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The Darboux-Lamé equation is defined as the double Darboux transformation of the
Lamé equation, and is studied from the viewpoint of the isomonodromic deformation
theory. It is shown that the second-order ordinary differential equation of Fuchsian type
on P1 corresponding to the second Darboux-Lamé equation is obtained as isomono-
dromic deformation of some specific Gauss’ hypergeometric differential equation.

1. Introduction

We consider the nth Lamé equation

∂2

∂x2
f (x)− (n(n+ 1)℘(x,τ)− λ

)
f (x)= 0, (1.1)

where n is a natural number and ℘(x,τ) is the Weierstrass elliptic function with the fun-
damental periods 1 and τ such that �τ > 0. If the fundamental period τ and the discrete
eigenvalue λ satisfy a kind of degenerate condition obtained in [6], we can construct the
nth algebro-geometric elliptic potential u∗∗n,λ (x,ξ) with the complex parameter ξ by the
method of double Darboux transformation. We call the ordinary differential equation

∂2

∂x2
f (x)− (u∗∗n,λ (x,ξ)− λ

)
f (x)= 0 (1.2)

the nth Darboux-Lamé equation of degenerate type. The purpose of the present work is
to clarify the isomonodromic property of equation (1.2) regarding ξ as the deformation
parameter. Various authors have formerly clarified the isospectral property of the double
Darboux transformation (the double commutation) of the nth algebro-geometric po-
tential. See, for example, [2, 6] and the references therein. However, we could not treat
the isomonodromic deformation problems, for n≥ 3, in this paper, while the isospectral
deformation problem have been almost completely solved for general n.
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2. Preliminaries

In this section, the necessary materials are summarized. We refer the reader to [5, 6] for
more precise information.

We consider the second-order linear ordinary differential operator in the complex do-
main

H(u)=− ∂2

∂x2
+u(x), x ∈C, (2.1)

where u(x) is a meromorphic function. The functions Zn(u), n∈N, defined by the recur-
sion relation

Z0(u)≡ 1, Zn(u)=Λ(u)Zn−1(u), n= 1,2, . . . , (2.2)

which are the differential polynomials in u(x), are called the KdV polynomials, where

Λ(u)=
(
∂

∂x

)−1

·
(

1
2
u′ +u

∂

∂x
− 1

4
∂3

∂x3

)
(2.3)

is the Λ-operator associated with the differential operator H(u).
Let V(u) be the linear span of all KdV polynomials over C. If dimV(u)= n+ 1, then

u(x) is called the nth algebro-geometric potential and we write rankV(u) = n. If u(x)
is the nth algebro-geometric potential, then there uniquely exist the polynomials aj(λ),
j = 0,1, . . . ,n, in the spectral parameter λ of degree n− j + 1 such that

Zn+1(u− λ)=
n∑
j=0

aj(λ)Zj(u− λ). (2.4)

For this fact, see [5, 6]. The M-function M(x,λ;u) associated with u(x) is the differential
polynomial defined by

M(x,λ;u)= Zn(u− λ)−
n∑
j=1

aj(λ)Zj−1(u− λ). (2.5)

The spectral discriminant

∆(λ;u)=Mx(x,λ;u)2− 2M(x,λ;u)Mxx(x,λ;u) + 4
(
u(x)− λ

)
M(x,λ;u)2 (2.6)

is the polynomial of degree 2n+ 1 in λ with constant coefficients. Let

SpecH(u)= {λ | ∆(λ;u)= 0
}

, (2.7)

which corresponds to the discrete spectrum of the operator H(u). If λj ∈ SpecH(u), then
we have (

H(u)− λj
)
M
(
x,λj ;u

)1/2 = 0. (2.8)

We call M(x,λj ;u)1/2 the M-eigenfunction.
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For f (x) ∈ ker(H(u)− λ) \ {0}, the Darboux transformation is the operator H(u∗)
with the potential u∗(x) defined by

u∗(x)= u(x)− 2
∂2

∂x2
log f (x). (2.9)

We sometimes call the resulted potential u∗(x) itself the Darboux transformation.
Suppose f (x)∈ ker(H(u)− λ) \ {0}, then we have

1
f (x)

∈ ker
(
H
(
u∗
)− λ

) \ {0}. (2.10)

This fact is called Darboux’s lemma [1]. The Darboux transformation of the algebro-
geometric potential u(x) by the corresponding M-eigenfunction

u∗λj
(x)= u(x)− 2

∂2

∂x2
logM

(
x,λj ;u

)1/2 = u(x)− ∂2

∂x2
logM

(
x,λj ;u

)
(2.11)

is called the algebro-geometric Darboux transformation (ADT). Let

M̂
(
x,λj ;u

)= ∫ M(x,λj ;u
)
dx (2.12)

and fix the integration constant appropriately; then, by Darboux’s lemma, mentioned
above, it follows that the function Fλj (x,ξ), defined by

Fλj (x,ξ)= φλj (ξ) + ξM̂
(
x,λj ;u

)
M
(
x,λj ;u

)1/2 , (2.13)

is the 1-parameter family of the eigenfunction of H(u∗λj
) associated with the eigenvalue

λj , that is, (
H
(
u∗λj

)
− λj

)
Fλj (x,ξ)= 0, (2.14)

where φλj (ξ) is an arbitrary function which depends only on ξ. The function φλj (ξ) will be
determined exactly so that the ADDT, which is defined below, of the nth Lamé equation
is isomonodromic.

The algebro-geometric double Darboux transformation (ADDT) is defined as the Dar-
boux transformation of u∗λj

(x) by Fλj (x,ξ):

u∗∗λj
(x,ξ)= u∗λj

(x)− 2
∂2

∂x2
logFλj (x,ξ)

= u(x)− 2
∂2

∂x2
log

(
φλj (ξ) + ξM̂

(
x,λj ;u

))
.

(2.15)

In what follows, we assume that φλj (ξ) does not identically vanish since φλj (ξ)≡ 0, then
the ADDT u∗∗λj

(x,ξ) does not depend on ξ.
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Let

SpecmH(u)= {λj | the multiple roots of ∆(λ;u)= 0
}

(2.16)

which we call the multiple spectrum of H(u). It is shown in [6] that if u(x) is the nth
algebro-geometric potential, then u∗λj

(x) is the (n− 1)th algebro geometric potential if
and only if SpecmH(u) �= ∅ and λj ∈ SpecmH(u).

If n is a natural number, then the nth Lamé potential un(x,τ) = n(n + 1)℘(x,τ) is
known to be the nth algebro-geometric potential (see, e.g., [5]).

Let Mn(x,λ,τ) be the M-function associated with the nth Lamé potential un(x,τ), that
is, Mn(x,λ,τ)=M(x,λ;un(x,τ)). Let

D
(
τ;un

)= R
(
∆
(
λ;un

)
,
d

dλ
∆
(
λ;un

))
, (2.17)

where R(P,Q) is the resultant of polynomials P(λ) and Q(λ). If D(τ∗;un)= 0 for τ∗ ∈H+,
then there exists λ∗ ∈ SpecmH(un), that is, λ∗ is the multiple root of ∆(λ;un)= 0 and

ranku∗n,λ∗

(
x,τ∗

)= n− 1, (2.18)

where u∗n,λ∗(x) is the Darboux transformation of the nth Lamé potential un(x) by the
corresponding M-eigenfunction Mn(x,λ∗,τ∗)1/2, that is,

u∗n,λ∗

(
x,τ∗

)= un
(
x,τ∗

)− ∂2

∂x2
logMn

(
x,λ∗,τ∗

)
. (2.19)

Let

Θn =
{
τ |D(τ;un

)= 0
}⊂H+ (2.20)

and we call it the lattice of degenerate periods associated with the nth Lamé potential un(x).
One can immediately see that the lattice of degenerate periods Θn is the discrete subset
of H+.

Now, we enumerate several examples of the degenerate condition for the Lamé poten-
tials. For this purpose, we must carry out elementary but very complicated computation.
Hence, here we explain only the simplest case n = 1. See also [3] for another method of
computation.
KdV polynomials. We have

Z0
(
un
)= 1, Z1

(
un
)= 1

2
un, Z2

(
un
)= 3

8
u2
n−

1
8
u′′n . (2.21)

Computation of the M-function M2(x,λ,τ). Let ρ0 and ρ1 be the constants such that

Z2
(
u1
)= (3

8

)(
4℘2)−(1

8

)
(2℘′′)

= ρ0Z0
(
u1
)

+ ρ1Z1
(
u1
)= ρ0 + ρ1℘.

(2.22)
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Hence, ρ1 = 0 and ρ0 = (1/8)g2 follow immediately. On the other hand, according to [5,

Theorem 3, page 414], define the coefficients α(n)
ν , ν= 0,1,2, . . . ,n, for n= 0,1,2, then we

immediately have

α(2)
1 = 3

2
, α(2)

0 = 1, α(1)
0 = 1

2
, α(1)

1 = α(0)
0 = 1. (2.23)

Moreover, by [5, Lemma 7, page 417], we have

Z2
(
u1− λ

)= a1(λ)Z1
(
u1− λ

)
+ a0(λ)Z0

(
u1− λ

)
, (2.24)

where

a0(λ)=−α(2)
0 λ2 +α(1)

0 ρ1λ+α(0)
0 ρ0 =−λ2 +

1
8
g2,

a1(λ)=−α(2)
1 λ+α(1)

1 =−3
2
λ.

(2.25)

Hence, we have

M1(x,λ,τ)= 1
2

(2℘− λ)−
(
− 3

2
λ
)
= ℘+ λ. (2.26)

Computation of the spectral discriminant ∆(λ;u1). Using the M-function M1(x,λ,τ) ob-
tained above, we have

∆
(
λ;u1

)= ℘′2− 2(℘+ λ)℘′′ + 4(2℘− λ)(℘+ λ)2 =−4λ3 + g2λ− g3. (2.27)

For the first Lamé potential u1(x,τ), since g2(τ)3 − 27g3(τ)2 �= 0 for any τ ∈ H+,
SpecmH(u1)=∅ holds for any τ ∈H+, that is, Θ1 =∅.

On the other hand, for the second Lamé potential u2(x,τ), we can compute the spectral
discriminant similarly to the above example, and

∆
(
λ;u2

)=−4
(
λ2− 3g2(τ)

)(
λ3− 9

4
g2(τ)λ− 27

4
g3(τ)

)
(2.28)

follows. Hence SpecmH(u2) �= ∅ holds if and only if g2(τ)= 0. Note that g2(τ)= 0 holds
if and only if J(τ) = 0, where J(τ) = g2(τ)3/(g2(τ)3 − 27g3(τ)2) is the elliptic modular
function. Since g2(e2πi/3)= 0, by the modular invariance of J(τ), we have

Θ2 =
{
τ | τ = ae2πi/3 + b

ce2πi/3 +d
,

(
a b
c d

)
∈ SL(2,Z)

}
⊂H+

= {τ | �τ > 0}.
(2.29)

3. The second Darboux-Lamé equation

Suppose that τ∗ ∈Θn and λ∗ ∈ SpecmH(un(x,τ∗)). Let Mn(x,λ∗,τ∗) be the M-function
corresponding to the nth Lamé potential un(x,τ∗). By (2.15), the ADDT of un(x,τ∗) is
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expressed as

u∗∗n,λ∗(x,ξ)= un
(
x,τ∗

)− 2
∂2

∂x2
log

(
φλ∗(ξ) + ξM̂n

(
x,λ∗,τ∗

))
, (3.1)

where M̂n(x,λ∗,τ∗) is defined by (2.12). We call the 1-parameter family of the ordinary
differential equation (1.2) with the potential u∗∗n,λ∗(x,ξ), defined above, the nth Darboux-
Lamé equation of degenerate type, and DLn(τ∗,λ∗,ξ) denotes that 1-parameter family
(1.2).

In what follows, we construct exactly the second Darboux-Lamé equation of degener-
ate type. Suppose that τ∗ ∈Θ2, then, by the direct calculation parallel to that for M1(x,
λ,τ), we have

M2
(
x,λ,τ∗

)= λ2 + 3℘
(
x,τ∗

)
λ+ 9℘

(
x,τ∗

)2
. (3.2)

Since we have shown g2(τ∗)= 0 in Section 2,

∆
(
λ;u2

)=−4λ2
(
λ3− 27

4
g3
(
τ∗
))

(3.3)

follows. Hence SpecmH(u2(x,τ∗))= {0} and we have

M2
(
x,0,τ∗

)1/2 = 3℘
(
x,τ∗

)∈ kerH
(
u2
)
. (3.4)

Therefore, the ADT u∗2,0(x) is given by

u∗2,0(x)= 2℘
(
x,τ∗

)− 2g3
(
τ∗
)

℘
(
x,τ∗

)2 (3.5)

and, by Darboux’s lemma, we have

1

M2
(
x,0,τ∗

)1/2 =
1

3℘
(
x,τ∗

) ∈ kerH
(
u∗2,0

)
. (3.6)

On the other hand, we have

M̂2
(
x,0,τ∗

)= ∫ M2
(
x,0,τ∗

)
dx =

∫
9℘
(
x,τ∗

)2
dx = 3

2
℘′
(
x,τ∗

)
. (3.7)

Hence, by (3.1),

u∗∗2,0

(
x,τ∗

)= u2(x)− 2
∂2

∂x2
log

(
φ0(ξ) +

3
2
ξ℘′(x,τ)

)
(3.8)

follows. Thus we have the following lemma.

Lemma 3.1. The second Darboux-Lamé equation of degenerate type is explicitly expressed
as

∂2

∂x2
f (x)= 6℘

(
x,τ∗

)(
φ0(ξ)2− 3ξφ0(ξ)℘′(x,τ) + (27/4)g3

(
τ∗
)
ξ2
)(

φ0(ξ) + (3/2)ξ℘′
(
x,τ∗

))2 f (x). (3.9)
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Moreover,

F0(x,ξ)= φ0(ξ) + (3/2)ξ℘′
(
x,τ∗

)
3℘
(
x,τ∗

) . (3.10)

The isospectral property of the potential u∗∗2,0 (x,τ∗) will be discussed in the forthcom-
ing paper [7].

4. The Fuchsian equation on P1

Suppose that τ∗ ∈Θ2, that is, g2(τ∗) = 0. Since g2(τ∗)3 − 27g3(τ∗)2 �= 0, g3(τ∗) �= 0 fol-
lows. In what follows, we fix one of the square roots of g3(τ∗) and denote it by γ, that is,
γ2 = g3(τ∗). Then, by the variable transformation

z = 1
2iγ
℘′
(
x,τ∗

)
+

1
2

, (4.1)

the second Darboux-Lamé equation DL2(τ∗,0,ξ) is transformed to the second-order or-
dinary differential equation of Fuchsian type on P1:

z(z− 1)
∂2

∂z2
f̂ (z,ξ) +

(
4
3
z− 2

3

)
∂

∂z
f̂ (z,ξ)= Γ

(
z,

3iγξ − 2φ0(ξ)
6iγξ

)
f̂ (z,ξ) (4.2)

with the parameter ξ, where

Γ(x,s)= 2
3

(2s− 1)z+ s(s− 2)
(z− s)2

, f̂ (z,ξ)= f (x,ξ). (4.3)

We denote the 1-parameter family of the ordinary differential equation (4.2) by D̂L2(τ∗,
0,ξ). The regular singular points of equation (4.2) are

z = 0,1,∞, s= s(ξ)= 3iγξ − 2φ0(ξ)
6iγξ

. (4.4)

In what follows, we assume that φ0(0) �= 0. Then it follows that s(0) =∞, and that the
differential equation D̂L2(τ∗,0,0) coincides with the hypergeometric equation

z(z− 1)
∂2

∂z2
f̂ (z) +

(
4
3
z− 2

3

)
∂

∂z
f̂ (z)= 2

3
f̂ (z). (4.5)

Now, we construct the fundamental system of solutions of D̂L2(τ∗,0,ξ) (4.2). Suppose
ξ �= 0. Then, by Darboux’s lemma and (3.1),

f1(x,ξ)= 1
F0(x,ξ)

= 6℘
(
x,τ∗

)
2φ0(ξ) + 3ξ℘′

(
x,τ∗

) ,

f2(x,ξ)= f1(x,ξ)
∫

1
f1(x,ξ)2

dx

= ℘
(
x,τ∗

)
6
(
2φ0(ξ) + 3ξ℘′

(
x,τ∗

)) ∫ (2φ0(ξ) + 3ξ℘′
(
x,τ∗

))2

℘
(
x,τ∗

)2 dx

(4.6)
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are the fundamental system of solutions of the second Darboux-Lamé equation

H
(
u∗∗2,0 (x,ξ)

)
f (x,ξ)=− ∂2

∂x2
f (x,ξ) +u∗∗2,0 (x,ξ) f (x,ξ)= 0 (4.7)

such that W[ f1, f2]= f1 f2x − f1x f2 = 1. By the variable transformation (4.1), we have

℘
(
x,τ∗

)= γ2/3z1/3(1− z)1/3, ℘′
(
x,τ∗

)= iγ(2z− 1). (4.8)

Let f̂ j(z,ξ)= f j(x,ξ), j = 1,2. We immediately have

f̂1(z,ξ)= 6γ2/3z1/3(1− z)1/3

2φ0(ξ) + 3iγξ(2z− 1)
. (4.9)

Similarly, we have

f̂2(z,ξ)= iz1/3(1− z)1/3

18γ
(
2φ0(ξ) + 3iγξ(2z− 1)

) ∫ (2φ0(ξ) + 3iγξ(2z− 1)
)2

z4/3(1− z)4/3
dz. (4.10)

5. Isomonodromic property of D̂L2(τ∗,0,ξ)

The following is the well-known criterion for the isomonodromic property.

Lemma 5.1. Suppose that the second-order ordinary differential equation

∂2

∂z2
f (z,ξ) + p(z,ξ)

∂

∂z
f (z,ξ) + q(z,ξ) f (z,ξ)= 0 (5.1)

is of Fuchsian type on P1 with the parameter ξ. The monodromy group for this equation
is independent of the parameter ξ if and only if there exist a(z,ξ) and b(z,ξ), which are
rational in z, such that

∂

∂ξ
f (z,ξ)= a(z,ξ)

∂

∂z
f (z,ξ) + b(z,ξ) f (z,ξ). (5.2)

By the above general criterion, to show that the monodromy matrix associated with

the fundamental system f̂1(z,ξ), f̂2(z,ξ) is independent of the parameter ξ, it suffices to
show that a(z,ξ) and b(z,ξ), defined by

a(z,ξ)=

∣∣∣∣ f̂1ξ(z,ξ) f̂1(z,ξ)

f̂2ξ(z,ξ) f̂2(z,ξ)

∣∣∣∣
∣∣∣∣ f̂1z(z,ξ) f̂1(z,ξ)

f̂2z(z,ξ) f̂2(z,ξ)

∣∣∣∣
, b(z,ξ)=

∣∣∣∣ f̂1z(z,ξ) f̂1ξ(z,ξ)

f̂2z(z,ξ) f̂2ξ(z,ξ)

∣∣∣∣
∣∣∣∣ f̂1z(z,ξ) f̂1(z,ξ)

f̂2z(z,ξ) f̂2(z,ξ)

∣∣∣∣
, (5.3)

are rational functions of z. Let

g(z,ξ)=
(
2φ0(ξ) + 3iγξ(2z− 1)

)2

z4/3(1− z)4/3
, (5.4)
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then, by (4.9) and (4.10), the expression

f̂2(z,ξ)= f̂1(z,ξ)
∫
g(z,ξ)dz (5.5)

follows. Hence, we have∣∣∣∣∣ f̂1z(z,ξ) f̂1(z,ξ)

f̂2z(z,ξ) f̂2(z,ξ)

∣∣∣∣∣=− f̂1(z,ξ)2g(z,ξ),

∣∣∣∣∣ f̂1ξ(z,ξ) f̂1(z,ξ)

f̂2ξ(z,ξ) f̂2(z,ξ)

∣∣∣∣∣=− f̂1(z,ξ)2
∫
gξ(z,ξ)dz.

(5.6)

Thus

a(z,ξ)=
∫
gξ(z,ξ)dz
g(z,ξ)

(5.7)

follows. On the other hand, we immediately have

b(z,ξ)=− f̂1z(z,ξ)

f̂1(z,ξ)
a(z,ξ) +

f̂1ξ(z,ξ)

f̂1(z,ξ)
. (5.8)

We have

f̂1z(z,ξ)

f̂1(z,ξ)
= ∂

∂z
log f̂1(z,ξ)= 1− 2z

3z(1− z)
− 6iγξ

2φ0(ξ) + 3iγξ(2z− 1)
,

f̂1ξ(z,ξ)

f̂1(z,ξ)
= ∂

∂ξ
log f̂1(z,ξ)=− 2φ′0(ξ) + 6iγz

2φ0(ξ) + 3iγξ(2z− 1)
.

(5.9)

These are both rational functions of z. Hence, if a(z,ξ) is a rational function of z, then
b(z,ξ) is also a rational function of z. Therefore, we have the following lemma.

Lemma 5.2. The family D̂L2(τ∗,0,ξ) is isomonodromic if and only if the integral constant
of the indefinite integral

G(z,ξ)= (z− z2)1/3
∫

4φ0(ξ)φ′0(ξ)− 9ξg3
(
τ∗
)
(1− 2z)2(

z− z2
)4/3 dz (5.10)

is determined so that G(z,ξ) is the rational function of z for all ξ.

Proof. By direct calculation, we have

a(z,ξ)= z− z2(
2φ0− 3iγξ(1− 2z)

)2

2G(z,ξ)− 12iγ
(
φ0(ξ)

+ξφ′0(ξ)
)(
z− z2)1/3

∫
1− 2z(
z− z2

)4/3 dz

 .
(5.11)
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On the other hand, we have∫
1− 2z(
z− z2

)4/3 dz =
(

3
z− 1

− 3
z

)(
z− z2)2/3

+ const . (5.12)

This completes the proof. �

Next we have the following lemma.

Lemma 5.3. The integral constant of the indefinite integral

(
z− z2)1/3

∫
z2 + c(

z− z2
)4/3 dz (5.13)

can be determined so that it is the rational function of z if and only if c =−1.

Proof. Firstly, suppose c =−1, then we immediately have

∫
z2− 1(
z− z2

)4/3 dz =
3
(
z− z2

)2/3

z
+α. (5.14)

Hence, putting α= 0, we have

(
z− z2)1/3

∫
z2− 1(
z− z2

)4/3 dz = 3(1− z). (5.15)

Secondly, by the above, we have

(
z− z2)1/3

∫
z2 + c(

z− z2
)4/3 dz = (c+ 1)

(
z− z2)1/3

∫
1(

z− z2
)4/3 dz+ 3(1− z). (5.16)

Let

p(z)= (z− z2)1/3
∫

1(
z− z2

)4/3 dz, (5.17)

then we have

∂

∂z
log p(z)= 1− 2z

3
(
z− z2

) +
1(

z− z2
)
p(z)

. (5.18)

This implies that

z(z− 1)
∂

∂z
p(z)= 1

3
(2z− 1)p(z)− 1. (5.19)

Assume that one can choose the integration constant so that p(z) is the rational function.
Then there exist the polynomials p1(z), p2(z), and p3(z) such that p1(0)= p2(0)= 0 and

p(z)= p1

(
1
z

)
+ p2

(
1

z− 1

)
+ p3(z). (5.20)
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Let

p1

(
1
z

)
=

l∑
j=1

αj

z j
, p2

(
1

z− 1

)
=

m∑
j=1

βj

(z− 1) j
, p3(z)=

n∑
j=0

γjz
j , (5.21)

then we have

z(z− 1)
∂

∂z
p1

(
1
z

)
− 1

3
(2z− 1)p1

(
1
z

)

=−
l∑

j=1

jαj

z j−1 +
l∑

j=1

jαj

z j
−

l∑
j=1

2
3

αj

z j−1 +
l∑

j=1

1
3

αj

z j
= c1,

z(z− 1)
∂

∂z
p2

(
1

z− 1

)
− 1

3
(2z− 1)p2

(
1

z− 1

)
= ((z− 1)2 + (z− 1)

) ∂
∂z

p2

(
1

z− 1

)
− 1

3

(
2(z− 1) + 1

)
p2

(
1

z− 1

)

=−
m∑
j=1

jβj

(z− 1) j−1 −
m∑
j=1

jβj

(z− 1) j
−

l∑
j=1

2
3

βj

(z− 1) j−1 −
l∑

j=1

1
3

βj

(z− 1) j
= c2,

z(z− 1)
∂

∂z
p3(z)− 1

3
(2z− 1)p3(z)

=
n∑
j=1

jγ jz
j+1−

m∑
j=1

jγ jz
j −

m∑
j=0

2
3
γjz

j+1 +
m∑
j=0

1
3
γjz

j = c3,

(5.22)

where c1 + c2 + c3 =−1. By these relations, we have

lαl − 1
3
αl = 0. (5.23)

Hence αl = 0 follows. Moreover, one verifies that

− jαj + ( j− 1)αj−1− 2
3
αj +

1
3
αj−1 = 0, j = 2,3, . . . , l,

−α1− 2
3
α1 = c1.

(5.24)

These imply that αl = αl−1 = ··· = α1 = 0, that is, p1(z)= 0 and c1 = 0. Similarly, one can
show that p2(z)= 0 and c2 = 0. On the other hand, we have

nγn− 2
3
γn = 0. (5.25)

Hence γn = 0 follows. Moreover, we have

jγ j − ( j + 1)γj+1− 2
3
γj +

1
3
γj+1 = 0, j = 1,2, . . . ,n− 1,

−γ1− 2
3
γ0 +

1
3
γ1 = 0.

(5.26)
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These imply that γn = γn−1 = ··· = γ0 = 0. On the other hand, we have

−1
3
γ0 = c3. (5.27)

Hence c3 = 0 follows. This is contradiction. This completes the proof. �

Let

K =−4φ0(ξ)φ′0(ξ)
9ξg3

(
τ∗
) , (5.28)

then we have

G(z,ξ)=−9ξg3
(
τ∗
)(
z− z2)1/3

∫
(1− 2z)2−K(

z− z2
)4/3 dz

=−9ξg3
(
τ∗
)(
z− z2)1/3

(
2
∫

1− 2z(
z− z2

)4/3 dz+ 4
∫
z2− (K + 1)/4(

z− z2
)4/3 dz

)
.

(5.29)

Hence, we can determine the integral constant so that G(z,ξ) is the rational function of z
if and only if K = 3. Since we assumed that φ0(0) �= 0, we have

φ0(ξ)=
(
− 27

4
g3
(
τ∗
)
ξ2 + c

)1/2

, c �= 0. (5.30)

Thus, we proved the following theorem.

Theorem 5.4. Suppose τ∗ ∈Θ2. Let φ0(ξ) be defined as in (5.30). Then, the monodromy
group for D̂L2(τ∗,0,ξ) is isomorphic to that for Gauss’ hypergeometric differential equation
(4.5) for every ξ ∈ P1.

6. Monodromy group of D̂L2(τ∗,0,0)

By Theorem 5.4, to carry out the calculation of the monodromy group of D̂L2(τ∗,0,ξ), it
suffices to do it for D̂L2(τ∗,0,0).

We denote D = P1 \ {0,1,∞} and let π1(D,z0) be the fundamental group of D with the
base point z0 ∈D. Let

y1(z)= f̂ (z), y2(z)= z f̂ ′(z)− 1
3
f̂ (z), (6.1)

and X(z) = t(y1(z), y2(z)). Then the Okubo form [4, page 177] of the Gauss’ hypergeo-
metric differential equation (4.5) is expressed as

(z−B)
∂

∂z
X = AX , (6.2)

where

B =
(

0 0
0 1

)
, A=

(
1/3 1
4/9 −2/3

)
. (6.3)



Mayumi Ohmiya 523

Let χ(z,z0) = (X1(z),X2(z)) be the fundamental system of solutions of the Okubo form
(6.2) near z0. On the other hand, let γ ∈ π1(D,z0) and let χγ(z,z0) be the analytic con-
tinuation along the closed path γ. Then there exists Mγ ∈ GL(2,C) such that χγ(z,z0) =
χ(z,z0)Mγ. The map µχ : π1(D,z0)→ GL(2,C) defined by µχ(γ)=Mγ is the linear repre-
sentation of the fundamental group π1(D,z0). The image G = µχ(π1(D,z0)) is called the
monodromy group associated with the fundamental system χ(z,z0).

Let F(α,β,γ;z) be the hypergeometric function. According to [4, pages 178-179], de-
fine the holomorphic solutions Y(z,a) and the nonholomorphic solutions X(z,a), for
a= 0,1, as follows:

Y(z,0)= t
(
− 1

3
F
(

1,−2
3

,
2
3

;z
)

,F
(

1,−2
3

,−1
3

;z
))

,

X(z,0)= t
(
z1/3F

(
4
3

,−1
3

,
4
3

;z
)

,−1
3
z1/3F

(
7
3

,
2
3

,
7
3

;z
))

,

Y(z,1)= t
(
F
(

1,−1
3

,
2
3

;1− z
)

,
9
4
F
(

1,−1
3

,−1
3

;1− z
))

,

X(z,1)= t
(

3(z− 1)1/3F
(
− 1

3
,
4
3

,
1
3

;1− z
)

, (z− 1)−2/3F
(
− 4

3
,
1
3

,−2
3

;1− z
))

.

(6.4)

The matrix functions (Y(z,0),X(z,0)) and (Y(z,1),X(z,1)) are both the fundamental
systems of solutions of the Okubo form (6.2) defined near z = 0 and z = 1, respectively. By
the method explained precisely in [4, pages 193–199], using these fundamental systems,
one can solve the connection problem and finally obtain the generators M0 and M1 of the
monodromy group G as follows:

M0 =
exp

(
2
3
πi
)

exp
(

2
3
πi
)
− 1

0 1

 , M1 =
 1 0

−exp
(
− 1

3
πi
)
− 1 1

 . (6.5)

It is easy to see that the monodromy group of the Okubo form (6.2) coincides with that
of Gauss’ hypergeometric equation (4.5).
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