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We suggest some criteria for the stabilization of planar linear systems via linear hybrid
feedback controls. The results are formulated in terms of the input matrices. For instance,
this enables us to work out an algorithm which is directly suitable for a computer realiza-
tion. At the same time, this algorithm helps to check easily if a given linear 2× 2 system
can be stabilized (a) by a linear ordinary feedback control or (b) by a linear hybrid feed-
back control.

1. Introduction

Consider a linear control 2× 2 system

ẋ =Ax+Bu, y = Cx, (1.1)

on [0,∞), where x ∈R2 is the state variable of the system, y ∈Rm is the output variable,
u∈ R� is the control variable, and B and C are given real matrices of the sizes 2× � and
m× 2, respectively.

If the pair (A,B) is controllable, or more generally, stabilizable, and rankC = 2 (which
describes the case of complete observability of the solutions), then it is always possi-
ble (see, e.g., [5, 6]) to achieve exponential stability of the zero solution to the control
system (1.1) with an arbitrary matrix A. In such a case, there exists a linear ordinary
feedback control of the form u = Gy with an �×m matrix G, which yields exponential
stability.

Similarly, if rankB = 2 and the pair (A,C) is observable, or at least detectable, then
again a suitable linear feedback control of the form u= Gy solves the stabilization prob-
lem for system (1.1).

However, it is known that in practice, neither the condition rankB = 2 nor the com-
plete observability of the solutions (i.e., rankC = 2) can be unavailable. The most inter-
esting situation for applications is, therefore, the case when rankB = rankC = 1.
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A simple example of such a system is the harmonic oscillator with the external force as
the control, where

A=
(

0 1
−1 0

)
, B =

(
0
1

)
, C =

(
1 0

)
. (1.2)

Here, the displacement variable x1 is available for measurements, while the controller
can only change the velocity variable x2 (we assume that x = ( x1 x2 )� ∈R2). This control
system is both controllable and observable, but it cannot be stabilized by ordinary (even
nonlinear and discontinuous) output feedback controls of the form u = f (y) (see, e.g.,
[1]).

However, as it was shown by Artstein [1], there exists a hybrid feedback control which
provides asymptotical stability of the zero solution to (1.1) with the matrices from (1.2).

A hybrid feedback control includes essentially two features (see Section 3 for the for-
mal definitions): a discrete time controller (an automaton) attached to the given dynam-
ical system (i.e., to (1.1) in our case) via the matrices B and C, and a switching algorithm
describing when and how a control u should be changed. Artstein’s example shows that
such a hybrid feedback control may help even when the ordinary feedback fails to stabilize
the system.

In [2, 3], the following result is obtained for B and C being nonzero matrices of rank
1: system (1.1) is stabilizable by a linear hybrid feedback control (LHFC) if and only if for
at least one α∈R, the matrix A+αBC does not have nonnegative real eigenvalues. This
result gives a necessary and sufficient stabilization condition, and it is straightforward that
making use of hybrid feedback controls provides a better stabilization criterion compared
to any one we can obtain exploiting ordinary feedback controls.

However, the shortcoming of this criterion is that it does not give any explicit descrip-
tion of how its assumptions can be verified in practice. In other words, it does not suggest
any efficient, finite-step algorithm in terms of the given matrices (A,B,C), which would
answer the question when system (1.1) admits a stabilizing feedback control.

In contrast to [2, 3], the present paper aims at
(1) finding verifiable criteria for LHFC stabilization of system (1.1),
(2) constructing efficient algorithms (which should also be “computer-friendly”),

which can easily test a specific system (1.1) in terms of the input matrices (A,B,C) to
find out whether the zero solution to (1.1) can be stabilized by an ordinary feedback
linear control or by an LHFC.

2. Notations and relevant facts of control theory

We define by N, R, and C the sets of all natural, real, and complex numbers, respectively.
The set R will in the sequel be naturally identified with {z | Imz = 0} ⊂ C. By 〈·,·〉 and
| · | we mean the scalar product and the Euclidean norm in R2, respectively. We write
Span{b} for the one-dimensional vector space containing a given vector b ∈R2. We also
put C− := {z ∈C | Rez < 0}, C+ :=C \C−, and C2

s :={(λ1,λ2)∈C2 | λ1 = λ̄2}.
Let M(�,m) denote the set of all real �×m matrices. Matrices will often be addressed as

linear operators in the appropriate vector spaces. In the sequel, I and Θ will stand for the
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identity 2× 2 matrix and the zero 2× 2 matrix, respectively. Given a matrix D ∈M(2,2),
we will denote its spectrum by σ(D).

In what follows, we will consider system (1.1) for arbitrary but fixed matrices A ∈
M(2,2), B ∈M(2,�), and C ∈M(m,2) (�,m∈N). We also suppose that σ(A)= {λ1,λ2}.
Moreover, if σ(A)⊂R, then we suppose, without loss of generality, that λ1 ≤ λ2 (the case
λ1 = λ2 is not excluded either).

The characteristic and the minimal polynomials of the matrix A will be denoted by
πA(λ) and pA(λ), respectively. Clearly, πA(λ) = λ2 − trA · λ+ detA. The decomposition
C=C− �C+ implies also a special factorization of the minimal polynomial pA = p−A p

+
A,

where the zeros of p−A(λ) and p+
A(λ) belong to C− and C+, respectively. The notation

〈A|B〉 is used for the controllability space of the pair (A,B), that is, 〈A|B〉 := B(R�) +
AB(R�).

We recall some well-known facts (see, e.g., [5, 6]) from the theory of control linear
systems, which are summarized in Definitions 2.1, 2.3, and 2.6 and Lemmas 2.2, 2.4, 2.5,
2.7, 2.8, and 2.9. Although some of the results are quite general, we will formulate them
for the case of 2× 2 systems, as it is the case of interest in this paper.

Definition 2.1. A matrix A is called stable if σ(A)⊂C−.

Lemma 2.2. The following conditions are equivalent:

(1) A is stable;
(2) trA < 0, detA > 0;
(3) the trivial solution to ẋ = Ax is asymptotically stable.

Definition 2.3. The pair (A,B) is controllable if 〈A|B〉 =R2. The pair (A,C) is observable
if the pair (A�,C�) is controllable.

Lemma 2.4. (I) The following conditions are equivalent:

(1) the pair (A,B) is controllable;
(2) rank(B AB )= 2;
(3) for all Λ∈C2

s , there exists F ∈M(�,2) such that σ(A+BF)=Λ.

(II) The following conditions are equivalent:

(1) the pair (A,C) is observable;
(2) rank

(
C
CA

)= 2;
(3) for all Λ∈C2

s , there exists F ∈M(2,m) such that σ(A+FC)=Λ.

Lemma 2.5. If rankB ≥ 2, then (A,B) is controllable, and if rankC ≥ 2, then (A,C) is ob-
servable.

Definition 2.6. The pair (A,B) is called stabilizable if there exists F ∈M(�,2) such that
the matrix A+BF is stable.

The pair (A,C) is called detectable if there exists F ∈M(2,m) such that the matrix
A+FC is stable.

Lemma 2.7. The pair (A,B) is stabilizable if and only if ker p+
A(A)⊂ 〈A|B〉.

Lemma 2.8. The pair (A,C) is detectable if and only if (A�,C�) is stabilizable.



490 Stabilization of planar systems by hybrid controls

Lemma 2.9. If the pair (A,B) is controllable, then (A,B) is stabilizable, and if the pair (A,C)
is observable, then (A,C) is detectable.

Remark 2.10. We point out that the converse to Lemma 2.9 is not true in general. In-
deed, for the matrices A = (1 0

0 −1

)
and B = ( 1 0 )�, the pair (A,B) is stabilizable but not

controllable and the pair (A,B�) is detectable but not observable.

3. Definitions of linear hybrid feedback controls and hybrid feedback stabilization

Definition 3.1. By a discrete automaton we mean in the sequal a 6-tuple ∆= (Q,I ,�,T , j,
q0), where

(i) Q is a finite set of all possible automaton states (locations);
(ii) the finite set I contains the input alphabet;

(iii) the transition map � : Q× I → Q indicates the location after a transition time,
based on the previous location q and input i∈ I at the time of transition;

(iv) T : Q→ (0,∞) is a mapping which sets a period T(q) between transitions times;
(v) j : Rm→ I is a function with property j(λy)= j(y), y ∈Rm, λ > 0;

(vi) q0 = q(0) is the state of the automaton at the initial time.

In [1, 4], a similar definition (without condition (v)) is considered. We add (v) to
the standard requirements as we are going to use LHFCs in this particular paper (see
Definition 3.2).

Intuitively, the automaton follows the output y and uses this information to determine
switching times and the values of the new continuous piece of the control function.

For any automaton ∆ satisfying (i)–(vi), we can iteratively define a special feedback
operator F∆. Given y : [0,∞)→ Rm, the function F∆y : [0,∞)→ Q is defined by the fol-
lowing:

(1) (F∆y)(0)= q0, t1 = T(q0), (F∆y)(t)≡ q0, t ∈ [0, t1);
(2) (F∆y)(t1) = �(q0, j(y(t1))) := q(t1), t2 = t1 + T(q(t1)), (F∆y)(t) ≡ q(t1), t ∈

[t1, t2);
(3) if t1, . . . , tk and the values (F∆y)(t) for t ∈ [0, tk) are already known, then tk+1 and

(F∆y)(t) are defined for t ∈ [tk, tk+1) by the equalities

(
F∆y

)(
tk
)=�

(
q
(
tk−1

)
, j
(
y
(
tk
)))

:= q
(
tk
)
, tk+1 = tk +T

(
q
(
tk
))

,(
F∆y

)
(t)≡ q

(
tk
)
, t ∈ [tk, tk+1

)
.

(3.1)

The sequence {tk}∞k=0 (t0 = 0), constructed in the definition of F∆y, determines when
the automaton should switch between locations. Note that the sequence {tk} is allowed
to depend on the output function y(·).

Definition 3.2. The pair (∆,{Gq}), where ∆ is a discrete automaton and {Gq | q ∈ Q} ⊂
M(�,m), will be addressed as an LHFC; dependence between the control function u(·)
and the output function y(·) is defined by u(t)=Gq(tk)y(t), t ∈ [tk, tk+1) and k = 0,1, . . . ,
where {tk}∞k=0 is the corresponding sequence of the switching times.
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The set of all LHFCs will in the sequel be denoted by ��, while u= (∆,{Gq})∈��
will stand for a specific control. According to Definition 3.2, system (1.1), governed by a
control u= (∆,{Gq})∈�� (in short, the u-governed system (1.1)), is equivalent to the
nonlinear functional differential equation

ẋ(t)= (A+BG(F∆Cx)(t)C
)
x(t), t ∈ [0,∞). (3.2)

The dynamics of system (1.1), governed by an LHFC u, is a triple H(t)=(x(t),q(t),τ(t)),
where x(·) is a solution to (1.1), q(t) is the automaton’s location at instance t, and τ(t) is
the time remaining till the next transition instance (see [1]). The function H(·) : [0,∞)→
R2×Q× (0,∞) is also called a hybrid trajectory of system (1.1).

Typical switching procedures (with examples) for systems with LHFC are described
in [1, 4] in detail. In [4], some general properties of hybrid trajectories for linear and
nonlinear finite-dimensional systems are discussed. In the same paper, one can find a
review of the authors’ results on some properties of the hybrid dynamics.

We mention here the main existence result from [4], which has a direct relevance to
system (1.1) governed by a hybrid feedback control.

Lemma 3.3. For any u∈�� and for any α∈R2, there exists the unique hybrid trajectory
(x(·),q(·),τ(·)) of the u-governed system (1.1) with the property x(0)= α (evidently, x ≡ 0
if α= 0).

In the sequel, we define by ��1 ⊂�� the class of those LHFCs, for which Q con-
tains only one point. Clearly, the class ��1 can naturally be identified with the class of
ordinary linear feedback controls of the form u=Gy with G being an appropriate matrix.

Definition 3.4 [1]. System (1.1) is said to be stabilizable by a control u∈�� (u-stab.) if
the trivial solution to (1.1) is uniformly asymptotically stable. In other words,

(a) for any ε > 0, there is δ > 0 such that every solution x(·) with the property |x(0)| <
δ satisfies the estimate |x(t)| < ε for t ≥ 0;

(b) for every solution x(·), |x(t)| → 0 as t→∞, the convergence being uniform with
respect to initial points x(0)∈ K for any bounded K ⊂R2.

Definition 3.5. Let �⊂��. System (1.1) is called �-stabilizable (�-stab.) if there exists
u∈� such that (1.1) is u-stab. A matrix triple (A1,B1,C1) is called u-stab. or �-stab. if
the corresponding system (1.1) with A=A1, B = B1, and C = C1 is u-stab. or �-stab.

4. Some elementary and well-known facts about hybrid stabilization

Lemma 4.1. Putting rankB = �1 and rankC =m1, let B1 ∈M(2,�1) be a matrix consisting
of �1 linearly independent columns of the matrix B, and C1 ∈M(m1,2) a matrix consisting
of m1 linearly independent rows of the matrix C. Then the following statements are valid.

(1) For all G∈M(�,m), there exists the unique matrix G1 ∈M(�1,m1) such that

BGC = B1G1C1. (4.1)

Conversely, for all G1 ∈M(�1,m1), there exists G∈M(�,m) such that (4.1) is valid.
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(2) The triple (A,B,C) is ��-stab. (resp., ��1-stab.) if and only if (A,B1,C1) is ��-
stab. (resp., ��1-stab.).

The first statement of the lemma is just a simple exercise from the matrix algebra, while
the second statement is a straightforward corollary from the first if one takes into account
the definition of the classes �� and ��1 in Section 3.

Lemma 4.2. The triple (A,B,C) is ��1-stab. if and only if there exists G ∈M(�,m) such
that the matrix A+BGC is stable.

Corollary 4.3. Let B = (b1 b2
�) �= 0 and C = ( c1 c2 ) �= 0. Then the triple (A,B,C) is ��1-

stab. if and only if there exists α∈R : σ(A+αBC)⊂C−.

Corollary 4.4. Assume that one of the following statements is valid:

(1) the pair (A,B) is stabilizable and rankC = 2,
(2) the pair (A,C) is detectable and rankB = 2.

Then (A,B,C) is ��1-stab.

Proof. Suppose that the first statement is valid. By Lemma 4.1, one can then assume that
C ∈M(2,2), detC �= 0. By Definition 2.6, there exists F ∈M(�,2) such that the matrix
A + BF is stable. Then A + BGC is stable, where G = FC−1. According to Lemma 4.2,
(A,B,C) is ��1-stab. Case (2) can be treated similarly. �

Corollary 4.5. If rankB ≥ 2 and rankC ≥ 2, then (A,B,C) is ��1-stab.

In [2, 3], the following result is proved.

Theorem 4.6. Let b = (b1 b2 )� �= 0 and c = ( c1 c2 ) �= 0. The triple (A,B,C) is ��-stab. if
and only if there exists α∈R : σ(A+αBC)∩ [0,∞)=∅ (in other words, A+αBC does not
have nonnegative real eigenvalues).

The results of this section show that if we wish to construct an algorithm which would
test whether a given triple (A,B,C) provides ��1-stabilizability or ��-stabilizability of
system (1.1), then we need to do the following:

(1) study the cases when the pair (A,B) is not stabilizable or the pair (A,C) is not
detectable,

(2) find efficient algorithms for verifying the assumptions of Corollary 4.3 and
Theorem 4.6.

5. The cases where (A,B) is not stabilizable and (A,C) is not detectable

Everywhere in Sections 5, 6, and 7, excluding Theorem 5.8, we assume that B=(b1 b2 )� �=0
and C = ( c1 c2 ) �= 0.

Lemma 5.1. The pair (A,B) is controllable if and only if for all λ∈ σ(A)∩R, B �∈ ker(A−
λI).

Proof. By Lemma 2.4, the pair (A,B) is not controllable if and only if det(B AB )= 0, which
implies that λ∈ σ(A)∩R, B ∈ ker(A− λI). �
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Corollary 5.2. If Imλi �= 0, then (A,B) is controllable.

Lemma 5.3. For λ1 ≥ 0, (A,B) is controllable if and only if (A,B) is stabilizable.

Proof. For λ1 ≥ 0,[p+
A(A)= pA(A)=Θ]⇒ [ker p+

A(A)=R2]. If (A,B) is stabilizable, then
the latter implication and Lemma 2.7 give the relation 〈A|B〉 =R2. According to Defini-
tion 2.3, the pair (A,B) is therefore controllable. The converse statement follows easily
from Lemma 2.9. �

Lemma 5.4. Let λ1 < 0≤ λ2. Then the following statements are true:

(1) [(A,B) is controllable]⇔ [B �∈ ker(A− λiI), i= 1,2];
(2) [(A,B) is not controllable, but stabilizable]⇔ [B ∈ ker(A− λ2I) \ ker(A− λ1I)];
(3) [(A,B) is not stabilizable]⇔ [B ∈ ker(A− λ1I) \ ker(A− λ2I)].

Proof. The first statement follows from Lemma 5.1. The case B ∈ ker(A− λiI), i= 1,2, is
irrelevant. Indeed, under this assumption, we get (λ1 − λ2)B = 0, which contradicts the
conditions λ1 �= λ2 and B �= 0.

Let B ∈ ker(A− λ1I)�ker(A− λ2I). Then det(B AB )= 0, which implies that 〈A|B〉 =
Span{B}. Taking into account that p+

A(λ)= λ− λ2 and using Lemma 2.7, we obtain that
[(A,B) is stabilizable ]⇔ [ker(A− λ2I)= Span{B}]⇔ [B ∈ ker(A− λ2I)]. �

Lemmas 2.4, 2.8, 5.1, 5.3, and 5.4 yield the following theorem.

Theorem 5.5. For the matrices A, B, C from (1.1), [(A,B) is not stabilizable ]⇔ [(λ1 ≥ 0,
det(B AB ) = 0) ∨ (λ1 < 0 ≤ λ2, AB = λ1B)]; [(A,C) is not detectable] ⇔ [(λ1 ≥ 0,
det

(
C
CA

)
= 0)∨ (λ1 < 0≤ λ2, CA= λ1C)].

Remark 5.6. The condition λ1 ≥ 0 is equivalent to trA ≥ 0 and tr2A ≥ 4detA ≥ 0, and
the condition λ1 < 0≤ λ2 is equivalent to [detA < 0]∨ [detA= 0 and trA < 0].

Lemma 5.7. If the pair (A,B) is not controllable, then for all F = ( f1 f2 ), σ(A+BF)=
{λ∗,λj} for some j ∈ {1,2}, where λ∗ = λi +FB, i �= j; in this case B ∈ ker(A+BF − λ∗I).

Proof. By virtue of Lemma 5.4, B ∈ ker(A− λiI) for at least one i∈ {1,2}. Let λ∗ = λi +
FB. Then (A + BF − λ∗I)B = (A− λiI)B = 0, that is, λ∗ ∈ σ(A + BF) and B ∈ ker(A +
BF − λ∗I).

Clearly, the zeros λ1 and λ2 of the polynomial πA(λ) and the zeros λ∗ and λ∗∗ of the
polynomial πA+BF(λ) are related to each other in the following way: λ1 + λ2 = trA and
λ∗ + λ∗∗ = tr(A+BF). These equalities imply that λ∗ + λ∗∗ = trA+FB = λ1 + λ2 +FB =
λ∗ + λj , where j �= i. Thus, λ∗∗ = λj . �
Theorem 5.8. Let A∈M(2,2), B ∈M(2,�), C ∈M(m,2), and either the pair (A,B) is not
stabilizable or the pair (A,C) is not detectable. Then (A,B,C) is not ��-stab.

Proof. Assume that (A,B) is not stabilizable. By virtue of Lemmas 2.5 and 2.9, one has
that rankB ≤ 1, and according to Lemma 4.1, one can assume, without loss of generality,
that B = (b1 b2 )�. If B = 0, then the statement of the theorem is evident. Let B �= 0. By
Theorem 5.5, only one of the following cases can occur:

(1) 0≤ λ1 < λ2;
(2) λ1 < 0≤ λ2;



494 Stabilization of planar systems by hybrid controls

(3) λ := λ1 = λ2 ≥ 0, ker(A− λI)=R2;
(4) λ := λ1 = λ2 ≥ 0, dimker(A− λI)= 1.

Using Lemma 5.4, one can easily show that in cases (2) and (3),

B ∈ ker
(
A− λ1I

)
, ker

(
A− λ2I

) \ Span{B} �=∅. (5.1)

In case (1), either (5.1) or its counterpart, where λ1 and λ2 are interchanged, is true. We
assume, with no loss of generality, that (5.1) holds true in case (1).

We prove the theorem for cases (1), (2), and (3) simultaneously by choosing D ∈ R2

so that

B ∈ ker
(
A− λ1I

)
, D ∈ ker

(
A− λ2I

) \ Span{B}. (5.2)

Let P : R2 → R be the projector onto the subspace Span{D} along the subspace
Span{B} so that PB = 0, PD =D, (I −P)B = B, and (I −P)D = 0.

We choose an arbitrary F ∈M(1,2) and consider a trajectory x(·) of the equation

ẋ = (A+BF)x (5.3)

such that Px(t0) �= 0 at some instance t0 ≥ 0.
Evidently,

δ
(
t0
)

:= d|Px|
dt

∣∣∣∣
t=t0

= 1
|Px| 〈Px,Pẋ〉

∣∣∣∣
t=t0

= 1
|Px|

〈
Px,P(A+BF)x

〉∣∣∣∣
t=t0

. (5.4)

Conditions (5.2) imply that for some µ∈R,

P(A+BF)x = PAx = PA
(
Px+ (I −P)x

)
= PAPx+µPAB = λ2PX +µλ1PB = λ2PX.

(5.5)

Then (5.4) and λ2 ≥ 0 yield

δ
(
t0
)= 1

|Px| · λ2 · |Px|2
∣∣∣∣
t=t0

= λ2
∣∣Px(t0)∣∣≥ 0. (5.6)

The last relation can be used to verify the following properties:

∣∣Px(·)∣∣ does not decrease on
[
t0,∞), ∣∣x(t)

∣∣≥ β
∣∣Px(t0)∣∣, t ≥ t0, (5.7)

where β > 0 does not depend on F.
We now fix some u= (∆,{Gq})∈�� and consider an arbitrary trajectory (x(·),q(·),

τ(·)) of the u-governed system (1.1) with α := |Px(0)| �= 0. Let {tn}∞n=0 be the correspond-
ing sequence of the automaton’s switching instances, t0 = 0. Then for all [tn, tn+1), n ∈
N∪{0}, the first component x(·) of the hybrid trajectory satisfies (5.3), where F = GqC
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for some q ∈Q. Due to (5.7),

∣∣x(t)
∣∣≥ β

∣∣Px(tn)∣∣≥ β
∣∣Px(0)

∣∣= αβ > 0, t ∈ [tn, tn+1
)
. (5.8)

As n is arbitrary, x(t) �→ 0, t→∞. Thus, the theorem is proved for cases (1), (2), and (3).
The proof of case (4) will be divided into two parts.
(a) IfCB �= 0, then there exists G∈M(1,m) such thatGBC �=0. By Lemma 5.7, σ(AG)=

{λ,λ∗}, where AG = A+BGC and λ∗ = λ+GCB �= λ. Clearly, the pair (AG,B) is not sta-
bilizable. It has already been proved that in case (1) or (2) the triple (AG,B,C) is not
��-stab. According to Definitions 3.2 and 3.5, the triple (A,B,C) is not ��-stab. either.

(b) If CB = 0, then (see Lemma 5.7) for all G ∈M(1,m), one has B ∈ ker(AG − λI).
Hence, the solution to ẋ = AGx, x(0) = B is given by x(t) = eAGtB = eλtB, t ≥ 0. The last
equality does not depend on G, so that it constitutes a solution to the u-governed system
(1.1) satisfying x(0)= B for any u∈��. Since λ≥ 0, system (1.1) is not ��-stab.

The theorem can be proved in a similar manner if (A,C) is not detectable. �

6. Efficient criteria for ��1-stabilizability of the triple (A,B,C)

Everywhere in Sections 6 and 7, it is assumed that A ∈M(2,2), B ∈M(2,1) �= 0, and
C ∈M(1,2) �= 0. In these two sections, we will use the following notation: Aα = A+αBC,
α∈R, ω = trA−CAB/CB if CB �= 0 (we assume also that ω is not defined if CB = 0).

Lemma 6.1. Let a,b,c,d ∈R. The system of inequalities

a+ b ·α < 0, c+d ·α > 0 (6.1)

is solvable with respect to α∈R if and only if one of the following conditions holds:

(1) b = d = 0, a < 0, c > 0;
(2) b = 0, d �= 0, a < 0;
(3) d/b < 0;
(4) d/b ≥ 0, c > ad/b.

Theorem 6.2. The triple (A,B,C) is ��1-stab. if and only if one of the following conditions
holds:

(1) CB = CAB = 0, trA < 0, detA > 0;
(2) CB = 0, CAB �= 0, trA < 0;
(3) ω < 0;
(4) ω ≥ 0, detA > trA ·ω.

Proof. Corollary 4.3 and Lemma 2.2 imply that

[
(A,B,C) is ��1-stab.

]⇐⇒ [∃α∈R : trAα < 0 and detAα > 0
]
. (6.2)

Simple direct calculations yield

trAα = trA+αCB, detAα = detA+α(trA ·CB−CAB). (6.3)
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Thus, the conditions in the right-hand side of (6.2) are equivalent to the solvability of
(6.1) with respect to α∈ R, where a = trA, b = CB, c = detA, and d = trA ·CB−CAB.
Referring to Lemma 6.1 completes the proof. �

Corollary 6.3. Assume that the matrix A is not stable. Then the triple (A,B,C) is ��1-
stab. if and only if one of conditions (2), (3), and (4) of Theorem 6.2 is fulfilled.

7. Efficient criteria for ��-stabilizability in terms of the triple (A,B,C)

The equality πA(λ)= λ2− trA · λ+ detλ implies the following lemma.

Lemma 7.1. For a 2× 2 matrix A, σ(A)∩ [0,∞) =∅ if and only if one of the following
conditions holds:

(a) trA < 0, detA > 0,
(b) tr2A− 4detA < 0.

Lemma 7.1, Theorem 4.6, and relation (6.2) yield the following corollary.

Corollary 7.2. For the matricesA,B,C from (1.1), [(A,B,C) is ��1-stab.]⇔[there exists
α ∈ R : trAα < 0, detAα > 0]; [(A,B,C) is ��-stab.] ⇔ [there exists α ∈ R : (trAα < 0,
detAα > 0)∨ (tr2Aα−4detAα<0)].

The main result of the paper is the following criterion.

Theorem 7.3. The triple (A,B,C) is ��-stab. if and only if one of the following conditions
is fulfilled:

(1) CB = 0, CAB = 0, trA < 0, detA > 0;
(2) CB = 0, CAB �= 0;
(3) ω < 0;
(4) ω ≥ 0, detA > (CAB/CB) ·ω.

Proof. By (6.3), we have for all α∈R that

f (α) := tr2Aα− 4detAα = (CB)2α2− 2(CB · trA− 2CAB)α+ tr2A− 4detA. (7.1)

Consider the inequality

f (α) < 0 (7.2)

in some special situations.
(a) If CB = 0 and CAB �= 0, then (7.2) is equivalent to the inequality

4CAB ·α+ tr2A− 4detA < 0 (7.3)

which is clearly solvable with respect to α∈R.
(b) If CB �= 0, then the solvability of (7.2) is equivalent to the positivity of the discrim-

inant 4d of the quadratic equation f (α)= 0, that is, to the condition

d = 4(CAB)2− 4CAB · trA ·CB+ 4detA · (CB)2 > 0. (7.4)
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The last inequality, in turn, is equivalent to

detA >
CAB

CB
·ω. (7.5)

Now we are able to continue the proof of the theorem.
(1) Let CB = CAB = 0. Due to Theorem 4.6, Lemma 7.1, and relation (6.3), ��-

stabilizability of (A,B,C) is equivalent to the condition trA < 0, detA > 0.
(2) Let CB = 0 and CAB �= 0. Because of (a), the triple (A,B,C) is ��-stab.
(3) Let ω < 0. By Theorem 6.2, (A,B,C) is ��-stab.
(4) Let ω ≥ 0. By Corollary 7.2, Theorem 6.2, and (b), ��-stabilizability of the triple

(A,B,C) is equivalent either to (7.5) or to

detA≥ trA ·ω. (7.6)

Moreover, ω= trA−CAB/CB ≥ 0 guarantees the implication (7.6)⇒(7.5). Thus, ��-
stabilizability of (A,B,C) is equivalent to (7.5). �

The next two theorems follow directly from Theorems 6.2 and 7.3 and Corollary 7.2.

Theorem 7.4. The triple (A,B,C) is not ��1-stab. but ��-stab. if and only if one of the
following conditions is satisfied:

(1) CB = 0, CAB �= 0, trA≥ 0;
(2) ω > 0, CAB/CB < detA/ω ≤ trA.

Theorem 7.5. Assume that (A,B,C) is not ��1-stab. Then (A,B,C) is ��-stab. if and
only if one of the following conditions is satisfied:

(1) CB = 0, CAB �= 0;
(2) detA > CAB/CB ·ω.

8. A detailed algorithm which tests ��1- and ��-stabilizability of the triple (A,B,C)

First of all, we introduce some new notation:

(i) 1= {(A,B,C) |A∈M(2,2), B ∈M(2,�), C ∈M(m,2) for some �,m∈N},
(ii) LH0 = {Ω∈ 1 |A is stable},

(iii) LH1 = {Ω∈ 1 |A is not stable, Ω is ��1-stab.},
(iv) LH= {Ω∈ 1 |Ω is not ��1-stab., but is ��-stab.},
(v) LH− = {Ω∈ 1 |Ω is not ��-stab.}.

Evidently, 1= LH0�LH1�LH�LH−.
Algorithm 8.1 tests if a given triple Ω= (A,B,C)∈ 1 belongs to one of the classes LH0,

LH1, LH, and LH−.

Remark 8.1. The items 1(YES) and 3(YES) of the algorithm follow from Lemma 2.2 and
Corollary 4.5, respectively. The items 5(YES) and 7(YES) are implied by Theorems 5.5
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1 Condition: trA < 0, detA > 0.
(YES)−→Ω∈ LH0 −→ END
(NO)−→ CONTINUE

2 Condition: B or C is the zero matrix.
(YES)−→Ω∈ LH− −→ END
(NO)−→ CONTINUE

3 Condition: rankB ≥ 2, rankC ≥ 2.
(YES)−→Ω∈ LH1 −→ END
(NO)−→ find σ(A)= {λ1,λ2} −→ CONTINUE

4 Condition: rankB = 1.
(YES)−→ find a nonzero column b

of the matrix B −→ CONTINUE
(NO)−→ find a nonzero row c

of the matrix C −→ go to 7
5 Condition: [λ1 ≥ 0, λ2 ≥ 0, det(b Ab)= 0] ∨[λ1 < 0≤ λ2, Ab = λ1b]

∨[λ2 < 0≤ λ1, Ab = λ2b].
(YES)−→Ω∈ LH− −→ END
(NO)−→ CONTINUE

6 Condition: rankC ≥ 2.
(YES)−→Ω∈ LH1 −→ END
(NO)−→ find a nonzero row c
of the matrix C −→ go to 8

7 Condition:
[
λ1 ≥ 0, λ2 ≥ 0, det

(
c
cA

)
= 0

]
∨ [λ1 < 0≤ λ2, cA= λ1c]

∨[λ2 < 0≤ λ1, cA= λ2c].
(YES)−→Ω∈ LH− −→ END
(NO)−→Ω∈ LH1 −→ END

8 Condition: [cb = 0, cAb �= 0, trA < 0]∨ [trA− cAb/cb < 0]
∨[trA− cAb/cb ≥ 0, detA > trA(trA− cAb/cb)].
(YES)−→Ω∈ LH1 −→ END
(NO)−→ CONTINUE

9 Condition: [cb = 0, cAb �= 0] ∨[detA > (cAb/cb)(trA− cAb/cb)].
(YES)−→Ω∈ LH−→ END
(NO)−→Ω∈ LH− −→ END.

Algorithm 8.1

and 5.8, and the items 6(YES) and 7(NO) can be obtained from Corollary 4.4. In the
items 4(YES) and 6(NO), we use Lemma 4.1 to reduce the stabilization problem for the
triple (A,B,C) to that for either (A,b,C) or (A,b,c), where b is a nonzero column of B
and c is a nonzero row of C (B = b and C = c if � =m = 1). For 8(YES), the statement
follows from Corollary 6.3. Finally, 9 is implied by Theorem 7.5.
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