WHICH SOLUTIONS OF THE THIRD PROBLEM FOR THE POISSON EQUATION ARE BOUNDED?

DAGMAR MEDKOVÁ

Received 10 September 2002

This paper deals with the problem $\Delta u = g$ on G and $\partial u/\partial n + uf = L$ on ∂G . Here, $G \subset \mathbb{R}^m$, m > 2, is a bounded domain with Lyapunov boundary, f is a bounded nonnegative function on the boundary of G, L is a bounded linear functional on $W^{1,2}(G)$ representable by a real measure μ on the boundary of G, and $g \in L_2(G) \cap L_p(G)$, p > m/2. It is shown that a weak solution of this problem is bounded in G if and only if the Newtonian potential corresponding to the boundary condition μ is bounded in G.

Suppose that $G \subset \mathbb{R}^m$, m > 2, is a bounded domain with Lyapunov boundary (i.e., of class $C^{1+\alpha}$). Denote by n(y) the outer unit normal of G at y. If $f,g,h \in C(\partial G)$ and $u \in C^2(c|G)$ is a classical solution of

$$\Delta u = g \quad \text{on } G,$$

$$\frac{\partial u}{\partial n} + uf = h \quad \text{on } \partial G,$$
 (1)

then Green's formula yields

$$\int_{G} \nabla u \cdot \nabla v \, d\mathcal{H}_m + \int_{\partial G} u f v \, d\mathcal{H}_{m-1} = \int_{\partial G} h v \, d\mathcal{H}_{m-1} - \int_{G} g v \, d\mathcal{H}_m \tag{2}$$

for each $v \in \mathfrak{D}$, the space of all compactly supported infinitely differentiable functions in \mathbb{R}^m . Here, ∂G denotes the boundary of G and cl G is the closure of G; \mathcal{H}_k is the kdimensional Hausdorff measure normalized so that \mathcal{H}_k is the Lebesgue measure in \mathbb{R}^k . Denote by $\mathfrak{D}(G)$ the set of all functions from \mathfrak{D} with the support in G.

For an open set $V \subset \mathbb{R}^m$, denote by $W^{1,2}(V)$ the collection of all functions $f \in L_2(V)$, the distributional gradient of which belongs to $[L_2(V)]^m$.

Definition 1. Let $f \in L_{\infty}(\mathcal{H})$, $g \in L_2(G)$ and let L be a bounded linear functional on $W^{1,2}(G)$ such that $L(\varphi) = 0$ for each $\varphi \in \mathfrak{D}(G)$. We say that $u \in W^{1,2}(G)$ is a weak solution

Copyright © 2004 Hindawi Publishing Corporation Abstract and Applied Analysis 2004:6 (2004) 501–510 2000 Mathematics Subject Classification: 35B65 URL: http://dx.doi.org/10.1155/S1085337504306196

502 Boundedness of solutions

in $W^{1,2}(G)$ of the third problem for the Poisson equation

$$\Delta u = g \quad \text{on } G,$$

$$\frac{\partial u}{\partial n} + uf = L \quad \text{on } \partial G,$$
(3)

if

$$\int_{G} \nabla u \cdot \nabla v \, d\mathcal{H}_m + \int_{\partial G} u f v \, d\mathcal{H} = L(v) - \int_{G} g v \, d\mathcal{H}_m \tag{4}$$

for each $v \in W^{1,2}(G)$.

Denote by $\mathscr{C}'(\partial G)$ the Banach space of all finite signed Borel measures with support in ∂G with the total variation as a norm. We say that the bounded linear functional *L* on $W^{1,2}(G)$ is representable by $\mu \in \mathscr{C}'(\partial G)$ if $L(\varphi) = \int \varphi d\mu$ for each $\varphi \in \mathfrak{D}$. Since \mathfrak{D} is dense in $W^{1,2}(G)$, the operator *L* is uniquely determined by its representation $\mu \in \mathscr{C}'(\partial G)$.

For $x, y \in \mathbb{R}^m$, denote

$$h_x(y) = \begin{cases} (m-2)^{-1}A^{-1}|x-y|^{2-m} & \text{for } x \neq y, \\ \infty & \text{for } x = y, \end{cases}$$
(5)

where *A* is the area of the unit sphere in \mathbb{R}^m . For the finite real Borel measure ν , denote

$$\mathcal{U}\nu(x) = \int_{\mathbb{R}^m} h_x(y) d\nu(y) \tag{6}$$

the Newtonian potential corresponding to v, for each x for which this integral has sense.

We denote by $\mathscr{C}'_b(\partial G)$ the set of all $\mu \in \mathscr{C}'(\partial G)$ for which $\mathfrak{U}\mu$ is bounded on $\mathbb{R}^m \setminus \partial G$. Remark that $\mathscr{C}'_b(\partial G)$ is the set of all $\mu \in \mathscr{C}'(\partial G)$ for which there is a polar set M such that $\mathfrak{U}\mu(x)$ is meaningful and bounded on $\mathbb{R}^m \setminus M$, because $\mathbb{R}^m \setminus \partial G$ is finely dense in \mathbb{R}^m (see [1, Chapter VII, Sections 2, 6], [7, Theorems 5.10 and 5.11]) and $\mathfrak{U}\mu = \mathfrak{U}\mu^+ - \mathfrak{U}\mu^-$ is finite and fine-continuous outside of a polar set. Remark that $\mathscr{H}_{m-1}(M) = 0$ for each polar set M (see [7, Theorem 3.13]). (For the definition of polar sets, see [4, Chapter 7, Section 1]; for the definition of the fine topology, see [4, Chapter 10].)

Denote by \mathcal{H} the restriction of \mathcal{H}_{m-1} to ∂G .

LEMMA 2. Let $\mu \in \mathscr{C}'(\partial G)$. Then the following assertions are equivalent:

- (1) $\mu \in \mathscr{C}'_h(\partial G)$,
- (2) $\mathfrak{U}\mu$ is bounded in *G*,
- (3) $\mathfrak{U}\mu \in L_{\infty}(\mathcal{H}).$

Proof. (2) \Rightarrow (3). Since ∂G is a subset of the fine closure of *G* by [1, Chapter VII, Sections 2, 6] and [7, Theorems 5.10 and 5.11], $\mathcal{U}\mu = \mathcal{U}\mu^+ - \mathcal{U}\mu^-$ is finite and fine-continuous outside of a polar set *M*, and $\mathcal{H}_{m-1}(M) = 0$ by [4, Theorem 7.33] and [7, Theorem 3.13], then we obtain that $\mathcal{U}\mu \in L_{\infty}(\mathcal{H})$.

 $(3) \Rightarrow (1)$. Let $\mu = \mu^+ - \mu^-$ be the Jordan decomposition of μ . For $z \in G$, denote by μ_z the harmonic measure corresponding to *G* and *z*. If $y \in \partial G$ and $z \in G$, then

$$\int_{\partial G} h_y(x) d\mu_z(x) = h_y(z) \tag{7}$$

by [7, pages 264, 299]. Using Fubini's theorem, we get

$$\int \mathfrak{U}\mu^+ d\mu_z = \int_{\partial G} \int_{\partial G} h_y(x) d\mu_z(x) d\mu^+(y) = \int_{\partial G} h_y(z) d\mu^+(y) = \mathfrak{U}\mu^+(z).$$
(8)

Similarly, $\int \mathfrak{U}\mu^- d\mu_z = \mathfrak{U}\mu^-(z)$. Since $\mathfrak{U}\mu \in L_{\infty}(\mathcal{H})$, μ_z is a nonnegative measure with the total variation 1 (see [4, Lemma 8.12]) which is absolutely continuous with respect to \mathcal{H} by [2, Theorem 1], then we obtain that $|\mathfrak{U}\mu(z)| \leq ||\mathfrak{U}\mu||_{L_{\infty}(\mathcal{H})}$.

If $z \in \mathbb{R}^m \setminus \operatorname{cl} G$, choose a bounded domain V with smooth boundary such that $\operatorname{cl} G \cup \{z\} \subset V$. Repeating the previous reasonings for $V \setminus \operatorname{cl} G$, we get $|\mathfrak{U}\mu(z)| \leq ||\mathfrak{U}\mu||_{L_{\infty}(\mathcal{H})}$.

LEMMA 3. Let $f \in L_{\infty}(\mathcal{H})$ and $g \in L_2(G) \cap L_p(\mathbb{R}^m)$, where p > m/2, g = 0 on $\mathbb{R}^m \setminus G$. Then $\mathfrak{U}(g\mathcal{H}_m) \in \mathfrak{C}(\mathbb{R}^m) \cap W^{1,2}(G)$. Moreover, there is a bounded linear functional L on $W^{1,2}(G)$ representable by $\mu \in \mathfrak{C}'_b(\partial G)$ such that $\mathfrak{U}(g\mathcal{H}_m)$ is a weak solution in $W^{1,2}(G)$ of the third problem for the Poisson equation

$$\Delta u = -g \quad on \ G, \qquad \frac{\partial u}{\partial n} + uf = L \quad on \ \partial G. \tag{9}$$

Proof. Suppose first that *g* is nonnegative. Since $\mathcal{U}(g\mathcal{H}_m) \in \mathcal{C}(\mathbb{R}^m)$ by [3, Theorem A.6], the energy $\int g\mathcal{U}(g\mathcal{H}_m) d\mathcal{H}_m < \infty$. According to [7, Theorem 1.20], we have

$$\int |\nabla \mathcal{U}(g\mathcal{H}_m)|^2 d\mathcal{H}_m = \int g \mathcal{U}(g\mathcal{H}_m) d\mathcal{H}_m < \infty, \tag{10}$$

and therefore $\mathcal{U}(g\mathcal{H}_m) \in W^{1,2}(G)$ (see [7, Lemma 1.6] and [16, Theorem 2.1.4]).

Since $\mathfrak{U}(g\mathcal{H}_m) \in \mathfrak{C}(\mathbb{R}^m) \cap W^{1,2}(G)$, $f \in L_{\infty}(\mathcal{H})$ and the trace operator is a bounded operator from $W^{1,2}(G)$ to $L_2(\mathcal{H})$ by [8, Theorem 3.38], then the operator

$$L(\varphi) = \int_{G} \nabla \varphi \cdot \nabla \mathcal{U}(g\mathcal{H}_{m}) d\mathcal{H}_{m} + \int_{\partial G} \mathcal{U}(g\mathcal{H}_{m}) f\varphi d\mathcal{H}_{m-1} - \int_{G} g\varphi d\mathcal{H}_{m}$$
(11)

is a bounded linear functional on $W^{1,2}(G)$.

According to [7, Theorem 4.2], there is a nonnegative $\nu \in \mathscr{C}'(\partial G)$ such that $\mathfrak{U}\nu = \mathfrak{U}(g\mathscr{H}_m)$ on $\mathbb{R}^m \setminus \mathrm{cl}\,G$. Choose a bounded domain V with smooth boundary such that $\mathrm{cl}\,G \subset V$. Since $\mathfrak{U}\nu$ is bounded in $V \setminus \mathrm{cl}\,G \subset \mathbb{R}^m \setminus \mathrm{cl}\,G$, Lemma 2 yields that $\nu \in \mathscr{C}'_b(\partial (V \setminus \mathrm{cl}\,G))$. Therefore, $\nu \in \mathscr{C}'_b(\partial G)$. According to [13, Lemma 4], there is $\tilde{\nu} \in \mathscr{C}'_b(\partial G)$ such that

$$\int_{\mathbb{R}^m \setminus \mathrm{cl}\,G} \nabla \varphi \cdot \nabla \mathfrak{U}(g\mathcal{H}_m) d\mathcal{H}_m = \int_{\mathbb{R}^m \setminus \mathrm{cl}\,G} \nabla \varphi \cdot \nabla \mathfrak{U} \nu d\mathcal{H}_m = \int_{\partial G} \varphi \, d\tilde{\nu} \tag{12}$$

for each $\varphi \in \mathfrak{D}$. Let $\mu = \tilde{\nu} - f\mathfrak{U}(g\mathcal{H}_m)\mathcal{H}$. Since $\mathfrak{U}(f\mathfrak{U}(g\mathcal{H}_m)\mathcal{H}) \in \mathfrak{C}(\mathbb{R}^m)$ by [6, Corollary 2.17 and Lemma 2.18] and $\mathfrak{U}(f\mathfrak{U}(g\mathcal{H}_m)\mathcal{H})(x) \to 0$ as $|x| \to \infty$, we have $f\mathfrak{U}(g\mathcal{H}_m)\mathcal{H} \in \mathfrak{C}'_b(\partial G)$. Therefore, $\mu \in \mathfrak{C}'_b(\partial G)$.

If $\varphi \in \mathfrak{D}$, then $\varphi = \mathfrak{U}((-\Delta \varphi)\mathcal{H}_m)$ by [3, Theorem A.2]. According to [7, Theorem 1.20],

$$\int_{\mathbb{R}^m} \nabla \varphi \cdot \nabla \mathfrak{U}(g\mathcal{H}_m) d\mathcal{H}_m = \int_{\mathbb{R}^m} \nabla \mathfrak{U}((-\Delta \varphi)\mathcal{H}_m) \cdot \nabla \mathfrak{U}(g\mathcal{H}_m) d\mathcal{H}_m$$
$$= \int_{\mathbb{R}^m} g \mathfrak{U}((-\Delta \varphi)\mathcal{H}_m) d\mathcal{H}_m \qquad (13)$$
$$= \int_{\mathbb{R}^m} g \varphi d\mathcal{H}_m.$$

Since $\mathcal{H}_m(\partial G) = 0$,

$$\int_{G} \nabla \varphi \cdot \nabla \mathcal{U}(g\mathcal{H}_{m}) d\mathcal{H}_{m} + \int_{\partial G} \mathcal{U}(g\mathcal{H}_{m}) f \varphi d\mathcal{H}_{m-1}
= \int_{G} g \varphi d\mathcal{H}_{m} + \int_{\partial G} \mathcal{U}(g\mathcal{H}_{m}) f \varphi d\mathcal{H}_{m-1}
- \int_{\mathbb{R}^{m} \setminus clG} \nabla \varphi \cdot \nabla \mathcal{U}(g\mathcal{H}_{m}) d\mathcal{H}_{m}
= \int_{G} g \varphi d\mathcal{H}_{m} + \int_{\partial G} \varphi d\mu.$$
(14)

LEMMA 4. Let $f \in L_{\infty}(\mathcal{H})$ and $g \in L_{2}(G) \cap L_{p}(\mathbb{R}^{m})$, where p > m/2, g = 0 on $\mathbb{R}^{m} \setminus G$. Let L be a bounded linear functional on $W^{1,2}(G)$ representable by $\mu \in \mathcal{C}'(\partial G)$. If $u \in L_{\infty}(G) \cap W^{1,2}(G)$ is a weak solution in $W^{1,2}(G)$ of problem (3), then $\mu \in \mathcal{C}'_{b}(\partial G)$.

Proof. Let $w = u - \mathcal{U}(g\mathcal{H}_m)$. According to Lemma 3, there is a bounded linear functional \tilde{L} on $W^{1,2}(G)$ representable by $v \in \mathcal{C}'_b(\partial G)$ such that w is a weak solution in $W^{1,2}(G)$ of the problem

$$\Delta w = 0 \quad \text{on } G,$$

$$\frac{\partial w}{\partial n} + wf = L - \tilde{L} \quad \text{on } \partial G.$$
 (15)

Fix $x \in G$. Choose a sequence G_j of open sets with C^{∞} boundary such that $\operatorname{cl} G_j \subset G_{j+1} \subset G$, $x \in G_1$, and $\cup G_j = G$. Fix r > 0 such that $\Omega_{2r}(x) \subset G_1$. Choose an infinitely differentiable function ψ such that $\psi = 0$ on $\Omega_r(x)$ and $\psi = 1$ on $\mathbb{R}^m \setminus \Omega_{2r}(x)$. According to Green's identity,

$$\begin{split} w(x) &= \lim_{j \to \infty} \left[\int_{\partial G_j} h_x(y) \frac{\partial w(y)}{\partial n} d\mathcal{H}_{m-1}(y) - \int_{\partial G_j} w(y) n(y) \cdot \nabla h_x(y) d\mathcal{H}_{m-1}(y) \right] \\ &= \lim_{j \to \infty} \left[\int_{G_j} \nabla w(y) \cdot \nabla (h_x(y)\psi(y)) d\mathcal{H}_m(y) - \int_{G_j} \nabla (w(y)\psi(y)) \cdot \nabla h_x(y) d\mathcal{H}_m(y) \right] \end{split}$$

Dagmar Medková 505

$$= \int_{G} \nabla w(y) \cdot \nabla (h_{x}(y)\psi(y)) d\mathcal{H}_{m}(y) - \int_{G} \nabla (w(y)\psi(y)) \cdot \nabla h_{x}(y) d\mathcal{H}_{m}(y)$$

$$= \mathcal{U}(\mu - \nu - fw\mathcal{H})(x) - \int_{G} \nabla (w(y)\psi(y)) \cdot \nabla h_{x}(y) d\mathcal{H}_{m}(y).$$

(16)

According to [16, Theorem 2.3.2], there is a sequence of infinitely differentiable functions w_n such that $w_n \to w\psi$ in $W^{1,2}(G)$. According to [6, Section 2],

$$w(x) = \mathfrak{U}(\mu - \nu - f w \mathcal{H})(x) - \lim_{n \to \infty} \int_{G} \nabla w_{n}(y) \cdot \nabla h_{x}(y) d\mathcal{H}_{m}(y)$$

$$= \mathfrak{U}(\mu - \nu - f w \mathcal{H})(x) - \lim_{n \to \infty} \int_{\partial G} w_{n}(y) n(y) \cdot \nabla h_{x}(y) d\mathcal{H}_{m-1}(y).$$
(17)

Since the trace operator is a bounded operator from $W^{1,2}(G)$ to $L_2(\mathcal{H})$ by [8, Theorem 3.38], we obtain

$$w(x) = \mathfrak{U}(\mu - \nu - f w \mathcal{H})(x) - \int_{\partial G} w(y) n(y) \cdot \nabla h_x(y) d\mathcal{H}_{m-1}(y).$$
(18)

Since $w \in L_{\infty}(G)$ by Lemma 3, the trace of *w* is an element of $L_{\infty}(\mathcal{H})$. Since

$$\left| \int_{\partial G} w(y)n(y) \cdot \nabla h_{x}(y)d\mathcal{H}_{m-1}(y) \right|$$

$$\leq \|w\|_{L_{\infty}(\mathcal{H})} \int_{\partial G} |n(y) \cdot \nabla h_{x}(y)| d\mathcal{H}_{m-1}(y) \qquad (19)$$

$$\leq \|w\|_{L_{\infty}(\mathcal{H})} \left[\sup_{z \in \partial G} \int_{\partial G} |n(y) \cdot \nabla h_{z}(y)| d\mathcal{H}_{m-1}(y) + \frac{1}{2} \right] < \infty$$

by [6, Lemma 2.15 and Theorem 2.16] and the fact that ∂G is of class $C^{1+\alpha}$, the function

$$x \longmapsto \int_{\partial G} w(y) n(y) \cdot \nabla h_x(y) d\mathcal{H}_{m-1}(y)$$
(20)

is bounded in *G*. Since $\mathcal{U}\nu$ is bounded in *G* and $\mathcal{U}(fw\mathcal{H})$ is bounded in *G* by [6, Corollary 2.17 and Lemma 2.18], the function $\mathcal{U}\mu$ is bounded in *G* by (18). Thus, $\mu \in \mathcal{C}'_b(\partial G)$ by Lemma 2.

Notation 5. Let *X* be a complex Banach space and *T* a bounded linear operator on *X*. We denote by Ker *T* the kernel of *T*, by $\sigma(T)$ the spectrum of *T*, by r(T) the spectral radius of *T*, by *X'* the dual space of *X*, and by *T'* the adjoint operator of *T*. Denote by *I* the identity operator.

THEOREM 6. Let X be a complex Banach space and K a compact linear operator on X. Let Y be a subspace of X' and T a closed linear operator from Y to X such that y(Tx) = x(Ty) for each $x, y \in Y$. Suppose that $K'(Y) \subset Y$ and KTy = TK'y for each $y \in Y$. Let $\alpha \in C \setminus \{0\}$, $Ker(K' - \alpha I)^2 = Ker(K' - \alpha I) \subset Y$, and $\{\beta \in \sigma(K'); (\beta - \alpha) \cdot \alpha \leq 0\} \subset \{\alpha\}$. If $x, y \in X$, $(K' - \alpha I)x = y$, then $x \in Y$ if and only if $y \in Y$.

Proof. If $x \in Y$, then $y \in Y$. Suppose that $y \in Y$. Since *K* is a compact operator, the operator *K'* is a compact operator by [14, Chapter IV, Theorem 4.1]. Suppose first that $\alpha \in \sigma(K')$. Since *K'* is compact, then α is a pol of the resolvent by [5, Satz 50.4]. Since

$$\operatorname{Ker}(K' - \alpha I)^2 = \operatorname{Ker}(K' - \alpha I), \qquad (21)$$

the ascent of $(K' - \alpha I)$ is equal to 1. Since α is a pol of the resolvent and the ascent of $(K' - \alpha I)$ is equal to 1, [5, Satz 50.2] yields that the space X' is the direct sum of Ker $(K' - \alpha I)$ and $(K' - \alpha I)(X')$ and the descent of $(K' - \alpha I)$ is equal to 1. Since the descent of $(K' - \alpha I)$ is equal to 1, we have

$$(K' - \alpha I)^2(X') = (K' - \alpha I)(X').$$
(22)

Since the space X' is the direct sum of Ker $(K' - \alpha I)$ and $(K' - \alpha I)(X') = (K' - \alpha I)^2(X')$, the operator $(K' - \alpha I)$ is invertible on $(K' - \alpha I)(X')$. If $\alpha \notin \sigma(K')$, then the space X' is the direct sum of Ker $(K' - \alpha I)$ and $(K' - \alpha I)(X')$, and the operator $(K' - \alpha I)$ is invertible on $(K' - \alpha I)(X')$. Therefore, there are $x_1 \in \text{Ker}(K' - \alpha I) \subset Y$ and $x_2 \in (K' - \alpha I)(X')$ such that $x_1 + x_2 = x$. We have $(K' - \alpha I)x_2 = y$.

Denote by *Z* the closure of *Y*. Since $K'(Y) \subset Y$, we obtain $K'(Z) \subset Z$. Denote by K'_Z the restriction of K' to *Z*. Then K'_Z is a compact operator in *Z*. Since $\text{Ker}(K' - \alpha I)^2 \subset Y$, we have

$$\operatorname{Ker}(K'_{Z} - \alpha I)^{2} = \operatorname{Ker}(K' - \alpha I)^{2} = \operatorname{Ker}(K' - \alpha I) = \operatorname{Ker}(K'_{Z} - \alpha I).$$
(23)

If $\alpha \notin \sigma(K'_Z)$, then the space *Z* is the direct sum of $\text{Ker}(K'_Z - \alpha I)$ and $(K'_Z - \alpha I)(Z)$, and the operator $(K'_Z - \alpha I)$ is invertible on *Z*. Suppose that $\alpha \in \sigma(K'_Z)$. Since K'_Z is compact, then α is a pol of the resolvent by [5, Satz 50.4]. Since

$$\operatorname{Ker}(K'_{Z} - \alpha I)^{2} = \operatorname{Ker}(K'_{Z} - \alpha I), \qquad (24)$$

the ascent of $(K'_Z - \alpha I)$ is equal to 1. Since α is a pol of the resolvent and the ascent of $(K'_Z - \alpha I)$ is equal to 1, [5, Satz 50.2] yields that the space Z is the direct sum of Ker $(K'_Z - \alpha I)$ and $(K'_Z - \alpha I)(Z)$ and the descent of $(K'_Z - \alpha I)$ is equal to 1. Since the descent of $(K'_Z - \alpha I)$ is equal to 1, we have

$$(K'_{Z} - \alpha I)^{2}(Z) = (K' - \alpha I)(Z).$$
(25)

Since the space *Z* is the direct sum of $\operatorname{Ker}(K'_Z - \alpha I)$ and $(K'_Z - \alpha I)(Z) = (K'_Z - \alpha I)^2(Z)$, the operator $(K'_Z - \alpha I)$ is invertible on $(K'_Z - \alpha I)(Z)$. Since $y \in Y \subset Z$, there are $y_1 \in \operatorname{Ker}(K'_Z - \alpha I)$ and $y_2 \in (K'_Z - \alpha I)(Z)$ such that $y = y_1 + y_2$. Since X' is the direct sum of $\operatorname{Ker}(K' - \alpha I) = \operatorname{Ker}(K'_Z - \alpha I)$ and $(K' - \alpha I)(X') \supset (K'_Z - \alpha I)(Z)$ and $y \in (K' - \alpha I)(X')$, we obtain that $y_1 = 0$ and $y_2 = y$. Thus, $y \in (K'_Z - \alpha I)(Z)$. Since $(K'_Z - \alpha I)$ is invertible on $(K'_Z - \alpha I)(Z)$, there is $z \in (K'_Z - \alpha I)(Z)$ such that $(K'_Z - \alpha I)(z) = y$. Since $(K' - \alpha I)$ is invertible on $(K' - \alpha I)(X')$, we deduce that $x_2 = z \in (K'_Z - \alpha I)(Z) \subset Z$. Now, let $w \in \text{Ker}(K' - \alpha I)$. Fix a sequence $\{z_k\} \subset Y$ such that $z_k \rightarrow z = x_2$. Then

$$w(Ty) = y(Tw) = [(K' - \alpha I)x_2](Tw) = \lim_{k \to \infty} [(K' - \alpha I)z_k](Tw)$$

= $\lim_{k \to \infty} z_k((K - \alpha I)Tw) = \lim_{k \to \infty} z_k(T(K' - \alpha I)w) = \lim_{k \to \infty} z_k(0) = 0.$ (26)

Since w(Ty) = 0 for each $w \in \text{Ker}(K' - \alpha I)$, [15, Chapter 10, Theorem 3] yields $Ty \in (K - \alpha I)(X)$.

Denote by \tilde{K}' the restriction of K' to $(K' - \alpha I)(X)$. If we denote by P the spectral projection corresponding to the spectral set $\{\alpha\}$ and the operator K', then $P(X') = (K' - \alpha I)(X')$ by [5, Satz 50.2] and $\sigma(\tilde{K}') = \sigma(K') \setminus \{\alpha\}$ by [14, Chapter VI, Theorem 4.1]. Therefore,

$$\sigma(\tilde{K}') = \sigma(K') \setminus \{\alpha\} \subset \{\beta; (\beta - \alpha) \cdot \alpha > 0\} \subset \bigcup_{t > 0} \{\beta; |\beta - \alpha - t\alpha| < |t\alpha|\}.$$
(27)

Since $\{\beta; |\beta - \alpha - t_1\alpha| < |t_1\alpha|\} \subset \{\beta; |\beta - \alpha - t_2\alpha| < |t_2\alpha|\}$ for $0 < t_1 < t_2$ and $\sigma(\tilde{K}')$ is a compact set (see [14, Chapter VI, Theorem 1.3, and Lemma 1.5], there is t > 0 such that $\sigma(\tilde{K}') \subset \{\beta; |\beta - \alpha - t\alpha| < |t\alpha|\}$. Therefore, $r(\tilde{K}' - \alpha I - t\alpha I) < |t\alpha|$. Since we have $r(t^{-1}\alpha^{-1}(\tilde{K}' - \alpha I - t\alpha I)) < 1$, the series

$$V = \sum_{k=0}^{\infty} (-1)^{k} \left[t^{-1} \alpha^{-1} \left(\tilde{K}' - \alpha I - t \alpha I \right) \right]^{k}$$
(28)

converges. Easy calculation yields that *V* is the inverse operator of the operator $I + t^{-1}\alpha^{-1}(\tilde{K}' - \alpha I - t\alpha I) = t^{-1}\alpha^{-1}(\tilde{K}' - \alpha I)$. Since $t^{-1}\alpha^{-1}y = t^{-1}\alpha^{-1}(\tilde{K}' - \alpha I)x_2$, we have $x_2 = t^{-1}\alpha^{-1}Vy$. Denote $z_k = t^{-1}\alpha^{-1}[-t^{-1}\alpha^{-1}(\tilde{K}' - \alpha I - t\alpha I)]^ky$. Then

$$x_2 = \sum_{k=0}^{\infty} z_k.$$
⁽²⁹⁾

Since $K'(Y) \subset Y$, $z_k \in Y$ for each k. Since KT = TK' on Y, we have $Tz_k = t^{-1}\alpha^{-1}[-t^{-1}\alpha^{-1}(K - \alpha I - t\alpha I)]^k Ty$.

Since $(K - \alpha I)$, $(K - \alpha I)^2$, $(K' - \alpha I)$, and $(K' - \alpha I)^2$ are Fredholm operators with index 0 (see [14, Chapter V, Theorem 3.1]), [14, Chapter VII, Theorem 3.2] yields

$$\dim \operatorname{Ker}(K - \alpha I)^2 = \dim \operatorname{Ker}(K' - \alpha I)^2 = \dim \operatorname{Ker}(K' - \alpha I) = \dim \operatorname{Ker}(K - \alpha I), \quad (30)$$

and thus $\operatorname{Ker}(K - \alpha I)^2 = \operatorname{Ker}(K - \alpha I)$. If $\alpha \notin \sigma(K)$, then the space *X* is the direct sum of $\operatorname{Ker}(K - \alpha I)$ and $(K - \alpha I)(X)$, and the operator $(K - \alpha I)$ is invertible on *X*. Suppose that $\alpha \in \sigma(K)$. Since *K* is compact, then α is a pol of the resolvent by [5, Satz 50.4]. Since

$$\operatorname{Ker}(K - \alpha I)^{2} = \operatorname{Ker}(K - \alpha I), \qquad (31)$$

the ascent of $(K - \alpha I)$ is equal to 1. Since α is a pol of the resolvent and the ascent of $(K - \alpha I)$ is equal to 1, [5, Satz 50.2] yields that the space *X* is the direct sum of Ker $(K - \alpha I)$ and $(K - \alpha I)(X)$ and the descent of $(K - \alpha I)$ is equal to 1. Since the descent of $(K - \alpha I)$ is equal to 1, we have $(K - \alpha I)^2(X) = (K - \alpha I)(X)$. Since the space *X* is the direct sum

of Ker($K - \alpha I$) and $(K - \alpha I)(X) = (K - \alpha I)^2(X)$, the operator $(K - \alpha I)$ is invertible on $(K - \alpha I)(X)$. Denote by \hat{K} the restriction of K to $(K - \alpha I)(X)$. If we denote by Q the spectral projection corresponding to the spectral set $\{\alpha\}$ and the operator K, then $Q(X) = (K - \alpha I)(X)$ by [5, Satz 50.2] and $\sigma(\hat{K}) = \sigma(K) \setminus \{\alpha\}$ by [14, Chapter VI, Theorem 4.1]. Since $\sigma(K) = \sigma(K')$ by [14, Chapter VI, Theorem 4.6], we obtain $\sigma(\hat{K}) \subset \{\beta; |\beta - \alpha - t\alpha| < |t\alpha|\}$. Therefore, $r(\hat{K} - \alpha I - t\alpha I) < |t\alpha|$. Since $Ty \in (K - \alpha X)$ and $r(t^{-1}\alpha^{-1}(\hat{K} - \alpha I - t\alpha I)) < 1$, the series

$$\sum_{k=0}^{\infty} T z_k = \sum_{k=0}^{\infty} t^{-1} \alpha^{-1} \big[-t^{-1} \alpha^{-1} \big(\hat{K} - \alpha I - t \alpha I \big) \big]^k T y$$
(32)

converges. Since *T* is closed, $x_2 = \sum z_k$, and $\sum Tz_k$ converges, then the vector x_2 lies in *Y*, the domain of *T*.

THEOREM 7. Let $f \in L_{\infty}(\mathcal{H})$, $f \ge 0$, and $g \in L_2(G) \cap L_p(\mathbb{R}^m)$, where p > m/2, g = 0 on $\mathbb{R}^m \setminus G$. Let L be a bounded linear functional on $W^{1,2}(G)$ representable by $\mu \in \mathscr{C}'(\partial G)$. If u is a weak solution in $W^{1,2}(G)$ of problem (3), then $u \in L_{\infty}(G)$ if and only if $\mu \in \mathscr{C}'_b(\partial G)$.

Proof. If $u \in L_{\infty}(G)$, then $\mu \in \mathscr{C}'_b(\partial G)$ by Lemma 4.

Suppose now that $\mu \in \mathscr{C}'_b(\partial G)$. Let $w = u - \mathscr{U}(g\mathscr{H}_m)$. According to Lemma 3, there is a bounded linear functional \tilde{L} on $W^{1,2}(G)$ representable by $\tilde{\mu} \in \mathscr{C}'_b(\partial G)$ such that w is a weak solution in $W^{1,2}(G)$ of the problem

$$\Delta w = 0 \quad \text{on } G,$$

$$\frac{\partial w}{\partial n} + wf = \tilde{L} \quad \text{on } \partial G.$$
 (33)

Define for $\varphi \in L_{\infty}(\mathcal{H})$ and $x \in \partial G$,

$$T\varphi(x) = \frac{1}{2}\varphi(x) + \int_{\partial G}\varphi(y)\frac{\partial}{n(y)}h_x(y)d\mathcal{H}(y) + \mathcal{U}(f\varphi\mathcal{H}).$$
(34)

Since $\mathfrak{U}(f\mathcal{H}) \in \mathfrak{C}(\mathbb{R}^m)$ by [6, Corollary 2.17 and Lemma 2.18], the operator *T* is a bounded linear operator on $L_{\infty}(\mathcal{H})$ by [11, Proposition 8] and [6, Lemma 2.15]. The operator T - (1/2)I is compact by [12, Theorem 20] and [6, Theorem 4.1 and Corollary 1.11]. According to [10, Theorem 1], there is $\nu \in \mathfrak{C}'(\partial G) \subset (L_{\infty}(\mathcal{H}))'$ such that $T'\nu = \tilde{\mu}$ and

$$\int_{G} \nabla \mathcal{U} \nu \cdot \nabla \nu \, d\mathcal{H}_m + \int_{\partial G} \mathcal{U} \nu f \nu \, d\mathcal{H} = \int \nu \, d\tilde{\mu},\tag{35}$$

for each $v \in \mathfrak{D}$.

Remark that $\mathscr{C}'(\partial G)$ is a closed subspace of $(L_{\infty}(\mathscr{H}))'$. According to [11, Proposition 8], we have $T'(\mathscr{C}'(\partial G)) \subset \mathscr{C}'(\partial G)$. Denote by τ the restriction of T' to $\mathscr{C}'(\partial G)$. According to [10, Lemma 11] and [14, Chapter VI, Theorem 1.2], we have $\sigma(\tau) \subset \{\beta; \beta \ge 0\}$. Since $\sigma(\tau') = \sigma(\tau)$ (see [15, Chapter VIII, Section 6, Theorem 2]), each $\beta \in \sigma(T)$ is an eigenvalue (see [14, Chapter VI, Theorem 1.2]), and T is the restriction of τ' to $L_{\infty}(\mathscr{H})$, we obtain that $\sigma(T') = \sigma(T) \subset \{\beta; \beta \ge 0\}$ by [15, Chapter VIII, Section 6, Theorem 2].

According to [9, Theorem 1.11], we have Ker $T' \subset \mathscr{C}'_b(\partial G)$. According to [9, Lemma 1.10] and [10, Lemmas 12 and 13], Ker $T' = \text{Ker}(T')^2$. Denote, for $\rho \in \mathscr{C}'_b(\partial G)$, by $V\rho$ the restriction of $\mathfrak{U}\rho$ to ∂G . Then V is a closed operator from $\mathscr{C}'_b(\partial G)$ to $L_{\infty}(\mathscr{H})$ by [13, Lemma 5]. If $\rho \in \mathscr{C}'_b(\partial G)$, then $VT'\rho = TV\rho$ by [13, Lemma 4]. If $\rho_1, \rho_2 \in \mathscr{C}'_b(\partial G)$, then ρ_1 and ρ_2 have finite energy by [13, Proposition 23], [7, Theorem 1.20], and

$$\int \mathcal{U}\rho_1 d\rho_2 = \int_{\mathbb{R}^m} \nabla \mathcal{U}\rho_1 \cdot \nabla \mathcal{U}\rho_2 d\mathcal{H}_m = \int \mathcal{U}\rho_2 d\rho_1.$$
(36)

Since $T'\nu = \tilde{\mu} \in \mathscr{C}'_b(\partial G)$, Theorem 6 yields that $\nu \in \mathscr{C}'_b(\partial G)$. Since ν has finite energy $\int \mathscr{U}\nu d\nu$ and $\int \mathscr{U}\nu d\nu = \int |\nabla \mathscr{U}\nu|^2 d\mathscr{H}_m$ by [7, Theorem 1.20], we obtain that $\mathscr{U}\nu \in W^{1,2}(G)$ (see [7, Lemma 1.6] and [16, Theorem 2.14]). Since \mathfrak{D} is dense in $W^{1,2}(G)$ by [16, Theorem 2.3.2], relation (35) yields that the function $\mathscr{U}\nu$ is a weak solution in $W^{1,2}(G)$ of (33). Since $\nu = \mathscr{U}\nu - w$ is a weak solution in $W^{1,2}(G)$ of the problem

$$\Delta v = 0 \quad \text{on } G,$$

$$\frac{\partial v}{\partial n} + vf = 0 \quad \text{on } \partial G,$$

(37)

and $f \ge 0$, we obtain

$$0 = \int_{G} \nabla v \cdot \nabla v \, d\mathcal{H}_m + \int_{\partial G} v f v \, d\mathcal{H} \ge \int_{G} |\nabla v|^2 d\mathcal{H}_m \ge 0.$$
(38)

Therefore, $\nabla v = 0$ on *G* and there is a constant *c* such that v(x) = c for \mathcal{H}_m -a.a. $x \in G$ by [16, Corollary 2.1.9]. Since $v \in \mathscr{C}'_b(\partial G)$, the function $\mathcal{U}v$ is bounded in *G*. Since $u(x) = \mathcal{U}(g\mathcal{H}_m)(x) + \mathcal{U}v(x) - c$ for \mathcal{H}_m -a.a. $x \in G$ and $\mathcal{U}(g\mathcal{H}_m) \in \mathscr{C}(\mathbb{R}^m)$ by Lemma 3, we obtain $u \in L_{\infty}(G)$.

Acknowledgment

The author was supported by GAČR Grant no. 201/00/1515.

References

- [1] M. Brelot, *Éléments de la Théorie Classique du Potentiel*, Les Cours de Sorbonne. 3e cycle, Centre de Documentation Universitaire, Paris, 1959.
- B. E. J. Dahlberg, *Estimates of harmonic measure*, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288.
- [3] L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, vol. 128, Cambridge University Press, Cambridge, 2000.
- [4] L. L. Helms, *Introduction to Potential Theory*, Pure and Applied Mathematics, vol. 22, Wiley-Interscience, New York, 1969.
- [5] H. Heuser, Funktionalanalysis, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1975.
- [6] J. Král, *Integral Operators in Potential Theory*, Lecture Notes in Mathematics, vol. 823, Springer-Verlag, Berlin, 1980.
- [7] N. S. Landkof, Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966.
- [8] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

510 Boundedness of solutions

- [9] D. Medková, The third boundary value problem in potential theory for domains with a piecewise smooth boundary, Czechoslovak Math. J. 47(122) (1997), no. 4, 651–679.
- [10] _____, Solution of the Robin problem for the Laplace equation, Appl. Math. **43** (1998), no. 2, 133–155.
- I. Netuka, Generalized Robin problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 312–324.
- [12] _____, An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 462–489.
- [13] _____, The third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 554–580.
- [14] M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1973.
- [15] K. Yosida, Functional Analysis, Die Grundlehren der mathematischen Wissenschaften, vol. 123, Springer-Verlag, Berlin, 1965.
- [16] W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989.

Dagmar Medková: Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

Current address: Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical University, Karlovo nám. 13, 121 35 Praha 2, Czech Republic

E-mail address: medkova@math.cas.cz