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We give some oscillation criteria for linear iterative functional equations. We compare
obtained theorems with known results. We give applications to discrete equations too.

The problem of oscillation of solutions of differential and difference equations has
been investigated by many authors since in the literature, there are many oscillation cri-
teria for these equations (see [2, 5]). However, for the iterative functional equations, the
situation is different. Our aim is to give some new oscillation criteria for iterative func-
tional equations. We are of the opinion that it is worth considering iterative functional
equations because, in particular, they are recurrence equations which have a lot of appli-
cations. They can be used to describe processes in many areas such as biology, meteorol-
ogy, economics, and so on (see [6]). This paper is concerned with the oscillatory solutions
of linear iterative functional equations of the form

Q0(t)x(t) +Q1(t)x
(
g(t)

)
+Q2(t)x

(
g2(t)

)
+ ···+Qm+1(t)x

(
gm+1(t)

)=0, m≥1, (1)

where x is an unknown real-valued function and Qk : I → R, for k = 0,1, . . . ,m+ 1, and
g : I → I are given functions, such that R is the set of real numbers and I denotes an
unbounded subset of R+ = [0,∞). By gm we mean the mth iterate of the function g,
that is,

g0(t)= t, gm+1(t)= g
(
gm(t)

)
, t ∈ I , m= 0,1, . . . . (2)

By g−1 we mean the inverse function of g and g−m−1(t) = g−1(g−m(t)). In this paper,
upper indices at the sign of a function will denote iterations. In each instance, we have the
relation g1(t) = g(t). Exponents of a power of a function will be written after a bracket
containing the whole expression of the function. We also assume that

g(t) �= t, lim
t→∞g(t)=∞, t ∈ I. (3)

Moreover, we assume that g has an inverse function.
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By a solution of (1), we mean a function x : I → R such that sup{|x(s)| : s ∈ It0 =
[t0,∞)∩ I} > 0 for any t0 ∈R+ and x satisfies I in (1).

A solution x of (1) is called oscillatory if there exists a sequence of points {tn}∞n=1,
tn ∈ I , such that limn→∞ tn =∞ and x(tn)x(tn+1)≤ 0 for n= 1,2, . . . . Otherwise it is called
nonoscillatory.

The purpose of this paper is to obtain new oscillation criteria for (1). The analogous
problem has been considered in [1, 7, 9].

In this paper, we will use the following lemma.

Lemma 1 [9]. Consider the functional inequalities

x
(
gs(t)

)≥ p(t)x
(
gs−1(t)

)
+ q(t)x

(
gm+1(t)

)
, (4)

x
(
gs(t)

)≤ p(t)x
(
gs−1(t)

)
+ q(t)x

(
gm+1(t)

)
, (5)

where m≥ 1, s∈ {1, . . . ,m}, p,q : I →R+, and g satisfies condition (3). If

liminf
I�t→∞

m−s∑
i=0

q
(
gi(t)

)m−s+1∏
j=1

p
(
gi+ j(t)

)
>
(
m− s+ 1
m− s+ 2

)m−s+2

, (6)

then the functional inequality (4) (resp., (5)) does not have positive (resp., negative) solutions
for large t ∈ I .

It is easy to notice that the existence of oscillatory solutions of (1) is connected with
the sign of the functions Qi (i = 0,1, . . . ,m+ 1) on I . That either Qi(t) > 0 or Qi(t) < 0,
for i = 0,1, . . . ,m+ 1 and t ∈ I , implies that every solution of (1) oscillates. So, similarly
as in our previous considerations (see, e.g., [9]), we will assume that in (1), one of the
coefficients of Qi (i = 1,2, . . . ,m) has the sign opposite to that of others, that is, there
exists s ∈ {1, . . . ,m} such that Qs(t) < 0 and Qi(t) > 0, i ∈ {0,1, . . . ,m+ 1} − {s}. So, we
further assume that for some s∈ {1,2, . . . ,m},

Qs(t) < 0, Qi(t)≥ 0, i= 0,1, . . . ,s− 1,s+ 1, . . . ,m+ 1 (7)

with

Qs−1(t),Qs+1(t) > 0 for t ∈ I. (8)

Without loss of generality, we may assume that Qs(t)=−1, t ∈ I . Then (1) takes the form

x
(
gs(t)

)= s−1∑
k=0

Qk(t)x
(
gk(t)

)
+

m+1∑
k=s+1

Qk(t)x
(
gk(t)

)
, m≥ 1, (9)

where s∈ {1,2, . . . ,m}, Qi(t)≥ 0 (i= 0,1, . . . ,s− 1,s+ 1, . . . ,m+ 1), and Qs−1(t),Qs+1(t) >
0 for t ∈ I .

As usual, we take
∑r

j=k aj = 0 and
∏r

j=k aj = 1, where r < k.
We start from the following theorem.
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Theorem 2. Every solution of (9) is oscillatory if one of the following conditions hold:

liminf
I�t→∞

A
(
g(t)

)
B(t) >

1
4

(10)

or

limsup
I�t→∞

{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
> 1,

(11)

where

A(t)=
s−1∑
k=0

Qk(t)
s−k∏
j=2

Qs+1
(
g− j(t)

)
,

B(t)=
m+1∑
k=s+1

Qk(t)
k−s∏
j=2

Qs−1
(
g j(t)

)
.

(12)

Proof. Suppose that (9) has a nonoscillatory solution x and let x(t) > 0 for t ∈ It1 , t1 ≥ 0.
Then also, in view of assumption (3) about function g, x(gi(t)) > 0, i ∈ {1,2, . . . ,m+ 1},
and t ∈ It2 , t2 ≥ t1. Thus, from (9) we get

x
(
gs(t)

)≥Qi(t)x
(
gi(t)

)
for i= 0,1, . . . ,s− 1,s+ 1, . . . ,m+ 1. (13)

Hence, we have

x
(
gs(t)

)≥Qs+1(t)x
(
gs+1(t)

)
,

x
(
gs−2(t)

)≥Qs+1
(
g−2(t)

)
x
(
gs−1(t)

)
.

(14)

From above we obtain

x
(
gs−3(t)

)≥Qs+1
(
g−3(t)

)
x
(
gs−2(t)

)≥Qs+1
(
g−3(t)

)
Qs+1

(
g−2(t)

)
x
(
gs−1(t)

)
. (15)

Thus,

x
(
gk(t)

)≥ x
(
gs−1(t)

) s−k∏
j=2

Qs+1
(
g− j(t)

)
, k = 0,1,2, . . . ,s− 2. (16)

Similarly from inequality (13) we get

x
(
gs(t)

)≥Qs−1(t)x
(
gs−1(t)

)
,

x
(
gs+2(t)

)≥Qs−1
(
g2(t)

)
x
(
gs+1(t)

)
.

(17)

Hence,

x
(
gs+3(t)

)≥Qs−1
(
g3(t)

)
x
(
gs+2(t)

)≥Qs−1
(
g3(t)

)
Qs−1

(
g2(t)

)
x
(
gs+1(t)

)
, (18)

x
(
gk(t)

)≥ x
(
gs+1(t)

) k−s∏
j=2

Qs−1
(
g j(t)

)
, k = s+ 2, . . . ,m+ 1. (19)
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Using now (16) and (19) in (9), we obtain

x
(
gs(t)

)≥ A(t)x
(
gs−1(t)

)
+B(t)x

(
gs+1(t)

)
, (20)

where A and B are given by (12). Thus, in view of condition (10) and Lemma 1, inequal-
ity (20) cannot possess positive solutions. We obtain a contradiction. Now we prove the
second part of the theorem. From (20) for i∈ {0,1,2}, we have

x
(
gs+i(t)

)≥ A
(
gi(t)

)
x
(
gs+i−1(t)

)
+B
(
gi(t)

)
x
(
gs+i+1(t)

)
, (21)

x
(
gs(t)

)≥ A(t)x
(
gs−1(t)

)
. (22)

From above we obtain

x
(
gs+2(t)

)≥ A
(
g2(t)

)
x
(
gs+1(t)

)
,

x
(
gs+3(t)

)≥ A
(
g3(t)

)
x
(
gs+2(t)

)
.

(23)

Hence,

x
(
gs+3(t)

)≥ A
(
g2(t)

)
A
(
g3(t)

)
x
(
gs+1(t)

)
. (24)

Using the above inequality in (21) for i= 2, we get

x
(
gs+2(t)

)≥A
(
g2(t)

)
x
(
gs+1(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g2(t)

)
x
(
gs+1(t)

)
. (25)

Now applying inequalities (20) and (25) in (21) for i= 1, we have

x
(
gs+1(t)

)≥A(t)A
(
g(t)

)
x
(
gs−1(t)

)
+
{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
x
(
gs+1(t)

)
,

(26)

x
(
gs+1(t)

)≥ {A(g(t)
)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
x
(
gs+1(t)

)
.

(27)

Dividing both sides of the above inequality by x(gs+1(t)), we get a contradiction with (11).
This completes the proof. �

Remark 3. In the particular case when I = N and g(n)= n+ 1, from iterative functional
equations, we obtain recurrence equations. So, results obtained in this paper can be ap-
plied to recurrence equations, too. For example, condition (10) applied to the second-
order linear difference equation of the form

c(n)x(n+ 1) + c(n− 1)x(n− 1)= b(n)x(n), (28)



W. Nowakowska and J. Werbowski 547

where n ∈ N,b,c : N → (0,∞), gives the result obtained by Hooker and Patula in [4,
Theorem 5]. However, condition (11) applied to (28) improves the result presented in
[3, Theorem 2.3]. Namely, this theorem has the following form: if for some sequence
nk →∞,

[
c
(
nk
)]2

b
(
nk
)
b
(
nk + 1

) +

[
c
(
nk + 1

)]2

b
(
nk + 1

)
b
(
nk + 2

) ≥ 1, (29)

then every solution of (28) is oscillatory. On the other hand, condition (11) applied to
(28) has the form

limsup
n→∞

{ [
c(n)

]2

b(n)b(n+ 1)
+

[
c(n+ 1)

]2

b(n+ 1)b(n+ 2)
+

[
c(n+ 1)

]2

b(n+ 1)b(n+ 2)

[
c(n+ 2)

]2

b(n+ 2)b(n+ 3)

}
> 1.

(30)

If we consider (9) with s = 1, I = N, and g(n) = n+ 1, then from Theorem 2, we obtain
conditions of [8, Theorems 5 and 6].

Now we give another condition for the oscillation of all solutions of (9). It can be
applied when Theorem 2 is not satisfied.

Theorem 4. Suppose that

A
(
g(t)

)
B(t)≥ δ > 0, δ <

1
4

for t ∈ I , (31)

limsup
I�t→∞

{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
> 1− δ2,

(32)

where A and B are as previously given. Then all solutions of (9) are oscillatory.

Proof. Let x(t) > 0, for t ∈ It1 , t1 ≥ 0, be a nonoscillatory solution of (9). Then, as in the
proof of Theorem 2 for t ∈ It2 , t2 ≥ t1, inequalities (16) and (19) hold. So, inequality (20)
is also true. Thus, for sufficiently large t, inequalities (21) and (26) are also satisfied. From
(21) for i= 0, we have

x
(
gs(t)

)≥ B(t)x
(
gs+1(t)

)
,

A
(
g(t)

)
x
(
gs(t)

)≥A
(
g(t)

)
B(t)x

(
gs+1(t)

)
.

(33)

Using assumption (31) in the above inequality, we obtain

A
(
g(t)

)
x
(
gs(t)

)≥ δx
(
gs+1(t)

)
. (34)

The last inequality gives

A(t)x
(
gs−1(t)

)≥ δx
(
gs(t)

)
,

A(t)A
(
g(t)

)
x
(
gs−1(t)

)≥ δ2x
(
gs+1(t)

)
.

(35)
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Now applying the last inequality in (26), we have

x
(
gs+1(t)

)≥ δ2x
(
gs+1(t)

)
+
{
A
(
g(t)

)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
x
(
gs+1(t)

)
.

(36)

Now dividing both sides of the above inequality by x(gs+1(t)), we obtain

1− δ2 ≥ {A(g(t)
)
B(t) +A

(
g2(t)

)
B
(
g(t)

)
+A

(
g2(t)

)
A
(
g3(t)

)
B
(
g(t)

)
B
(
g2(t)

)}
.

(37)

The last inequality contradicts assumption (32). Thus, the theorem is proved. �

Remark 5. The theorems given in this paper are analogous to those presented in [9] but
conditions given in both papers are independent. For example, from [9, Theorem 1], it
follows that every solution of (9) is oscillatory if

liminf
I�t→∞

m−s∑
i=0

Q
(
gi(t)

)m−s+1∏
j=1

P
(
gi+ j(t)

)
>
(
m− s+ 1
m− s+ 2

)m−s+2

, (38)

where

P(t)=
s−2∑
k=0

Qk(t)
s−k∏
l=2

Qs+1
(
g−l(t)

)
+Qs−1(t),

Q(t)=
m∑

k=s+1

Qk(t)Qm+s−k+1
(
gk−s(t)

)
+Qm+1(t).

(39)

In order to show the independence of conditions (10) and (38), we consider the following
iterative functional equation:

x(t+ 2)= 1
[t]2

x(t) +
4

50t
x(t+ 1) +

15t
50

x(t+ 3) + [t]2x(t+ 4), t > 0. (40)

In this equation, m= 3, s= 2, and g(t)= t+ 1. Thus, condition (10) takes the form

liminf
t→∞

[
Q0(t+ 1)Q3(t− 1) +Q1(t+ 1)

][
Q3(t) +Q4(t)Q1(t+ 2)

]

= lim
t→∞

[
1

[t+ 1]2

15(t− 1)
50

+
4

50(t+ 1)

][
15t
50

+ [t]2 4
50(t+ 2)

]
= 361

2500
<

1
4

,
(41)
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and is not fulfilled. But the above-mentioned equation has only oscillatory solutions be-
cause for this equation, condition (38) has the form

liminf
t→∞

[
Q(t)P

(
g(t)

)
P
(
g2(t)

)
+Q

(
g(t)

)
P
(
g2(t)

)
P
(
g3(t)

)]
>
(

2
3

)3

, (42)

where

P(t)=Q1(t) +Q0(t)Q3
(
g−2(t)

)
,

Q(t)=Q3(t)Q3
(
g(t)

)
+Q4(t),

(43)

and is satisfied because

lim
t→∞

{[
15t
50

15(t+ 1)
50

+ [t]2
][

1
[t+ 1]2

15(t− 1)
50

+
4

50(t+ 1)

]

×
[

1
[t+ 2]2

15t
50

+
4

50(t+ 2)

]

+
[

15(t+ 1)
50

15(t+ 2)
50

+ [t+ 1]2
][

1
[t+ 2]2

15t
50

+
4

50(t+ 2)

]

×
[

1
[t+ 3]2

15(t+ 1)
50

+
4

50(t+ 3)

]}

= 0.314792 >
(

2
3

)3

.

(44)

Now we consider the iterative functional equation of the form

x(t+ 2)= 1
5[t]2

x(t) +
1
4t
x(t+ 1) +

3t
5
x(t+ 3) +

3[t]2

5
x(t+ 4), t > 0. (45)

The above-mentioned equation possesses only oscillatory solutions too. For this equa-
tion, condition (38) is not true but condition (10) is satisfied.
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