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We first introduce a generalization of the Bernoulli polynomials, and consequently of
the Bernoulli numbers, starting from suitable generating functions related to a class of
Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and
Appell polynomials are derived generalizing the relevant generating functions, and us-
ing the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials. The main properties
of these polynomial sets are shown. In particular, the differential equations can be con-
structed by means of the factorization method.

1. Introduction

A recent paper [7] deals with generalized forms of Bernoulli polynomials, used in order
to derive explicit summation formulas, generalizing well-known classical results. Fur-
thermore, the Appell polynomials were applied for the construction of quadrature rules
involving Appell instead of Bernoulli polynomials [4, 6]. In our opinion, the technique
introduced in [7] using the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials in
order to extend to several variables many classical univariable formulas could be exploited
in order to find further generalizations of the above results, permitting the construction
of new summation formulas and multidimensional quadrature rules.

A preliminary analysis of the main properties of generalized Bernoulli or Appell poly-
nomials is included in this paper.

2. Recalling Bernoulli and Appell polynomials

The Bernoulli polynomials Bn(x) can be defined by means of the generating function

G(x, t) := text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π. (2.1)

By putting x = 0, we obtain the Bernoulli numbers Bn := Bn(0) and the relevant generat-
ing function
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t

et − 1
=

∞∑
n=0

Bn
tn

n!
. (2.2)

It is well known that

Bn(0)= Bn(1)= Bn, n �= 1,

Bn(x)=
n∑

k=0

(
n

k

)
Bkx

n−k,

B′n(x)= nBn−1(x).

(2.3)

The Bernoulli numbers enter into many mathematical formulas, such as

(i) the Taylor expansion in a neighborhood of the origin of the circular and hyper-
bolic tangent and cotangent functions,

(ii) the sums of powers of natural numbers,
(iii) the remainder term of the Euler-MacLaurin quadrature rule.

The Bernoulli polynomials, first studied by Euler, are employed in the integral repre-
sentation of differentiable periodic functions, since they are employed for approximating
such functions in terms of polynomials. They are also used for representing the remainder
term of the composite Euler-MacLaurin quadrature rule (see [22]).

The Appell polynomials [2] are defined by the generating function

GA(x, t)= A(t)ext =
∞∑
n=0

Rn(x)
n!

tn, (2.4)

where

A(t)=
∞∑
k=0

�k

k!
tk, A(0) �= 0, (2.5)

is an analytic function at t = 0, and �k := Rk(0).
It is easy to see that for any A(t), the derivatives of Rn(x) satisfy

R′n(x)= nRn−1(x), (2.6)

and furthermore,

(i) if A(t)= t/(et − 1), then Rn(x)= Bn(x),
(ii) if A(t)= 2/(et + 1), then Rn(x)= En(x), the Euler polynomials,

(iii) if A(t)= α1 ···αmtm[(eα1t − 1)···(eαmt − 1)]−1, then the Rn(x) are the Bernoulli
polynomials of order m (see [11]),

(iv) if A(t) = 2m[(eα1t + 1)···(eαmt + 1)]−1, then the Rn(x) are the Euler polynomials
of order m (see [11]),

(v) if A(t) = eξ0+ξ1t+···+ξd+1td+1
, ξd+1 �= 0, then the Rn(x) are the generalized Gould-

Hopper polynomials (see [10]), including the Hermite polynomials when d = 1
and classical 2-orthogonal polynomials when d = 2.
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3. Generalizations of the Bernoulli polynomials

Some generalized forms of the Bernoulli polynomials and numbers already appeared in
literature:

(i) the generalized Bernoulli polynomials Bα
n(x) defined by the generating function

tαext(
et − 1

)α =
∞∑
n=0

Bα
n(x)

tn

n!
, |t| < 2π, (3.1)

by means of which Tricomi and Erdélyi [23] gave an asymptotic expansion of the
ratio of gamma functions;

(ii) the polynomials of Nath [19], defined by the generating function

(ht)α(1 +wt)x/w[
(1 +wt)h/w − 1

]α =
∞∑
n=0

Bα
n;h,w(x)

tn

n!
, |t| <

∣∣∣∣ 1
w

∣∣∣∣; (3.2)

(iii) the polynomials of Frappier [12], defined by the generating function

(iz)αe(x−1/2)z

22αΓ(α+ 1)Jα(iz/2)
=

∞∑
n=0

Bn,α(x)
zn

n!
, |z| < 2

∣∣ j1∣∣, (3.3)

where Jα is the Bessel function of the first kind of order α and j1 = j1(α) is the
first zero of Jα.

4. A new class of generalized Bernoulli polynomials: B[m−1]
n (x), m≥ 1

In this section, we introduce a countable set of polynomials B[m−1]
n (x) generalizing the

Bernoulli ones (which can be recovered assuming that m = 1), introduced by Natalini
and Bernardini [18].

To this end, we consider a class of Appell polynomials, defined by using a generating
function linked to the so-called Mittag-Leffler function,

E1,m+1(t) := tm

et −∑m−1
h=0

(
th/h!

) (4.1)

considered in the general form by Agarwal [1].

The generalized Bernoulli polynomials B[m−1]
n (x), m≥ 1, are defined by the generating

function

G[m−1](x, t) := tmext

et −∑m−1
h=0

(
th/h!

) = ∞∑
n=0

B[m−1]
n (x)

tn

n!
. (4.2)
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For m = 1, we obtain, from the above equation, the generating function G(0)(x, t) =
text/(et − 1) of the classical Bernoulli polynomials B(0)

n (x).
Since G[m−1](x, t) = A(t)ext, the generalized Bernoulli polynomial belong to the class

of Appell polynomials.
It is possible to define the generalized Bernoulli numbers assuming that

B[m−1]
n = B[m−1]

n (0). (4.3)

The following properties are proved in the above-mentioned paper [18].
(i) Explicit forms:

xn =
n∑

h=0

(
n

h

)
h!

(h+m)!
B[m−1]
n−h (x). (4.4)

Inverting this equation, it is possible to find explicit expressions for the polynomials

B[m−1]
n (x). The first ones are given by

B[m−1]
0 (x)=m!,

B[m−1]
1 (x)=m!

(
x− 1

m+ 1

)
,

B[m−1]
2 (x)=m!

(
x2− 2

m+ 1
x+

2
(m+ 1)2(m+ 2)

)
,

(4.5)

and, consequently, the first generalized Bernoulli numbers are

B[m−1]
0 =m!, B[m−1]

1 =− m!
m+ 1

,

B[m−1]
2 = 2m!

(m+ 1)2(m+ 2)
.

(4.6)

(ii) Recurrence relation for the B[m−1]
n polynomials:

B[m−1]
n (x)=

(
x− 1

m+ 1

)
B[m−1]
n−1 (x)− 1

n(m− 1)!

n−2∑
k=0

(
n

k

)
B[m−1]
n−k B[m−1]

k (x). (4.7)

This relation, starting from n = 1, and taking into account the initial value B[m−1]
0 (x) =

m!, allows a recursive computation for this class of generalized Bernoulli polynomials.

(iii) Differential equation for the B[m−1]
n polynomials:

B[m−1]
n

n!
y(n) +

B[m−1]
n−1

(n− 1)!
y(n−1) + ···+

B[m−1]
2

2!
y′′

+ (m− 1)!
(

1
m+ 1

− x
)
y′ +n(m− 1)!y = 0.

(4.8)
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This is an equation of order n so that all the considered families of polynomials can be
viewed as solutions of differential operators of infinite order.

Remark 4.1. Note that the generating function could be written in the form

G[m−1](x, t) := tmext

et −∑m−1
h=0

(
th/h!

) =m!
∞∑
n=0

B̃[m−1]
n (x)

tn

n!
(4.9)

so that, putting

B[m−1]
n (x)=m!B̃[m−1]

n (x), (4.10)

we obtain the explicit form of the generalized Bernoulli polynomial B̃[m−1]
n from the pre-

ceding one simply by dividing by m!, and so decreasing the relevant numerical values.

5. 2D extensions of the Bernoulli and Appell polynomials

The Hermite-Kampé de Fériet [3] (or Gould-Hopper) polynomials [13, 21] have been
used recently in order to construct addition formulas for different classes of generalized
Gegenbauer polynomials [9].

They are defined by the generating function

ext+yt j =
∞∑
n=0

H
( j)
n (x, y)

tn

n!
(5.1)

or by the explicit form

H
( j)
n (x, y)= n!

[n/ j]∑
s=0

xn− js ys

(n− js)!s!
, (5.2)

where j ≥ 2 is an integer. The case when j = 1 is not considered since the corresponding
2D polynomials are simply expressed by the Newton binomial formula.

It is worth recalling that the polynomials H
( j)
n (x, y) are a natural solution of the gen-

eralized heat equation

∂

∂y
F(x, y)= ∂j

∂x j F(x, y), F(x,0)= xn. (5.3)

The case when j = 2 is then particularly important (see Widder [24]); it was recently
used in order to define 2D extensions of the Bernoulli and Euler polynomials [7].

Further generalizations including the H
( j)
n (x, y) polynomials as a particular case are

given by

ex1t+x2t2+···+xr tr =
∞∑
n=0

Hn
(
x1,x2, . . . ,xr

) tn
n!
. (5.4)
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Note that the generating function of the last equation can be written in the form

ex1t+x2t2+···+xr tr =
∞∑
k=0

(
x1t+ x2t2 + ···+ xrtr

)k
k!

=
∞∑
k=0

1
k!

∑
k1+k2+···+kr=k

k!
k1!k2!···kr !x

k1
1 xk2

2 ···xkrr tk1+2k2+···+rkr

=
∞∑
n=0


 ∑
πk(n|r)

n!
xk1

1 xk2
2 ···xkrr

k1!k2!···kr !


 tn

n!
,

(5.5)

where k := k1 + k2 + ···+ kr , n := k1 + 2k2 + ···+ rkr , and the sum runs over all the re-
stricted partitions πk(n|r) (containing at most r sizes) of the integer n, with k denoting
the number of parts of the partition and ki the number of parts of size i. Note that, using
the ordinary notation for the partitions of n, that is, n= k1 + 2k2 + ···+nkn, we have to
assume kr+1 = kr+2 = ··· = kn = 0.

Consequently, the explicit form of the multidimensional Hermite-Kampé de Fériet
polynomials

Hn
(
x1,x2, . . . ,xr)=

∑
πk(n|r)

n!
xk1

1 xk2
2 ···xkrr

k1!k2!···kr ! (5.6)

follows.
Furthermore, they satisfy for every n the isobaric property (of weight n)

Hn
(
tx1, t2x2, . . . , trxr

)= tnHn
(
x1,x2, . . . ,xr

)
, (5.7)

and consequently, they are solutions of the first-order partial differential equation

x1
∂Hn

∂x1
+ 2x2

∂Hn

∂x2
+ ···+ rxr

∂Hn

∂xr
= nHn. (5.8)

The multivariate Hermite-Kampé de Fériet polynomials appear as an interesting tool
for introducing and studying multidimensional generalizations of the Appell polynomials
too, including the Bernoulli and Euler ones, starting from the corresponding generating
functions. A first approach in this direction was given in [8].

In the following, we recall some results of Bretti and Ricci [5], presenting some prop-
erties of the generalized 2D Appell polynomials, but considering first the case of the 2D
Bernoulli polynomials, in order to introduce the subject in a more friendly way. The rele-
vant extensions to the multidimensional Bernoulli and Appell case can be derived almost
straightforwardly, but the relevant equations are rather involved.

We will show that for every integer j ≥ 2, it is possible to define a class of 2D Bernoulli

polynomials denoted by B
( j)
n (x, y) generalizing the classical Bernoulli polynomials.
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Furthermore, the bivariate Appell polynomials R
( j)
n (x, y) are introduced by means of

the generating function

A(t)ext+yt j =
∞∑
n=0

R
( j)
n (x, y)

tn

n!
. (5.9)

Exploiting the factorization method (see [14, 16]), we show how to derive the differen-
tial equations satisfied by these 2D polynomials. The differential equation for the classical
Appell polynomials was first obtained by Sheffer [20], and was recently recovered in [15].

Remark 5.1. It is worth noting that recently Professor Ismail [17], avoiding the use of
the factorization method, was able to prove that the differential equation of infinite order
satisfied by the Appell polynomials is nothing special since it can be stated for a general
polynomial family.

Further generalizations are given by the multiindex polynomials defined by means of
the generating functions

A(t,τ)ext
l+yτ j =

∞∑
n,m=0

R
(l, j)
n,m (x, y)

tn

n!
τm

m!
(5.10)

or, more generally,

A
(
t1, . . . , tr

)
ex1t

j1
1 +···+xr t jrr =

∞∑
n1,...,nr=0

R
( j1,..., jr )
n1,...,nr

(
x1, . . . ,xr

) tn1
1

n1!
··· t

nr
r

nr !
, (5.11)

which belong to the set of multidimensional special functions recently introduced by
Dattoli and his group.

6. The 2D Bernoulli polynomials B
( j)
n (x, y)

Starting from the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials H
( j)
n (x, y),

we define the 2D Bernoulli polynomials B
( j)
n (x, y) by means of the generating function

G( j)(x, y; t) := t

et − 1
ext+yt j =

∞∑
n=0

B
( j)
n (x, y)

tn

n!
. (6.1)

It is worth noting that the polynomial H
( j)
n (x, y), being isobaric of weight n, cannot

contain the variable y, for every n= 0,1, . . . , j− 1.

The following results for the B
( j)
n (x, y) polynomials can be derived.

(i) Explicit forms of the polynomials B
( j)
n in terms of the Hermite-Kampé de Fériet

polynomials H
( j)
n and vice versa:

B
( j)
n (x, y)=

n∑
h=0

(
n

h

)
Bn−hH

( j)
n (x, y)= n!

n∑
h=0

Bn−h
(n−h)!

[h/ j]∑
r=0

xh− jr yr

(h− jr)!r!
, (6.2)
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where Bk denote the Bernoulli numbers;

H
( j)
n (x, y)=

n∑
h=0

(
n

h

)
1

n−h+ 1
B

( j)
h (x, y). (6.3)

(ii) Recurrence relation:

B
( j)
0 (x, y)= 1,

B
( j)
n (x, y)=−1

n

n−2∑
k=0

(
n

k

)
Bn−kB

( j)
k (x, y)

+
(
x− 1

2

)
B

( j)
n−1(x, y) + j y

(n− 1)!
(n− j)!

B
( j)
n− j(x, y).

(6.4)

(iii) Shift operators:

L−n := 1
n
Dx, L+

n :=
(
x− 1

2

)
−

n−1∑
k=0

Bn−k+1

(n− k+ 1)!
Dn−k

x + j yD
j−1
x ,

�−
n := 1

n
D
−( j−1)
x Dy ,

�+
n :=

(
x− 1

2

)
+ j yD

−( j−1)2

x D
j−1
y −

n−1∑
k=0

Bn−k+1

(n− k+ 1)!
D
−( j−1)(n−k)
x Dn−k

y .

(6.5)

(iv) Differential or integrodifferential equations:
[
Bn

n!
Dn

x + ···+
Bj+1

( j + 1)!
D

j+1
x +

(
Bj

j!
− j y

)
D

j
x

+
Bj−1

( j− 1)!
D

j−1
x + ···+

(
1
2
− x

)
Dx +n

]
B

( j)
n (x, y)= 0,

(6.6)

[(
x− 1

2

)
Dy + jD

−( j−1)2

x D
j−1
y + j yD

−( j−1)2

x D
j
y

−
n−1∑
k=1

Bn−k+1

(n− k+ 1)!
D
−( j−1)(n−k)
x Dn−k+1

y − (n+ 1)D
( j−1)
x

]
B

( j)
n (x, y)= 0,

(6.7)

[(
x− 1

2

)
D

( j−1)(n−1)
x Dy + ( j− 1)(n− 1)D

( j−1)(n−1)−1
x Dy

+ jD
( j−1)(n− j)
x

(
D

j−1
y + yD

j
y
)− n−1∑

k=1

Bn−k+1

(n− k+ 1)!
D

( j−1)(k−1)
x Dn−k+1

y

− (n+ 1)D
( j−1)n
x

]
B

( j)
n (x, y)= 0, n≥ j.

(6.8)

Note that the last equation can easily be derived by differentiating ( j− 1)(n− 1) times
with respect to x both sides of the preceding one, and does not contain antiderivatives for
n≥ j.
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7. The 2D Appell polynomials R
( j)
n (x, y)

For any j ≥ 2, the 2D Appell polynomials R
( j)
n (x, y) are defined by means of the generating

function

G
( j)
A (x, y; t) := A(t)ext+yt j =

∞∑
n=0

R
( j)
n (x, y)

tn

n!
. (7.1)

Even in this general case, the polynomial R
( j)
n (x, y) is isobaric of weight n so that it does

not contain the variable y, for every n= 0,1, . . . , j− 1.

(i) Explicit forms of the polynomials R
( j)
n in terms of the Hermite-Kampé de Fériet

polynomials H
( j)
n and vice versa:

R
( j)
n (x, y)=

n∑
h=0

(
n

h

)
�n−hH

( j)
n (x, y)

= n!
n∑

h=0

�n−h
(n−h)!

[h/ j]∑
r=0

xh− jr yr

(h− jr)!r!
,

(7.2)

where the �k are the Appell numbers appearing in the definition (2.5);

H
( j)
n (x, y)=

n∑
k=0

(
n

k

)
Qn−kR

( j)
k (x, y), (7.3)

where the Qk are the coefficients of the Taylor expansion in a neighborhood of the origin
of the reciprocal function 1/A(t).

(ii) Recurrence relation: it is useful to introduce the coefficients of the Taylor expansion

A′(t)
A(t)

=
∞∑
n=0

αn
tn

n!
. (7.4)

The following linear homogeneous recurrence relation for the generalized Appell poly-

nomials R
( j)
n (x, y) holds:

R
( j)
0 (x, y)= 1,

R
( j)
n (x, y)= (x+α0

)
R

( j)
n−1(x, y) +

(
n− 1
j− 1

)
j yR

( j)
n− j(x, y)

+
n−2∑
k=0

(
n− 1
k

)
αn−k−1R

( j)
k (x, y).

(7.5)
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(iii) Shift operators:

L−n := 1
n
Dx, L+

n := (x+α0
)

+
j

( j− 1)!
yD

j−1
x +

n−1∑
k=0

αn−k
(n− k)!

Dn−k
x ,

�−
n := 1

n
D
−( j−1)
x Dy ,

�+
n := (x+α0

)
+

j

( j− 1)!
yD

−( j−1)2

x D
j−1
y +

n−1∑
k=0

αn−k
(n− k)!

D
−( j−1)(n−k)
x Dn−k

y .

(7.6)

(iv) Differential or integrodifferential equations:

[
αn−1

(n− 1)!
Dn

x + ···+
αj

j!
D

j+1
x +

(
αj−1 + j y

( j− 1)!

)
D

j
x

+
αj−2

( j− 2)!
D

j−1
x + ···+

(
x+α0

)
Dx −n

]
R

( j)
n (x, y)= 0,

(7.7)

[(
x+α0

)
Dy +

j

( j− 1)!
D
−( j−1)2

x
(
yD

j
y +D

j−1
y
)

+
n−1∑
k=1

αn−k
(n− k)!

D
−( j−1)(n−k)
x Dn−k+1

y − (n+ 1)D
j−1
x

]
R

( j)
n (x, y)= 0,

(7.8)

[(
x+α0

)
D

( j−1)(n−1)
x Dy + ( j− 1)(n− 1)D

( j−1)(n−1)−1
x Dy

+
j

( j− 1)!
D

( j−1)(n− j)
x

(
yD

j
y +D

j−1
y
)

+
n−1∑
k=1

αn−k
(n− k)!

D
( j−1)(k−1)
x Dn−k+1

y

− (n+ 1)D
n( j−1)
x

]
R

( j)
n (x, y)= 0, n≥ j.

(7.9)
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