his existence re-
sult is not enough to apply our abstract theory since it is not clear that div(|∇up|p−2∇up)
is in L2(Ω× (0,T)) for his solution up of (1.2). Our formulation unfortunately requires
such a structure. Moreover, we need the condition that div(|∇up|p−2∇up) is bounded
in L2(Ω× (0,T)) as p ↓ 1 to apply our existence theorem. Recently, Fardoun and Reg-
baoui [9] constructed a unique global weak solution for a general target manifold when
Ω is a compact manifold without boundary for smooth initial data of small Ep energy.
Since we need to establish a bound of div(|∇up|p−2∇up) ∈ L2(Ω× (0,T)), we estimate
the Lipschitz norm. Fortunately, we establish a uniform spatially Lipschitz bound for up
in a small time interval, and we are able to prove the local solvability of (1.4) under a
periodic boundary condition when initial data is smooth with small total variation. The
constructed solution is spatially Lipschitz-continuous. Of course, since the results in [9]
are for a general source manifold, our results easily extend to such a general manifold by
interpreting the gradient in an appropriate way. If u has a jump, the dynamics given by
(1.4) depends not only on the metric of M but also on the metric of ambient space RN

outside M. This is a serious difference between 1-harmonic flow equation and (1.2) for
p > 1. Fortunately, our solution does not depend on that quantity since it has no jumps.
We note that the notion of BV for mapping in M is not clear as pointed out in [10].

Problem (1.4) for the case n= 2 and M = SN−1 is proposed in [27] in image process-
ing. If we let I(x, y,0) : Ω→ RN represent the color data whose components stand for
the brightness of each color pixel of the image at (x, y)∈Ω, then its pixel’s chromaticity
u(x, y,0) : Ω→ SN−1 is expressed by the normalized vector u(x, y,0) := I(x, y,0)/|I(x, y,
0)|. System (1.4) for the scaled chromaticity u(x, y, t) describes the process to remove
the noise from original u(x, y,0) maintaining the unit norm constraint and preserving
chroma discontinuities. See [25] for background of our problem (1.4) and other PDEs
from image processing. This type of constrained problems also naturally arises in the
modeling of multigrain boundaries [20] where u represents a direction of grains embed-
ded in a larger crystal of fixed orientation in the two-dimensional frame.

We will formulate (1.4) by using the notion of subdifferential in Section 2. In Section 3,
we will state three main theorems, which are as follows: an abstract theorem providing
the framework of our convergence results, convergence theorem obtained by applying
abstract theorem, and local existence theorem following from convergence theorem by
applying the result of [9]. From Section 4 to Section 6, we will prove these main theorems.
In addition, we will prove some properties of general convex functionals, which are used
to show convergence theorem in the appendix.

2. Formulation of the problems

In this Section, we formulate the initial value problem with periodic boundary condition:

ut =−πu
(
−div

( ∇u
|∇u|

))
in T

n× (0,T],

u= u0 on T
n×{0},

(2.1)
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where Tn :=∏n
i=1(R/ωiZ) for given ωi > 0 (i= 1,2, . . . ,n) and the given initial data u0 is a

map from Tn to M. We also formulate the initial boundary value problem

ut =−πu
(
−div

( ∇u
|∇u|

))
in Ω× (0,T],

u= u0 on ∂Ω× [0,T]∪Ω×{0},
(2.2)

where Ω denotes a bounded domain with a Lipschitz continuous boundary ∂Ω and the
initial data u0 : Ω̄→M is Lipschitz-continuous.

We formulate (2.1) and (2.2) as evolution equations on L2-space. Since some notations
are different for each case, we state the formulation of each problem individually. Let M
denote a smoothly embedded compact manifold in RN and let πv denote the orthogonal
projection from RN to the tangent space TvM ofM at v ∈M. Note that the inner product
of L2(Ω,RN ) is defined by 〈 f ,g〉L2(Ω,RN ) := ∫Ω〈 f ,g〉dx, where 〈·,·〉 represents the stan-
dard inner product of RN . The inner product of L2(0,T ;L2(Ω,RN )) is also defined by
〈 f ,g〉L2(0,T ;L2(Ω,RN )) := ∫ T0 〈 f ,g〉L2(Ω,RN )dt.

2.1. Subdifferential formulation of the problem with a periodic boundary condition.
We formulate the initial value problem of constrained total variation flow equation with
a periodic boundary condition (2.1). First, we define the energy functional φpe of total
variation of each function u∈ L2(Tn,RN ) by

φpe(u) :=

∫

Tn

∣∣∇u(x)
∣∣dx if u∈ BV

(
T
n,RN

)∩L2(
T
n,RN

)
,

+∞ otherwise,
(2.3)

where BV(Tn,RN ) denotes the space of functions of bounded variation on Tn with values
in RN .

It is easy to see that φpe is a proper, convex, and lower semicontinuous functional on
L2(Tn,RN ) (see[16]).

We also consider a functional ΦT
pe on L2(0,T ;L2(Tn,RN )) by ΦT

pe(u) := ∫ T0 φpe(u(t))dt.

Proposition 2.1. The functional ΦT
pe is proper, convex, and lower semicontinuous on L2(0,

T ;L2(Tn,RN )).

Proof. The functional ΦT
pe is obviously proper and convex on L2(0,T ;L2(Tn,RN )). We

will show that ΦT
pe is lower semicontinuous.

Assume that um → u strongly in L2(0,T ;L2(Tn,RN )) and ΦT
pe(um) ≤ λ for any m ∈

N. Since BV(Tn,RN ) is compactly embedded in L1(Tn,RN ) (see [16]), by taking some
subsequence of {um}+∞

m=1, we have that

um(t)−→ u(t) strongly in L2(
T
n,RN

)
for a.e. t ∈ [0,T]. (2.4)
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Then, the lower semicontinuity of φpe and Fatou’s lemma yield

λ≥ liminf
m→+∞

∫ T
0
φpe
(
um(t)

)
dt ≥

∫ T
0

liminf
m→+∞ φpe

(
um(t)

)
dt ≥ΦT

pe(u). (2.5)

This implies that ΦT
pe is lower semicontinuous on L2(0,T ;L2(Tn,RN )). �

Now we formally calculate the variational derivative of this ΦT
pe with respect to the

metric of L2(0,T ;L2(Tn,RN )). For any h∈ C∞0 (Tn× (0,T),RN ), we see that

dΦT
pe(u+ εh)

dε

∣∣∣∣
ε=0
=
〈
−div

( ∇u
|∇u|

)
,h
�
L2(0,T ;L2(Tn,RN ))

. (2.6)

Therefore, the variational derivative δΦT
pe(u)/δu of ΦT

pe in L2(0,T ;L2(Tn,RN )) can be
formally written as

δΦT
pe

δu
(u)=−div

( ∇u
|∇u|

)
in L2(0,T ;L2(

T
n,RN

))
. (2.7)

We need several other notations to complete the formulation of (2.1). Let L2(Tn,M)
denote the closed subset of L2(Tn,RN ) defined by L2(Tn,M) := {u∈ L2(Tn,RN ) | u(x)∈
M a.e. x ∈ Tn}.

Let L2(0,T ;L2(Tn,M)) denote the set of all L2-mappings from [0,T] to L2(Tn,M). For
any g ∈ L2(0,T ;L2(Tn,M)), we define a map Pg(·) : L2(0,T ;L2(Tn,RN ))→ L2(0,T ;L2(Tn,
RN )) by

Pg( f )(x, t)= πg(x,t)
(
f (x, t)

)
for a.e. (x, t)∈ T

n× [0,T], (2.8)

for any f ∈ L2(0,T ;L2(Tn,RN )).
By these notations of the function space, (2.7), and (2.8), (2.1) is formally of the form

ut =−Pu
(δΦT

pe

δu
(u)
)

in L2(0,T ;L2(
T
n,RN

))
,

u|t=0 = u0 in L2(
T
n,M
)
.

(2.9)

The initial value problem (2.9) does not have a rigorous mathematical meaning since
the energy functional ΦT

pe is not always differentiable. We need the notion of subdiffer-
ential to handle the problem caused by this singularity of the gradient of our ΦT

pe and to
complete the mathematical formulation of (2.9). We recall this definition.

Definition 2.2 (subdifferential). Let ψ be a proper, convex functional on a real Hilbert
space H equipped with the inner product 〈·,·〉H . Define the subdifferential of ψ denoted
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by ∂ψ(u) as

∂ψ(u) := {v ∈H | ψ(u+h)≥ ψ(u) + 〈v,h〉H for any h∈H}. (2.10)

Using the subdifferential ∂ΦT
pe of ΦT

pe, we are now able to formulate (2.9) as an evolu-
tion equation in L2(0,T ;L2(Tn,RN )) of the form

ut ∈−Pu
(
∂ΦT

pe(u)
)

in L2(0,T ;L2(
T
n,RN

))
,

u|t=0 = u0 in L2(
T
n,M
)
,

(2.11)

where u0 ∈ L2(Tn,M) is a given initial data. The initial value problem (2.11) can be re-
garded as a mathematical formulation of (2.1).

Our goal is to show the existence of a solution of (2.1), the definition of a solution is
given below.

Definition 2.3. Call a function u : Tn × [0,T] → RN a solution of (2.1) if u belongs to
L2(0,T ;L2(Tn,RN ))∩C([0,T],L2(Tn,RN )) and satisfies (2.11).

2.2. Subdifferential formulation of the problem with a Dirichlet boundary condition.
In this section, we formulate the initial value problem of constrained total variation flow
equation with a Dirichlet boundary condition (2.2). Let L2(Ω,M) be the closed subset of
L2(Ω,RN ) of the form

L2(Ω,M) := {v ∈ L2(Ω,RN
) | v(x)∈M a.e. x ∈Ω

}
. (2.12)

We always choose an initial data v0 which is a Lipschitz continuous map from Ω to M.
Let ṽ0 denote a Lipschitz extension of v0 to Rn. We define the energy functional φD

with a Dirichlet boundary condition on L2(Ω,RN ) as follows:

φD(v) :=

∫
Ω

∣∣∇ṽ(x)
∣∣dx if ṽ ∈ BV

(
Ω,RN

)∩L2(Ω,RN
)
,

+∞ otherwise,
(2.13)

where ṽ denotes an extension of v ∈ L2(Ω,RN ) to Rn such that ṽ(x)= ṽ0(x) for x ∈Rn \
Ω. The definition is independent of the way of extension.

It is easy to check that φD is a proper, convex, and lower semicontinuous functional on
L2(Ω,RN ) (see [16]). Note that the energy φD also measures the discrepancy of v from v0

on the boundary ∂Ω.
If we define a functional ΦT

D on L2(0,T ;L2(Ω,RN )) by ΦT
D(v) = ∫ T0 φD(v)dt, then like

ΦT
pe, we obtain the following proposition.

Proposition 2.4. The functional ΦT
D is proper, convex, and lower semicontinuous on L2(0,

T ;L2(Ω,RN )).
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Since the proof parallels that of Proposition 2.1, we do not give it.
For g ∈ L2(0,T ;L2(Ω,M)), we define a map Pg(·) : L2(0,T ;L2(Ω,RN ))→ L2(0,T ;L2(Ω,

RN )) by

Pg( f )(x, t) := πg(x,t)
(
f (x, t)

)
for f ∈ L2(0,T ;L2(Ω,RN

))
. (2.14)

Since the variational derivative δΦT
D(v)/δv at v ∈ L2(0,T ;L2(Ω,RN )) is formally given

by

δΦT
D(v)
δv

=−div
( ∇v
|∇v|

)
in L2(0,T ;L2(Ω,RN

))
, (2.15)

(2.2) is formally of the form

vt =−Pv
(
δΦT

D

δv
(v)
)

in L2(0,T ;L2(Ω,RN
))

,

v|t=0 = v0 in L2(Ω,M).
(2.16)

Note that each solution of (2.16) moves, satisfying the Dirichlet boundary condition
in order to keep minimizing the energy due to the discrepancy on the boundary. The
notion of subdifferential of ΦT

D allows us to formulate the formal equation (2.16) as an
evolution equation in L2(0,T ;L2(Ω,RN )) of the form

vt ∈−Pv
(
∂ΦT

D(v)
)

in L2(0,T ;L2(Ω,RN
))

,

v|t=0 = v0 in L2(Ω,M).
(2.17)

Definition 2.5. Call a function v : Ω× [0,T] → RN a solution of (2.2) if v belongs to
L2(0,T ;L2(Ω,RN ))∩C([0,T],L2(Ω,RN )) and solves (2.17).

3. Convergence results

In this section, we state three main theorems. The first theorem shows the validity of our
scheme to construct a solution of the equations formulated in the previous section. For
applications, we state the theorem in a general setting.

Let H be a real Hilbert space and let G be a nonvoid closed subset of H . Let L2(0,T ;G)
denote the closed subset of L2(0,T ;H) of the form L2(0,T ;G) := {u∈ L2(0,T ;H) | u(t)∈
G a.e. t ∈ [0,T]}. Let BR denote a closed ball of L2(0,T ;H) defined by BR := {u∈ L2(0,T ;
H) | ‖u‖L2(0,T ;H) ≤ R} for R > 0.

Let P(·)(·) : L2(0,T ;G)× L2(0,T ;H)→ L2(0,T ;H) be an operator satisfying the fol-
lowing properties.

(i) For any u ∈ L2(0,T ;G), P(u)(·) is a bounded linear operator from L2(0,T ;H) to
L2(0,T ;H) (i.e., P(u)(·)∈�(L2(0,T ;H),L2(0,T ;H))).

(ii) There exists a constant K > 0 such that supu∈L2(0,T ;G)‖P(u)(·)‖� ≤ K .
(iii) If a sequence {uk}+∞

k=1 ⊂ L2(0,T ;G) strongly converges to some u in L2(0,T ;H),
then there exists a subsequence {uk(l)}+∞

l=1⊂{uk}+∞
k=1 such that P(uk(l))∗(v) strongly con-

verges to P(u)∗(v) in L2(0,T ;H) for any v ∈ L2(0,T ;H), where P(u)∗(·) denotes the ad-
joint operator of P(u)(·).
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Theorem 3.1 (abstract theorem). Let Ψm (m = 1,2, . . .) and Ψ be proper, convex, lower
semicontinuous functionals on L2(0,T ;H). Assume that ∂Ψm converges to ∂Ψ in the sense of
Graph (see Remark 3.2). Assume that um ∈ L2(0,T ;H) (m= 1,2, . . .) satisfies the following
conditions:

um,t ∈−P
(
um
)(
∂Ψm

(
um
)∩BR) in L2(0,T ;H),

um ∈ L2(0,T ;G),

um|t=0 = u0,m,

(3.1)

where u0,m ∈G. In addition, assume that

um −→ u in C
(
[0,T],H

)
,

u0,m −→ u0 strongly in H.
(3.2)

Then, u satisfies that

ut ∈−P(u)
(
∂Ψ(u)

)
in L2(0,T ;H),

u∈ L2(0,T ;G),

u|t=0 = u0,

(3.3)

where u0 ∈G.

Remark 3.2. For (multivalued) operators Am (m= 1,2, . . .) and A on a real Hilbert space
H , we say that Am converges to A in the sense of graph as m→ +∞ if for any (u,v)∈ A,
there exists (um,vm)∈Am such that um→ u and vm→ v strongly in H as m→ +∞.

Applying Theorem 3.1 to our cases, we obtain more explicit statements. Before we give
the second theorem, we define approximate energiesΦT

pe,m andΦT
D,m (m= 1,2, . . .) for our

original energies ΦT
pe and ΦT

D, respectively:

φpe,m(u)

:=


1
1 + 1/m

∫
Tn

∣∣∇u(x)
∣∣1+1/m

dx if u∈W1,1+1/m
(
Tn,RN

)∩L2
(
Tn,RN

)
,

+∞ otherwise,

φD,m(v)

:=


1
1 + 1/m

∫
Ω

∣∣∇ṽ(x)
∣∣1+1/m

dx if ṽ ∈W1,1+1/m
(
Ω,RN

)∩L2
(
Ω,RN

)
,

+∞ otherwise,

(3.4)

where ṽ denotes the extension of v ∈ L2(Ω,RN ) to Rn such that ṽ(x) = ṽ0,m(x) for x ∈
Rn \Ω, for a Lipschitz map v0,m : Ω→M.

Note that these energy functionals are equivalent to p-energy in p-harmonic map flow
equation for p = 1 + 1/m.
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We again associate ΦT ,
s with φ,s:

ΦT
pe,m(u) :=

∫ T
0
φpe,m(u)dt for u∈ L2(0,T ;L2(

T
n,RN

))
,

ΦT
D,m(v) :=

∫ T
0
φD,m(v)dt for v ∈ L2(0,T ;L2(Ω,RN

))
.

(3.5)

It is not difficult to see that these functionals ΦT
pe,m and ΦT

D,m are proper, convex, and
lower semicontinuous.

We are now in position to state the second theorem.

Theorem 3.3 (convergence theorem). The following statements hold.

(1) (The case with a periodic boundary condition.) Assume that um∈L2(0,T ;L2(Tn,RN ))
(m= 1,2, . . .) satisfies

um,t ∈−Pum
(
∂ΦT

pe,m

(
um
)∩BR) in L2(0,T ;L2(

T
n,RN

))
,

um|t=0 = u0,m in L2(
T
n,M
)
,

(3.6)

with R > 0 independent of m, where u0,m ∈ L2(Tn,M). Moreover, assume that

u0,m −→ u0 strongly in L2(
T
n,RN

)
, as m−→ +∞,

limsup
m→+∞

φpe,m
(
u0,m
)≤ φpe

(
u0
)
.

(3.7)

Then, there exists a function u∈ C([0,T],L2(Tn,RN )) such that

ut ∈−Pu
(
∂ΦT

pe(u)
)

in L2(0,T ;L2(
T
n,RN

))
,

u|t=0 = u0 in L2(
T
n,M
)
,

(3.8)

and u satisfies the energy equality∫ t
0

∫
Tn

∣∣ut(x,τ)
∣∣2
dxdτ +φpe

(
u(t)
)= φpe

(
u0
)

for any t ∈ [0,T]. (3.9)

This means that u is a solution of (2.1) in the sense of Definition 2.3.
(2) (The case with a Dirichlet boundary condition.) Assume that vm∈L2(0,T ;L2(Ω,RN ))

(m= 1,2, . . .) satisfies

vm,t ∈−Pvm
(
∂ΦT

D,m

(
vm
)∩BR) in L2(0,T ;L2(Ω,RN

))
,

vm|t=0 = v0,m in L2(Ω,M),
(3.10)

with R > 0 independent of m, where the function v0,m is a Lipschitz continuous map
from Ω to M. Moreover, assume that

v0,m −→ v0 strongly in L2(Ω,RN
)
, as m−→ +∞,

limsup
m→+∞

φD,m
(
v0,m
)≤ φD(v0

)
, (3.11)
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where v0 is a Lipschitz continuous map from Ω to M. Then there exists a function
v ∈ C([0,T],L2(Ω,RN )) such that

vt ∈−Pv
(
∂ΦT

D(v)
)

in L2(0,T ;L2(Ω,RN
))

,

v|t=0 = v0 in L2(Ω,M),
(3.12)

and v satisfies the energy equality∫ t
0

∫
Ω

∣∣vt(x,τ)
∣∣2
dxdτ +φD

(
v(t)
)= φD(v0

)
for any t ∈ [0,T]. (3.13)

This means that v is a solution of (2.2) in the sense of Definition 2.5.

In some situations, our Theorem 3.3 actually yields a solution of our limit problem.
Indeed, the solvability result of p-harmonic map flow equation in [9] (1 < p < 2) with
Theorem 3.3 and a priori estimate yield local existence of a solution of (2.1) in the sense
of Definition 2.3.

Theorem 3.4 (local existence theorem). For any K > 0, there exists ε0 > 0 depending only
on Tn, M, and K such that if the initial data u0 : Tn→M satisfies the conditions:

(i) u0 ∈ C2+α(Tn,RN ) (0 < α < 1),
(ii) ‖∇u0‖L∞(Tn) ≤ K ,

(iii) there exists m0 ∈N, m0 ≥ 3, such that

φpe,m0

(
u0
)

+
1

m0 + 1

n∏
i=1

ωi ≤ ε0, (3.14)

then, for any T ∈ (0,2/C
√

max{1,K2}), where C is a positive constant depending
only on M, there exists a function u ∈ C([0,T],L2(Tn,M)) solving (2.11) for this T
and satisfying the energy equality∫ t

0

∫
Tn

∣∣ut(x,τ)
∣∣2
dxdτ +φpe

(
u(t)
)= φpe

(
u0
)

for any t ∈ [0,T]. (3.15)

Remark 3.5. It was proved in [24] that the global weak solution which solves the initial
value problem of p-harmonic map flow equation (1 < p < 2) with a Dirichlet boundary
condition for the case that the target manifold is SN−1 is an element of L∞((0,∞);W1,p(Ω,
SN−1))∩W1,2((0,∞);L2(Ω,RN )). This regularity of the solution is not sufficient to be a
solution of our approximate problem vt ∈−Pv(∂ΦT

D,m(v)), since we are considering this
evolution equation in L2(0,T ;L2(Ω,RN )). All the terms of the equation vt =
div(|∇v|1/m−1∇v) + |∇v|1/m+1v must belong to L2(0,T ;L2(Ω,RN )) to be a solution of
our approximate problem. Therefore, we are unable to apply our convergence theorem
(Theorem 3.3) in this setting. So even local existence is unknown for the Dirichlet prob-
lem (2.17).

4. Proof of abstract theorem

We need a notion of convergence of sets in a Hilbert space to carry out the proof. We give
the definition of the convergence first.
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Definition 4.1. Let H be a real Hilbert space and let {Sm}+∞
m=1 be a sequence of subsets of

H . Define sequentially weak upper limit of {Sm}+∞
m=1 denoted by sqw−Limsupm→+∞ Sm as

sqw-Limsup
m→+∞

Sm :=
{
x ∈H | there exist

{
mk
}+∞
k=1 ⊂N,

and xk ∈ Smk (k = 1,2, . . .)

such that xk⇀ x weakly in H as

k −→ +∞
}
.

(4.1)

Remark 4.2. If H is separable, then for any bounded set B ⊂H , we can introduce a topol-
ogy τ by a suitable countable family of seminorms on H into B so that (B,τ) is a first
countable topological space and the weak topology is equivalent to τ. In this case, if
{Sm}+∞

m=1 is bounded, our definition of sqw-Limsupm→+∞ Sm agrees with the usual notion
of τ-upper limit of {Sm}+∞

m=1 (see, e.g., [5]).

We prepare two important propositions to prove the theorem.

Proposition 4.3. Let {Am}+∞
m=1 be a sequence of monotone operators and letA be a maximal

monotone operator from a real Hilbert space H to 2H . Assume that Am converges to A in the
sense of Graph as m→ +∞. Take a sequence {um}+∞

m=1 ⊂H with

um −→ u strongly in H , Am
(
um
) �= ∅ for any m∈N. (4.2)

Then sqw-Limsupm→+∞Am(um)⊂A(u).

Proof. By definition, for any v ∈ sqw-Limsupm→+∞Am(um), there exist {mk}+∞
k=1 ⊂N and

vk ∈ Amk (umk ) (k = 1,2, . . .) such that

vk⇀ v weakly in H , as k −→ +∞. (4.3)

We take any ( f ,g)∈A and fix it. Since Amk converges to A as Graph, we see that there
exists a sequence ( fk,gk)∈Amk (k = 1,2, . . .) such that

fk −→ f , gk −→ g strongly in H , as k −→ +∞. (4.4)

By the convergences (4.3), (4.4) and the fact that any weakly convergent sequence is
bounded in H , we see that∣∣〈v− g,u− f 〉H −

〈
vk − gk,umk − fk

〉
H

∣∣
≤ ∣∣〈v,u− f 〉H −

〈
vk,u− f

〉
H

∣∣+
∣∣〈vk,u− f

〉
H −
〈
vk,umk − fk

〉
H

∣∣
+
∣∣〈−g,u− f 〉H −

〈− gk,u− f
〉
H

∣∣
+
∣∣〈− gk,u− f

〉
H −
〈− gk,umk − fk

〉
H

∣∣
≤ ∣∣〈v− vk,u− f

〉
H

∣∣+
∥∥vk∥∥H∥∥(u− f )− (umk − fk

)∥∥
H

+
∥∥− g + gk

∥∥
H‖u− f ‖H +

∥∥gk∥∥H∥∥(u− f )− (umk − fk
)∥∥

H

−→ 0 (k −→ +∞).

(4.5)
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Thus, we obtain

〈v− g,u− f 〉H = lim
k→+∞

〈
vk − gk,umk − fk

〉
H ≥ 0 (4.6)

since Amk (k = 1,2, . . .) are monotone operators.
Therefore, if we define an operator Ã :H → 2H by Ã := (u,v)∪A, then by (4.6), we see

that Ã is a monotone operator which includes A. The maximality of A yields that Ã= A,
thus v ∈A(u). �

Corollary 4.4. Let Ψm (m= 1,2, . . .) and Ψ be proper, convex, and lower semicontinuous
functionals on a real Hilbert space H . Assume that ∂Ψm converges to ∂Ψ in the sense of
Graph. Let {um}+∞

m=1 be a sequence of H satisfying that um → u strongly in H as m→ +∞
with ∂Ψm(um) �= ∅ (m= 1,2, . . .).

Then

sqw-Limsup
m→+∞

∂Ψm
(
um
)⊂ ∂Ψ(u). (4.7)

Proof. Since ∂Ψm and ∂Ψ are maximal monotone operators in H , the proof is a direct
consequence of the previous proposition. �

Proposition 4.5. Under the notations of Theorem 3.1, let {um}+∞
m=1 ⊂ L2(0,T ;G) be a se-

quence such that um → u strongly in L2(0,T ;H) as m→ +∞ and that ∂Ψm(um)∩ BR �=
∅ (m= 1,2, . . .). Then

sqw-Limsup
m→+∞

P
(
um
)(
∂Ψm

(
um
)∩BR)⊂ P(u)

(
∂Ψ(u)

)
. (4.8)

Proof. By definition, for f ∈sqw-Limsupm→+∞P(um)(∂Ψm(um)∩BR), there exist {mk}+∞
k=1

⊂N and fk ∈ P(umk )(∂Ψmk (umk )∩BR) such that

fk⇀ f weakly in L2(0,T ;H), as k −→ +∞. (4.9)

Moreover, for any k ∈N, there exists vk ∈ ∂Ψmk (umk )∩BR such that fk = P(umk )(vk).
Since {vk}+∞

k=1 is bounded, by choosing some subsequence if necessary, we see that there
exists v ∈ L2(0,T ;H) such that

vk⇀ v weakly in L2(0,T ;H), as k −→ +∞. (4.10)

Then, by the definition of sequentially weak upper limit and Corollary 4.4, we obtain that

v ∈ sqw-Limsup
k→+∞

(
∂Ψmk

(
umk

)∩BR)⊂ ∂Ψ(u). (4.11)

We will show that

P
(
umk

)(
vk
)
⇀ P(u)(v) weakly in L2(0,T ;H), as k −→ +∞, (4.12)
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by taking a suitable subsequence of {P(umk )(vk)}+∞
k=1 (still denoted by {P(umk )(vk)}+∞

k=1).
Indeed, if we choose some subsequence of {umk}+∞

k=1 so that condition (iii) for P(·)(·)
holds, then we see that for any h∈ L2(0,T ;H),

∣∣〈P(umk

)(
vk
)−P(u)(v),h

〉
L2(0,T ;H)

∣∣
≤ ∣∣〈vk,P

(
umk

)∗
(h)−P(u)∗(h)

〉
L2(0,T ;H)

∣∣+
∣∣〈vk − v,P(u)∗(h)

〉
L2(0,T ;H)

∣∣
≤ R∥∥P(umk

)∗
(h)−P(u)∗(h)

∥∥
L2(0,T ;H) +

∣∣〈vk − v,P(u)∗(h)
〉
L2(0,T ;H)

∣∣
−→ 0 as k −→ +∞.

(4.13)

Here, we have used the convergences that P(umk )
∗(h)→ P(u)∗(h) strongly in L2(0,T ;H)

by condition (iii) and (4.10).
Therefore, by sending k→ +∞ in both sides of fk = P(umk )(vk), we have f = P(u)(v)

by (4.9) and (4.12). Moreover, the inclusion (4.11) yields that f ∈ P(u)(∂Ψ(u)) holds.
Then the desired inclusion has been proved. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By condition (ii), we see that {um,t}+∞
m=1 is bounded. Thus, one can

choose a subsequence {umk ,t}+∞
k=1 ⊂ {um,t}+∞

m=1 so that umk ,t converges weakly to some ũ
in L2(0,T ;H). Moreover, the convergence umk → u in L2(0,T ;H) yields that ũ = ut and
umk ,t → ut weakly in L2(0,T ;H).

Since umk ,t ∈ −P(umk )(∂Ψmk (umk )∩ BR), the definition of sequentially weak upper
limit and Proposition 4.5 assure that

ut ∈ sqw-Limsup
k→+∞

(−P(umk

)(
∂Ψmk

(
umk

)∩BR))
⊂−P(u)

(
∂Ψ(u)∩BR

)
.

(4.14)

The properties u∈ L2(0,T ;G) and u|t=0 = u0 obviously follow from the assumptions. The
proof is now complete. �

5. Proof of convergence theorem

In this section, we prove Theorem 3.3 as an application of Theorem 3.1. We will check
that the situation of Theorem 3.3 satisfies the assumptions of Theorem 3.1. Some con-
vergence results of the convex functionals assure that Theorem 3.1 is available for our
problem. Especially, we show that the functionals φpe,m,φD,m,ΦT

pe,m, and ΦT
D,m defined in

Section 3 converge to our original energy functionals in the sense of Mosco. The follow-
ing lemma proved in [26] is the first step. We give its proof for the completeness, only
under Dirichlet boundary condition, since the proof under periodic boundary condition
is easier.

Proposition 5.1 (see [26]). The functional φD,m (φpe,m) converges to φD (φpe,m) in the
sense of Mosco as m→ +∞.
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Remark 5.2. For proper, convex, and lower semicontinuous functionals Ψm (m= 1,2, . . .)
and Ψ on a real Hilbert space H , we say that Ψm converges to Ψ in the sense of Mosco as
m→ +∞, if the following statements hold.

(i) If um⇀ u weakly in H , then Ψ(u)≤ liminfm→+∞Ψm(um).
(ii) For any u∈D(Ψ), there exists {um}+∞

m=1 ⊂H such that um→ u strongly andΨm(um)
→Ψ(u) as m→ +∞.

Proof. We first show condition (i) of Mosco convergence. Assume that um⇀ u weakly in
L2(Ω,RN ). It is sufficient to show the case that um ∈D(φD,m). Thus, we may assume that
ũm ∈W1,1+1/m(Ω,RN ). By Hölder’s inequality, we see that ũm ∈ BV(Ω,RN ) and

φD
(
um
)= ∫

Ω

∣∣∇ũm∣∣dx
≤
(∫

Ω

∣∣∇ũm∣∣1+1/m
dx
)1/(1+1/m)

·∣∣Ω∣∣1−1/(1+1/m)

≤ φD,m
(
um
)

+
1

m+ 1

∣∣Ω∣∣.
(5.1)

Thus, by the lower semicontinuity of φD, we obtain

φD(u)≤ liminf
m→+∞ φD

(
um
)≤ liminf

m→+∞ φD,m
(
um
)
. (5.2)

This implies that (i) holds.
Next we show that condition (ii) of Mosco convergence is satisfied. Take any u∈D(φD)

and fix it. Since ũ∈ BV(Ω,RN ), by [16, Remark 2.12], we see that there exists {uj}+∞
j=1 ⊂

C∞(Ω,RN ) such that

uj −→ u strongly in L2(Ω,RN
)
,∫

Ω

∣∣∇uj∣∣dx −→ ∫
Ω
|∇u|dx as j −→ +∞,

and the trace of uj on ∂Ω is equivalent to the trace of u.

(5.3)

The properties (5.3) yield that uj ∈D(φD) and

φD
(
uj
)−→ φD(u) as j −→ +∞. (5.4)

Moreover, we observe that uj ∈D(φD,m), for any m∈N, and

φD,m
(
uj
)= 1

1 + 1/m

∫
Ω

∣∣∇ũ j∣∣1+1/m
dx

−→
∫
Ω

∣∣∇ũ j∣∣dx = φD(uj) as m−→ +∞.
(5.5)

Thus, we can choose a subsequence {i∗j }+∞
j=1 ⊂N so that

i∗j ≥ j, i∗j+1 ≥ i∗j ,∣∣φD,i
(
uj
)−φD(uj)∣∣≤ 1

j
for any i∈ {i∗j , . . . , i∗j+1

}
and any j ∈N.

(5.6)
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We take

εi := 1
j

, ûi := uj for any i∈ {i∗j , . . . , i∗j+1

}
and any j ∈N,

ûi := u1 for i∈ {1, . . . , i∗1 − 1
}

,
(5.7)

and observe that

ûi ∈D
(
φD,i
)

for any i∈N,

ûi −→ u in L2(Ω,RN
)
, as i−→ +∞. (5.8)

Moreover, for i≥ i∗1 ,∣∣φD,i
(
ûi
)−φD(u)

∣∣≤ ∣∣φD,i
(
ûi
)−φD(ûi)∣∣+

∣∣φD(ûi)−φD(u)
∣∣

≤ εi +
∣∣φD(ûi)−φD(u)

∣∣
−→ 0 (i−→ +∞).

(5.9)

This implies that condition (ii) of Mosco convergence holds. �

Proposition 5.3. The operator ΦT
D,m (resp., ΦT

pe,m) converges to ΦT
D (resp., ΦT

pe) in the
sense of Mosco. Moreover, ∂ΦT

D,m (resp., ∂ΦT
pe,m) converges to ∂ΦT

D (resp.,∂ΦT
pe) in the sense

of Graph as m→ +∞.

It needs some technical arguments to prove this proposition. We will give the proof in
a general setting in the appendix. The consequence follows from Propositions 5.1, .7, and
.9 which will be proved in the appendix (see also [4, 5]).

We can derive energy equalities which are necessary to prove Theorem 3.3 by applying
Proposition .6 also shown later in the appendix.

Proposition 5.4. Assume the same hypotheses of Theorem 3.3.

(1) (The case with a periodic boundary condition.) um ∈ L2(0,T ;L2(Tn,RN )) (m= 1,2,
. . .) satisfies∫ t

0

∫
Tn

∣∣um,t(x,τ)
∣∣2
dxdτ +φpe,m

(
um(t)

)= φpe,m
(
u0,m
)

for any t ∈ [0,T]. (5.10)

(2) (The case with a Dirichlet boundary condition.) vm ∈ L2(0,T ;L2(Ω,RN )) (m= 1,2,
. . .) satisfies∫ t
0

∫
Ω

∣∣vm,t(x,τ)
∣∣2
dxdτ +φD,m

(
vm(t)

)= φD,m
(
v0,m
)

for any t ∈ [0,T]. (5.11)

Proof. We only prove (5.11). We can show (5.10) by the same argument as below.
There exists wm ∈ ∂ΦT

D,m(vm) such that vm,t(x, t) = −πvm(x,t)(wm(x, t)). Noting that
vm,t(x, t)∈ Tvm(x,t)M for a.e. (x, t)∈Ω× [0,T], we see that∫

Ω

∣∣vm,t(x, t)
∣∣2
dx =

∫
Ω

〈
vm,t(x, t),−πvm(x,t)

(
wm(x, t)

)〉
dx

=−〈vm,t(t),wm(t)
〉
L2(Ω,RN ) for a.e. t ∈ [0,T].

(5.12)
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Since the inclusion wm ∈ ∂ΦT
D,m(vm) yields that wm(t) ∈ ∂φD,m(vm(t)) for a.e. t ∈ [0,T],

Proposition .6 which will be proved in the appendix assures that

〈
vm,t(t),wm(t)

〉
L2(Ω,RN ) =

d

dt
φD,m

(
vm(t)

)
for a.e. t ∈ [0,T]. (5.13)

Combining (5.13) with (5.12) and integrating both sides in (0,T), we obtain equality
(5.11). �

Now we show Theorem 3.3.

Proof of Theorem 3.3. We present the proof only under Dirichlet boundary condition,
since the proof is similar for periodic boundary value problem.

First we note that Proposition 5.3 actually gives the assumption for the Graph conver-
gence of the subdifferential of energy functionals in Theorem 3.1.

We will check that our projection P·(·) satisfies the conditions of Theorem 3.1. Since
it is easy to check that conditions (i), (ii) hold, we only show that condition (iii) holds.

Assume that uk → u strongly in L2(0,T ;L2(Ω,RN )) and uk ∈ L2(0,T ;L2(Ω,M)) (k =
1,2, . . .). Then one can choose some subsequence {uk(l)}+∞

l=1 ⊂ {uk}+∞
k=1 such that

uk(l)(x, t)−→ u(x, t) as l −→ +∞, for a.e. (x, t)∈Ω× [0,T]. (5.14)

For any v ∈ L2(0,T ;L2(Ω,RN )), we observe that

∣∣Puk(l) (v)(x, t)−Pu(v)(x, t)
∣∣2 ≤ 4

(
sup
w∈M

sup
y∈RN ,|y|≤1

∣∣πw(y)
∣∣)2∣∣v(x, t)

∣∣2

∈ L1(Ω× [0,T],RN
)
.

(5.15)

By (5.14) and (5.15), one is able to apply Lebesgue’s theorem to get that

Puk(l) (v)−→ Pu(v) strongly in L2(0,T ;L2(Ω,RN
))

, as l −→ +∞. (5.16)

In addition, since πu(·) is a symmetric matrix for any u ∈M, we easily see that the
bounded linear operator Pw is selfadjoint, that is, P∗w = Pw for anyw ∈ L2(0,T ;L2(Ω,M)).
Thus, the convergence (5.16) assures that condition (iii) holds.

We next show that there exists a subsequence of {vm}+∞
m=1 such that it converges in

C([0,T],L2(Ω,RN )). By the assumption that limsupm→+∞φD,m(v0,m)≤ φD(v0) and equal-
ity (5.11), there exists k ∈N such that∫ t

0

∫
Ω

∣∣vm,t(x,τ)
∣∣2
dxdτ +φD,m

(
vm(t)

)
≤ φD

(
v0
)

+ 1 for any m≥ k and any t ∈ [0,T].
(5.17)

Moreover, we observe that

∣∣vm(t)− vm(s)
∣∣≤ ∫ t

s

∣∣vm,t(τ)
∣∣dτ ≤ (∫ t

s

∣∣vm,t(τ)
∣∣2
dτ
)1/2

|t− s|1/2. (5.18)
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This inequality, together with (5.17), yields

∥∥vm(t)− vm(s)
∥∥
L2(Ω,RN )

≤ (φD(v0
)

+ 1
)1/2|t− s|1/2for any s, t ∈ [0,T] with s≤ t and any m≥ k.

(5.19)

This implies that {vm(t)}+∞
m=k ⊂ C([0,T],L2(Ω,RN )) is equicontinuous.

In addition, since each vm takes its values in M, it is obvious that {vm(t)}+∞
m=k ⊂

C([0,T],L2(Ω,RN )) is uniformly bounded.
By using inequality (5.17) again, we can calculate as follows:

∫
Ω

∣∣∇vm(t)
∣∣dx ≤ (∫

Ω

∣∣∇vm(t)
∣∣1+1/m

dx
)m/(m+1)

|Ω|1/(m+1)

≤ (φD(v0
)

+ 1
)(|Ω|+ 1

)
for any m≥ k, t ∈ [0,T].

(5.20)

Thus, by compactness [16, Theorem 1.19], this BV bound implies that the sequence
{vm(t)}m≥k is relatively compact in L1(Ω,RN ) for any t ∈ [0,T]. Since {vm(t)}m≥k is
bounded in L∞(Ω,RN ), it is easy to see that {vm(t)}m≥k is also relatively compact in
L2(Ω,RN ) for any t ∈ [0,T].

We are now able to use Ascoli-Arzela’s theorem (for C([0,T],L2(Ω,RN ))) and con-
clude that there exist a subsequence {vm(l)}+∞

l=1 ⊂ {vm}+∞
m=1 and v ∈ C([0,T],RN ) such that

vm(l) converges to v in C([0,T],RN ).
We now observe that all the assumptions of Theorem 3.1 are fulfilled. Thus, Theorem

3.1 yields the desired result. �

6. Proof of local existence theorem

Since we have already established convergence theorem, it is sufficient to find approxi-
mate solutions of p-harmonic map flow equation which satisfies the assumptions of con-
vergence theorem.

First of all, we calculate ∂ΦT
pe,m to see that solutions of p-harmonic map flow equation

solve our approximate problem in our notation with ∂ΦT
pe,m.

Lemma 6.1. The subdifferential ∂ΦT
pe,m is of the form

∂ΦT
pe,m(u)= {−div

(|∇u|1/m−1∇u)} for u∈D(∂ΦT
pe,m

)
. (6.1)

Proof. Let v ∈ ∂ΦT
pe,m(u). Then, by the definition of subdifferential, for any f ∈ C∞0 (Tn×

[0,T],RN ) and ε > 0,

1
1 + 1/m

∫ T
0

∫
Tn
|∇u+ ε∇ f |1+1/mdxdt

≥ 1
1 + 1/m

∫ T
0

∫
Tn
|∇u|1+1/mdxdt+

∫ T
0

∫
Tn
〈ε f ,v〉dxdt.

(6.2)
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Moreover,

1
1 + 1/m

∫ T
0

∫
Tn
|∇u+ ε∇ f |1+1/mdxdt

= 1
1 + 1/m

∫ T
0

∫
Tn
|∇u|1+1/mdxdt+ ε

∫ T
0

∫
Tn
|∇u|1/m−1〈∇u,∇ f 〉dxdt+ o(ε).

(6.3)

Thus, we have

ε
∫ T

0

∫
Tn
|∇u|1/m−1〈∇u,∇ f 〉dxdt+ o(ε)≥ ε

∫ T
0

∫
Tn
〈 f ,v〉dxdt. (6.4)

By dividing both sides by ε, sending ε ↓ 0, and integrating by parts, we obtain that

∫ T
0

∫
Tn
〈v, f 〉dxdt ≤

∫ T
0

∫
Tn

〈−div
(|∇u|1/m−1∇u), f 〉dxdt. (6.5)

By taking negative ε < 0 and sending ε ↑ 0 in the same way, we also obtain

∫ T
0

∫
Tn

〈−div
(|∇u|1/m−1∇u), f 〉dxdt ≤ ∫ T

0

∫
Tn
〈v, f 〉dxdt. (6.6)

Combining (6.5) with (6.6), we have

∫ T
0

∫
Tn

〈
v+ div

(|∇u|1/m−1∇u), f 〉dxdt = 0 for any f ∈ C∞0
(
Ω× [0,T],RN

)
. (6.7)

This implies that v =−div(|∇u|1/m−1∇u). The proof is now complete. �

We need to know the solvability result of p-harmonic map flow equation as an ap-
proximate solution for our problem. By Lemma 6.1, we safely transfer the result of [9]
into our setting.

Proposition 6.2 (global solvability of p-harmonic map flow equation [9]). For m ∈ N

and K > 0, there exists ε0 > 0 depending only on K ,M,Tn, and m such that for the initial
data u0,m : Tn→M satisfying the conditions

(i) u0,m ∈ C2+α(Tn,RN )(0 < α < 1),
(ii) φm(u0,m)≤ ε0,

(iii) ‖∇u0,m‖L∞(M) ≤ K ,

then, there exists uniquely a function um : Tn× [0,∞)→M satisfying

um,t ∈−Pum
(
∂ΦT

pe,m

(
um
))

in L2(0,T ;L2(
T
n,RN

))
,

um
∣∣
t=0 = u0,m in L2(

T
n,M
)
,

(6.8)

and the energy inequality

∫ T
0

∫
Tn

∣∣um,t(x,τ)
∣∣2
dxdτ +φpe,m

(
um(T)

)≤ φpe,m
(
u0,m
)

(6.9)
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for any T > 0. In addition,

um,t ∈ L2(
T
n× [0,∞),RN

)
,

um ∈ Cβ
(
T
n× [0,∞),RN

)
,

∇um ∈ Cβ
(
T
n× [0,∞),RnN

)
, where 0 < β < 1.

(6.10)

Remark 6.3. In [9], this theorem was proved not only for our manifold Tn, but also for
a general compact Riemannian manifold without boundary. The dependence of ε0 with
respect to m is not explicitly stated in [9]. However, if one examines the proof, one con-
cludes that ε0 can be chosen independently of m≥ 3 as stated below.

Corollary 6.4. For anyK > 0, there exists ε0 > 0 which depends only onK ,Tn, andM such
that for any m≥ 3, if the initial data u0,m satisfies conditions (i), (ii), (iii) of Proposition 6.2,
then there exists uniquely a function um : Tn× [0,∞)→M satisfying all the consequences of
Proposition 6.2.

Proof. We follow the arguments in [9] briefly. In [9], the global solution was obtained as a
limit of a function uδ,m : Tn× [0,Tδ)→M, which is a solution of the following regularized
problem as δ ↓ 0:

uδ,m,t =−πuδ,m

(
−div

((|∇u|2 + δ
)1/m−1/2∇u

))
in T

n× (0,Tδ
)
,

uδ,m
∣∣
t=0 = u0 in T

n.
(6.11)

Set fδ,m := |duδ,m|2 + δ, where |du|2 is written in local coordinate u= (u1,u2, . . . ,ul) and
by the metric h of M as |du|2 =∑i, j,α,β hαβ(u)∂uα/∂xi∂uβ/∂xj . The following regularity
property was proved in [9, Lemma 2]:

“Let K be any positive constant such that ‖∇u0‖L∞(Tn) ≤ K . There ex-
ists a positive constant ε1 depending on K ,Tn,M, and m such that if
sup0≤t<Tδ ‖ fδ,m(t,·)‖Ln/2(Tn) ≤ ε1, then ‖ fδ,m‖L∞(Tn×[0,Tδ)) ≤ C, where C is
a constant depending on K ,Tn,M and m.”

By using these constants ε1 andC, the constant ε0 > 0 of Proposition 6.2 can be taken as

ε0 := C(1+1/m−n)/2εn/21

(1 + 1/m)sup
{

1,2(1/m−1)/2
}

21+n/2
. (6.12)

Now, by calculation, we can check that ε′1 := infm≥3 ε1 is still positive and there exists
C′ > 0 independent of m≥ 3 such that for any m≥ 3, if sup0≤t<Tδ ‖ fδ,m(t,·)‖Ln/2(Tn) ≤ ε′0,
then ∥∥ fδ,m

∥∥
L∞(Tn×[0,Tδ)) ≤ C′. (6.13)

Using these ε′1 > 0 and C′ > 0, we define ε′0 > 0 by

ε′0 := inf
m≥3

C′(1+1/m−n)/2ε′1
n/2

(1 + 1/m)sup
{

1,2(1/m−1)/2
}

21+n/2
. (6.14)



670 Local solvability of a constrained gradient system

Then, by the proof of [9, Theorem 1], one is able to prove that u0 ∈ C2+α(Tn,RN ), φm(u0)
≤ ε′0, and ‖∇u0‖L∞(M) ≤ K yield the consequences of Proposition 6.2. �

Corollary 6.5. For any K > 0, there exists ε0 > 0 depending only on Tn,M, and K such
that if the initial data u0 : Tn→M satisfies the conditions:

(i) u0 ∈ C2+α(Tn,RN ) (0 < α < 1),
(ii) ‖∇u0‖L∞(Tn) ≤ K ,

(iii) there exists m0 ∈N, m0 ≥ 3, such that (3.14) holds,

then, for any m≥m0, there exists uniquely a function um : Tn× [0,∞)→M which satisfies
all the consequences of Proposition 6.2 for the initial data u0.

Proof. For K > 0, let ε0 > 0 be the positive constant defined in Corollary 6.4.
Suppose that u0 : Tn→M satisfies conditions (i), (ii), (iii). For anym≥m0, we see that

φpe,m
(
u0
)≤ 1

1 + 1/m

∫
Tn

(
1 + 1/m
1 + 1/m0

∣∣∇u0(x)
∣∣1+1/m0 +

1/m0− 1/m
1 + 1/m0

)
dx

≤ φpe,m0

(
u0
)

+
1

m0 + 1

n∏
i=1

ωi

≤ ε0.

(6.15)

Thus, Corollary 6.4 assures the existence of um : Tn× [0,∞)→M with the desired prop-
erties. �

We are now in position to prove the local existence theorem.

Proof of Theorem 3.4. It is sufficient to show that there exist R > 0 and T > 0 such that for
approximate solutions um whose existence is assured by Corollary 6.5, the inclusion

∂ΦT
pe,m

(
um
)⊂ BR (6.16)

holds for any m ≥ m0. Then, all the assumptions of Theorem 3.3 are satisfied and
Theorem 3.3 yields the existence of a solution of (2.11) for this T > 0.

We see that the approximate equation um,t ∈ −Pum(∂ΦT
pe,m(um)) is equivalent to the

following equation:

um,t = div
(∣∣∇um∣∣1/m−1∇um

)
+
∣∣∇um∣∣1/m−1

A
(
um
)(∇um,∇um

)
, (6.17)

where A(u) denotes the second fundamental form of M at u ∈M. Since the coefficients
of A(u)(∇u,∇u) smoothly depend on the value u on M, one can estimate that

∣∣∇um(x, t)
∣∣1/m−1∣∣A(um(x, t)

)(∇um(x, t),∇um(x, t)
)∣∣

≤ C∣∣∇um(x, t)
∣∣1/m+1

for any (x, t)∈ T
n× (0,+∞),

(6.18)

where C is a positive constant depending only on M. By inequality (6.9) and assumption
(iii) of Theorem 3.3, we know that there exists R > 0 such that um,t ∈ BR for any m≥m0.



Yoshikazu Giga et al. 671

Thus, if we prove that there exist K ′ > 0 and T > 0 such that∥∥∇um∥∥L∞(Tn×[0,T]) ≤ K ′ ∀m≥m0, (6.19)

then, by (6.17) and (6.18), we have that

div
(∣∣∇um∣∣1/m−1∇um

)
∈ BR′ ∀m≥m0, (6.20)

for some R′ > 0 independent of m. This inclusion implies that (6.16) holds.
We will show inequality (6.19).
Fix m≥m0. We set U := {(x, t)∈ Tn× [0,∞) | ∇um(x, t) �= 0}. Since ∇um ∈ Cβ(Tn×

[0,∞),RnN ), by a standard argument for a system of uniform parabolic equations (see
[22]), we conclude that um ∈ C∞(U).

We put wm(x, t) := |∇um(x, t)|2 and differentiate both sides in time. Noting equality
(6.17), we see that

wm,t = 2
〈∇um,∇um,t

〉
= 2
〈
∇um,∇div

(∣∣∇um∣∣1/m−1∇um
)〉

+ 2
N∑
l=1

〈
∇ulm,∇

(∣∣∇um∣∣1/m−1
)〉
Al
(
um
)(∇um,∇um

)
+ 2
〈∇um,∇A(um)(∇um,∇um

)〉∣∣∇um∣∣1/m−1
.

(6.21)

Moreover, by calculation, we obtain

2
〈
∇um,∇div

(∣∣∇um∣∣1/m−1∇um
)〉

=
n∑

i, j=1

ai j(x, t)
∂2

∂xi∂xj
wm +

n∑
i=1

b1
i (x, t)

∂

∂xi
wm

− 2
∣∣∇um∣∣1/m−1

N∑
l=1

n∑
i, j=1

(
∂2

∂xi∂xj
ulm

)2

,

2
N∑
l=1

〈
∇ulm,∇

(∣∣∇um∣∣1/m−1
)〉
Al
(
um
)(∇um,∇um

)= n∑
i=1

b2
i (x, t)

∂

∂xi
wm,

2
〈∇um,∇A(um)(∇um,∇um

)〉∣∣∇um∣∣1/m−1 ≤
n∑
i=1

b3
i (x, t)

∂

∂xi
wm +C′wm

(3+1/m)/2,

(6.22)

where ai j , b1
i , b2

i , b3
i are continuous functions in U , and C′ is a positive constant depend-

ing only on M. More precisely, we see that ai j is written as

ai j =
(

1
m
− 1
)∣∣∇um∣∣1/m−3

N∑
l=1

∂

∂xi
ulm

∂

∂xj
ulm +

∣∣∇um∣∣1/m−1
δi j , (6.23)
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where δi j is Kronecker’s delta. We can check that (ai j) > 0 in U . Indeed, by Schwarz’s
inequality,

n∑
i, j=1

ai jξiξ j =
(

1
m
− 1
)∣∣∇um∣∣1/m−3

N∑
l=1

(〈∇ulm,ξ
〉)2

+
∣∣∇um∣∣1/m−1|ξ|2

≥
(

1
m
− 1
)∣∣∇um∣∣1/m−3∣∣∇um∣∣2|ξ|2 +

∣∣∇um∣∣1/m−1|ξ|2

= 1
m

∣∣∇um∣∣1/m−1|ξ|2 > 0 for any ξ ∈R
N \ {0}.

(6.24)

Substituting the (in)equalities (6.22) into (6.21), we obtain the inequality

wm,t ≤
n∑

i, j=1

ai j(x, t)
∂2

∂xi∂xj
wm

+
n∑
i=1

bi(x, t)
∂

∂xi
wm +C′wm

(3+1/m)/2 for any (x, t)∈U.
(6.25)

Here, we have set bi := b1
i + b2

i + b3
i .

Let fm(t) be a solution of the following initial value problem:

fm,t = C′ f (3+1/m)/2
m ,

fm
∣∣
t=0 =max

{
1,K2}. (6.26)

Then fm is of the form

fm(t)=
((

max
{

1,K2})−(1+1/m)/2− C′

2

(
1 +

1
m

)
t
)−2/(1+1/m)

. (6.27)

Evidently, fm is strictly increasing and blows up when t = tm, where tm is given by

tm := 2

C′(1 + 1/m)
(

max
{

1,K2
})(1+1/m)/2 . (6.28)

Set vm :=wm− fm. Since wm ∈ C(Tn× [0,+∞)), there exists δ > 0 such that

vm ≤ 0 in T
n× [tm− δ, tm

)
. (6.29)

Plug vm into (6.21); we obtain that

vm,t ≤
n∑

i, j=1

ai j(x, t)
∂2

∂xi∂xj
vm

+
n∑
i=1

bi(x, t)
∂

∂xi
vm +d(x, t)vm in U ∩ (Tn× [0, tm− δ

))
,

(6.30)

where d(x, t) is a continuous function in U ∩ (Tn× [0, tm− δ)).
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For a positive constant λ > 0, we set vm,λ := e−λtvm and differentiate both sides in time.
Then, by (6.30), we observe that

vm,λ,t ≤
n∑

i, j=1

ai j(x, t)
∂2

∂xi∂xj
vm,λ +

n∑
i=1

bi(x, t)
∂

∂xi
vm,λ

+
(
d(x, t)− λ)vm,λ in U ∩ (Tn× [0, tm− δ

))
.

(6.31)

By taking λ sufficiently large, we may assume that d(x, t)− λ < 0 in U ∩ (Tn× [0, tm− δ)).
Thus, the standard maximum principle for parabolic equations assures that there exists a
boundary point (x̂, t̂)∈ ∂(U ∩ (Tn× [0, tm− δ))) such that

vm,λ(x̂, t̂)= sup
(x,t)∈U∩(Tn×[0,tm−δ))

vm,λ(x, t). (6.32)

We obviously observe that at least one of the following properties holds:

(1) t̂ = 0,
(2) t̂ = tm− δ,
(3) (x̂, t̂) /∈U .

For each case, it is easy to check that vm(x̂, t̂)≤ 0. In conclusion, the inequality wm ≤ fm
holds in U ∩ (Tn× [0, tm− δ)). Moreover, the definition of U and (6.29) yield that

wm ≤ fm in T
n× [0, tm

)
, ∀m≥m0. (6.33)

By (6.27) and (6.28), we obtain that if m1 ≤m2, then

tm1 ≤ tm2 , fm1 (t)≥ fm2 (t) in
[
0, tm1

]
. (6.34)

Let f (t) be a solution of

ft = C′ f 1+1/2,

f |t=0 =max
{

1,K2}. (6.35)

Then f blows up when t0 = 2/(C′
√

max{1,K2}) and we observe that tm < t0 for anym∈N

and tm ↗ t0 as m→ +∞.
Now take any T ∈ (0, t0) and fix it. Then there exists a natural number mT ≥m0 such

that the blowup time tmT of fmT is larger than T . Noting (6.33) and (6.34), we see that for
any m≥mT ,

wm ≤ fm ≤ fmT in T
n× [0,T]. (6.36)

In other words,

∣∣∇um(x, t)
∣∣≤ √ fmT (T) for any (x, t)∈ T

n× [0,T] and any m≥mT. (6.37)
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If we set

K ′ := max
m0≤m≤mT−1

{∥∥∇um∥∥L∞(Tn×[0,T]),
√
fmT (T)

}
, (6.38)

then we finally obtain (6.19).
Thus, Theorem 3.3 yields the existence of a solution of (2.11) in L2(0,T ;L2(Tn,RN )).

The energy equality (3.15) follows by the same argument as Proposition 5.4. �

Appendix

Here, we state several propositions which are used to prove Propositions 5.3 and 5.4 and
need some technical arguments to be shown for convex functionals in a general setting.
First we give one proposition which is necessary to show Proposition 5.4. The result was
proved in [8]. But we give the proof for completeness.

Proposition .6 (see [8, Lemma 3.3]). Let φ be a proper, lower semicontinuous, convex
functional onH and v ∈W1,2(0,T ;H) with v(t)∈D(∂φ) a.e. t ∈ (0,T). Then, the function
t �→ φ(v(t)) is absolutely continuous on [0,T]. Moreover

d

dt
φ
(
v(t)
)=〈h,

dv

dt
(t)
�
H

, ∀h∈ ∂φ(v(t)
)
, a.e. t ∈ (0,T). (.1)

Proof. For each λ > 0, we put gλ(t) = ∂φλ(v(t)), where φλ(v(t)) = 1/2λ‖x − Jλv(t)‖2
H +

φ(Jλv(t)) and Jλv(t) := (I + λ∂φ)−1v(t). Here, we note that by using the canonical ex-
tension of ∂φ to L2(0,T ;H), we can take l ∈ L2(0,T ;H) such that l(t) ∈ ∂φ(v(t)) a.e.
t ∈ (0,T). Then, we easily see that∥∥gλ(t)∥∥H ≤ ∥∥∂0φ

(
v(t)
)∥∥

H ≤
∥∥l(t)∥∥H , ∀t ∈ (0,T),

gλ(t)−→ ∂0φ
(
v(t)
)

a.e. t ∈ (0,T), as λ−→ 0,
(.2)

where ∂0φ(v(t)) denotes the minimal section of ∂φ(v(t)). It follows from (.2) that

gλ −→ ∂0φ(v) in L2(0,T ;H), as λ−→ 0. (.3)

Since dφλ(v(t))/dt = 〈∂φλ(v(t)), dv(t)/dt〉H a.e. t ∈ (0,T), we see that

φλ
(
v
(
t2
))−φλ(v(t1))= ∫ t2

t1

〈
∂φλ
(
v(t)
)
,
dv

dt
(t)
�
H
dt, ∀t1, t2 ∈ [0,T]. (.4)

Passing in (.4) to the limit with λ→ 0, we get

φ
(
v
(
t2
))−φ(v(t1))= ∫ t2

t1

〈
∂0φ
(
v(t)
)
,
dv

dt
(t)
�
H
dt, (.5)

which implies that the function t �→ φ(v(t)) is absolutely continuous on [0,T].
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Now we define the set

E := {t ∈ (0,T) | v(t) and φ
(
v(t)
)

are differentiable at t, v(t)∈D(∂φ)
}
. (.6)

For any t ∈ E and h∈ ∂φ(v(t)), we have

φ(z)−φ(v(t)
)≥ 〈h,z− v(t)

〉
H , ∀z ∈H. (.7)

By taking in (.7) z = v(t+ ε) with ε > 0, dividing by ε, and passing to the limit with ε→ 0,
we get

d

dt
φ
(
v(t)
)≥〈h,

dv

dt
(t)
�
H
. (.8)

Similarly, by taking in (.7) z = v(t− ε) with ε > 0, we get

d

dt
φ
(
v(t)
)≤〈h,

dv

dt
(t)
�
H
. (.9)

Therefore, it follows from (.8) and (.9) that

d

dt
φ
(
v(t)
)=〈h,

dv

dt
(t)
�
H

, ∀h∈ ∂φ(v(t)
)
, ∀t ∈ E. (.10)

�

Next we show one proposition for Mosco convergence of convex functional, which
assures the statement of Proposition 5.3. We follow the arguments in [4]. We set some
notations used below in advance. Let H denote a real Hilbert space and let φm (m =
1,2, . . .) and φ be proper, convex, and lower semicontinuous functionals on H . Define

functionals Φm (m= 1,2, . . .) and Φ on L2(0,T ;H) by Φm(u) := ∫ T0 φm(u)dt and Φ(u) :=∫ T
0 φ(u)dt for u∈ L2(0,T ;H).

The proposition we are going to prove can be stated as follows.

Proposition .7. If φm converges to φ on H in the sense of Mosco as m→ +∞, then Φm also
converges to Φ on L2(0,T ;H) in the sense of Mosco.

Remark .8. This is generalized to time-dependent φtm, φt by Kenmochi [18] under suitable
assumptions.

We recall a property for Mosco-converging energy functional.

Proposition .9 (see [4] or [5]). The following properties are equivalent:

(a) φm→ φ in the sense of Mosco,
(b) ∂φm→ ∂φ in the sense of resolvent, that is,

(
I + λ∂φm

)−1
x −→ (I + λ∂φ)−1x in H for any λ > 0 and any x ∈H , (.11)

and there exist (u,v) ∈ ∂φ and (um,vm) ∈ ∂φm such that um → u,vm → v strongly,
and φm(um)→ φ(u).
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Remark .10. Note that the convergence ∂φm → ∂φ in the sense of resolvent is equivalent
to the convergence ∂φm→ ∂φ in the sense of Graph (see [4] or [5]).

The previous proposition means that to show property (b) for Φm and Φ is sufficient
to attain our purpose. We prepare some lemmas to show property (b).

Lemma .11. Assume that φm converges to φ on H in the sense of Mosco. Then the following
properties hold.

(i) There exist constants c1,c2 > 0 such that

φm(x) + c1‖x‖H + c2 ≥ 0 for any x ∈H and any m∈N. (.12)

(ii) For any λ > 0 and x ∈H ,

φλm(x)−→ φλ(x) as m−→ +∞, (.13)

where

φλm(x) := 1
2λ

∥∥x− Jλmx∥∥2
H +φm

(
Jλmx
)
,

φλ(x) := 1
2λ

∥∥x− Jλx∥∥2
H +φ

(
Jλx
)
,

Jλmx := (I + λ∂φm
)−1

x, Jλx := (I + λ∂φ)−1x.

(.14)

Proof. (i) Suppose that the conclusions were false. Then there would exist a subsequence
{φmk}+∞

k=1 ⊂ {φm}+∞
m=1 and a sequence {yk}+∞

k=1 ⊂H such that

φmk

(
yk
)

+ k2
∥∥yk∥∥+ k2 < 0 for any k ∈N. (.15)

Fix x0 ∈D(φ). The definition of Mosco convergence yields that there exists {xm}+∞
m=1 ⊂

H such that

xm −→ x0 strongly in H , φm
(
xm
)−→ φ

(
x0
)

as m−→ +∞. (.16)

For each k ∈N, set

zk := εk yk +
(
1− εk

)
xmk , εk := 1

k
(
1 +
∥∥yk∥∥H) . (.17)

By (.16) and (.17), we obviously see that

εk −→ 0 as k −→ +∞,

0 < εk < 1 for any k ∈N,

zk −→ x0 strongly in H , as k −→ +∞.
(.18)

Moreover, the convexity of φmk , (.15), and (.17) yield that

φmk

(
zk
)≤ εkφmk

(
yk
)

+
(
1− εk

)
φmk

(
xmk

)
<−k2εk

(∥∥yk∥∥H + 1
)

+
(
1− εk

)
φmk

(
xmk

)
=−k+

(
1− εk

)
φmk

(
xmk

)
.

(.19)
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Sending k→ +∞ in (.19), by (.16) and (.18), we observe that

limsup
k→+∞

φmk

(
zk
)=−∞. (.20)

On the other hand, the second convergence of (.18) and the definition of Mosco con-
vergence assure that

liminf
k→+∞

φmk

(
zk
)≥ φ(x0

)
. (.21)

We have by (.20) and (.21) that φ(x0) = −∞. This is a contradiction since we took
x0 ∈D(φ).

(ii) Since φm→ φ on H in the sense of Mosco, Proposition .9 implies that

(
I + λ∂φm

)−1
x −→ (I + λ∂φ)−1x in H , (.22)

and there are (ξm,ηm)∈ ∂φm and (ξ,η)∈ ∂φ such that

ξm −→ ξ, ηm −→ η, φm
(
ξm
)−→ φ(ξ) as m−→ +∞. (.23)

Now, for a fixed λ > 0, we put zm = ξm + ληm and z = ξ + λη. Then we easily see that

zm −→ z in H , as m−→ +∞. (.24)

In addition, since zm ∈ (I + λφm)(ξm), we have ξm = Jλmzm. Similarly, we can get ξ = Jλz.
Thus we see that

φm
(
Jλmzm

)−→ φ
(
Jλz
)

as m−→ +∞, (.25)

which implies that φλm(zm)→ φλ(z) as m→ +∞. Therefore, we observe that

φλm(x)= φλm
(
zm
)

+
∫ 1

0

〈
∂φλm
(
zm + τ

(
x− zm

))
,x− zm

〉
Hdτ

=⇒ φλ(x)= φλ(z) +
∫ 1

0

〈
∂ φλ
(
z+ τ

(
x− z)

)
,x− z〉Hdτ.

(.26)

�

Lemma .12. Assume that φm converges to φ in the sense of Mosco. Then there exists a se-
quence {bm}+∞

m=1 ⊂W1,2(0,T ;H) such that∥∥bm(t)
∥∥
H ≤M, φm

(
bm(t)

)≤M,∥∥b′m∥∥L2(0,T ;H) ≤M for any m∈N and a.e. t ∈ [0,T],
(.27)

where M is a positive constant independent of m and t.

Proof. Fix any b0 ∈ D(φ). Then, by the definition of Mosco convergence, we obtain
{b0,m}+∞

m=1 ⊂H such that b0,m→ b0 strongly and φm(b0,m)→ φ(b0) as m→ +∞.



678 Local solvability of a constrained gradient system

Let bm(t)∈ C([0,T],H) be a solution of

bm,t ∈−∂φm
(
bm(t)

)
in H ,

bm(0)= b0,m.
(.28)

Then, {bm}+∞
m=1 is the desired sequence. �

Lemma .13. Assume φm → φ in the sense of Mosco. Then, ∂Φm → ∂Φ in the sense of resol-
vent.

Proof. Take any f ∈ L2(0,T ;H) and set um := (I + λ∂Φm)−1 f and u := (I + λ∂Φ)−1 f .
We show that um→ u strongly in L2(0,T ;H) as m→ +∞.
Note that

um(t)= (I + λ∂φm
)−1

f (t), u(t)= (I + λ∂φ)−1 f (t) a.e. t ∈ [0,T]. (.29)

Since φm converges to φ in the sense of Mosco, Proposition .9 yields that ∂φm converges
to ∂φ in the sense of resolvent. Thus, we obtain that

um(t)−→ u(t) strongly in H , for a.e. t ∈ [0,T]. (.30)

Since ( f (t)−um(t))/λ∈ ∂φm(um(t)) a.e. t ∈ [0,T], we obtain by the definition of sub-
differential that

φm
(
bm(t)

)≥ φm(um(t)
)

+
〈
f (t)−um(t)

λ
,bm(t)−um(t)

�
H

for a.e. t ∈ [0,T],

(.31)

where {bm}+∞
m=1 is the sequence given in Lemma .12.

Combining the inequality of Lemma .11 with (.31), we see that

φm
(
bm(t)

)≥−c1
∥∥um(t)

∥∥
H − c2 +

1
λ

〈
f (t),bm(t)

〉
H −

1
λ

〈
f (t),um(t)

〉
H

− 1
λ

〈
um(t),bm(t)

〉
H +

1
λ

∥∥um(t)
∥∥2
H

≥−ε∥∥um(t)
∥∥2
H −

1
4ε
c2

1 − c2− 1
λ

∥∥ f (t)
∥∥
H

∥∥bm(t)
∥∥
H

− ε∥∥um(t)
∥∥2
H −

1
4ελ2

∥∥ f (t)
∥∥2
H

− ε∥∥um(t)
∥∥2
H −

1
4ελ2

∥∥bm(t)
∥∥2
H +

1
λ

∥∥um(t)
∥∥2
H

=
(

1
λ
− 3ε

)∥∥um(t)
∥∥2
H −

1
4ε
c2

1 − c2− 1
λ

∥∥ f (t)
∥∥
H

∥∥bm(t)
∥∥
H

− 1
4ελ2

∥∥ f (t)
∥∥2
H −

1
4ελ2

∥∥bm(t)
∥∥2
H.

(.32)
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Now, putting ε = 1/6λ into (.32) and by Lemma .12, we obtain that

∥∥um(t)
∥∥2
H ≤ 2λφm

(
bm(t)

)
+ 2λ

(
3λ
2
c2

1 + c2 +
1
λ

∥∥ f (t)
∥∥
H

∥∥bm(t)
∥∥
H +

3
2λ

∥∥ f (t)
∥∥2
H +

3
2λ

∥∥bm(t)
∥∥2
H

)
≤ 2λM + 3λ2c2

1 + 2λc2 + 2M
∥∥ f (t)

∥∥
H + 3

∥∥ f (t)
∥∥2
H + 3M2 := g(t)

∈ L1(0,T) for any m∈N.

(.33)

Thus, by (.30), Lebesgue’s convergence theorem yields that um→ u in L2(0,T ;H) as m→
+∞.

We have shown that ∂Φm→ ∂Φ in the sense of resolvent. �

Lemma .14. Assume that φm → φ in the sense of Mosco. Then there exist (u,v) ∈ ∂Φ and
(um,vm) ∈ ∂Φm such that um → u,vm → v strongly in L2(0,T ;H), and Φm(um)→Φ(u) as
m→ +∞.

Proof. Take any f ∈ L2(0,T ;H) and fix it. If we set um := (I + λ∂Φm)−1 f and u := (I +
λ∂Φ)−1 f , then Lemma .13 yields that

um −→ u strongly in L2(0,T ;H), as m−→ +∞. (.34)

Therefore, if we set vm := ( f −um)/λ and v := ( f −u)/λ, then we easily observe that vm ∈
∂Φm(um),v ∈ ∂Φ(u), and vm→ v strongly in L2(0,T ;H) as m→ +∞.

It is sufficient to show that Φm(um)→ Φ(u) in L2(0,T ;H) as m→ +∞ to attain our
purpose.

Lemma .11 (ii) assures that for any λ > 0 and x ∈H ,

φλm(x)−→ φλ(x) as m−→ +∞. (.35)

Now, by (.34), we also see that

∂Φλ
m( f )= f − Jλm f

λ
= f −um

λ

−→ ∂Φλ( f )= f −u
λ

in L2(0,T ;H), as m−→ +∞.
(.36)

Therefore (by taking a subsequence of {m} if necessary),

∂φλm
(
f (t)
)−→ ∂φλ

(
f (t)
)

strongly in H , a.e. t ∈ [0,T]. (.37)

Note that

φλm
(
f (t)
)= 1

2λ

∥∥ f (t)− Jλm f (t)
∥∥2
H +φ

(
Jλm f (x)

)
= λ

2

∥∥∂φλm( f (t)
)∥∥2

H +φ
(
um(t)

)
.

(.38)
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Then, by the convergences (.35), (.37) and equality (.38), we see that

φm
(
um(t)

)= φλm( f (t)
)− λ

2

∥∥∂φλm( f (t)
)∥∥2

H

−→ φλ
(
f (t)
)− λ

2

∥∥∂φλ( f (t)
)∥∥2

H = φλ
(
Jλ f (t)

)= φ(u(t)
) (.39)

as m→ +∞ for a.e. t ∈ [0,T] and any λ > 0.
Now inequalities (.31), (.33) and Lemma .12 yield that

φm
(
um(t)

)≤ φm(bm(t)
)

+
∥∥∥∥ f (t)−um(t)

λ

∥∥∥∥
H

∥∥bm(t)−um(t)
∥∥
H

≤M +
1
λ

(∥∥ f (t)
∥∥
H +
√
g(t)
)(
M +

√
g(t)
)

≤M +
M

λ

∥∥ f (t)
∥∥
H +

1
2λ

∥∥ f (t)
∥∥2
H

+
1

2λ
g(t) +

M2

2λ
+

1
2λ
g(t) +

1
λ
g(t) := l(t).

(.40)

Note that l(t)∈ L1(0,T).
Moreover, Lemma .11, (.33), and (.40) yield that∣∣φm(um(t)

)∣∣≤ φm(um(t)
)

+ 2(c1
∥∥um(t)

∥∥
H + c2)

≤ l(t) + 2c1

√
g(t) + 2c2

≤ l(t) + c2
1 + g(t) + 2c2 ∈ L1(0,T).

(.41)

By (.39) and (.41), we can apply Lebesgue’s convergence theorem and obtain that
Φm(um)→Φ(u) as m→ +∞. �

All the necessary lemmas have been prepared to show Proposition .7.

Proof of Propsition .7. Lemmas .13 and .14 imply that condition (b) of Proposition .9
holds for Φm (m = 1,2, . . .) and Φ. Thus, the Mosco convergence Φm → Φ follows by
Proposition .9. �
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