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We establish nonimprovable, in a certain sense, sufficient conditions for the existence of
a unique periodic-type solution for systems of linear ordinary differential equations.

1. Formulation of the problem and statement of the main results

Let n1 and n2 be natural numbers, ω > 0, Λi ∈Rni×ni (i= 1,2) nonsingular matrices, and
�ik : R→Rni×nk (i,k = 1,2) and qi : R→Rni (i= 1,2) matrix and vector functions whose
components are Lebesgue integrable on each compact interval. We consider the problem
on the existence and uniqueness of a solution of the linear differential system

dxi
dt
=�i1(t)x1 + �i2(t)x2 + qi(t) (i= 1,2), (1.1)

satisfying the conditions

xi(t+ω)=Λixi(t) for t ∈R (i= 1,2). (1.2)

When Λ1 and Λ2 are unit matrices, this problem becomes the well-known problem on
a periodic solution which has been the subject of numerous studies (see, e.g., [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references therein).

In this paper, sufficient conditions for the unique solvability of problem (1.1), (1.2)
are established, which are nonimprovable in a certain sense and in particular provide
new results on the existence of a unique ω-periodic solution of system (1.1).

The following notation is used in the paper:

(1) R is the set of real numbers;
(2) Rn is the n-dimensional real Euclidean space;
(3) x = (ξi)ni=1 ∈Rn is the column vector with components ξ1, . . . ,ξn,

|x| = (∣∣ξi∣∣)ni=1, ‖x‖ =
( n∑

i=1

ξ2
i

)1/2

; (1.3)
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(4) x · y is the scalar product of vectors x,y ∈Rn;
(5) Rm×n is the space of m×n matrices X = (ξik)m,n

i,k=1 with components ξik (i= 1, . . . ,
m;k = 1, . . . ,n),

|X| = (∣∣ξik∣∣)m,n
i,k=1, ‖X‖ =

( n∑
k=1

m∑
i=1

ξ2
ik

)1/2

; (1.4)

(6) X∗ is the transposed matrix of the matrix X ;
(7) En is the unit n×n matrix;
(8) det(X) is the determinant of the matrix X ;
(9) r(X) is the spectral radius of the matrix X ∈Rn×n;

(10) if X ∈Rn×n, then λ0(X) is a minimal eigenvalue of the matrix (1/2)(X +X∗).

Inequalities between the matrices and the vectors are understood componentwise.
Throughout the paper, it will be assumed that

�ik(t+ω)=Λi�ik(t)Λ−1
k , qi(t+ω)=Λiqi(t) for t ∈R (i,k = 1,2). (1.5)

For each i∈ {1,2}, consider the differential system

dx

dt
=�ii(t)x (1.6)

and denote by Xi its fundamental matrix satisfying the initial condition

Xi(0)= Eni . (1.7)

If, however, the matrix Λi−Xi(ω) is nonsingular, then it is assumed that

Gi(t,τ)= Xi(t)
(
X−1
i (ω)Λi−Eni

)−1
X−1
i (τ). (1.8)

For each i∈ {1,2}, we define a matrix function Λi0 : [0,3ω]→Rni×ni in the following
manner:

Λi0(s)= Eni for 0≤ s≤ ω, (1.9)

Λi0(s)= ∣∣Λk
i

∣∣ for kω < s≤ (k+ 1)ω (k = 1,2). (1.10)

Theorem 1.1. Let

det
(
Λi−Xi(ω)

) �= 0 (i= 1,2), (1.11)

and there exists a nonnegative matrix A∈Rn1×n1 such that r(A) < 1, and∫ t+ω

t

∫ τ+ω

τ

∣∣G1(t,τ)�12(τ)G2(τ,s)�12(s)
∣∣Λ10(s)dsdτ ≤A for 0≤ t ≤ ω. (1.12)

Then problem (1.1), (1.2) has a unique solution.
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Example 1.2. Let n1 = n2 = 1, Λ1 =Λ2 = 1, qi(t)≡ 0, �i1(t)≡ pi(t), and �i2(t)=−pi(t),
where pi : R→]0,+∞[ (i = 1,2) are the integrable on [0,ω] ω-periodic functions. Then
conditions (1.5), (1.11), and (1.12), where A= 1, are fulfilled. On the other hand, in the
considered case, system (1.1) has the form

dxi
dt
= pi(t)

(
x1− x2

)
(i= 1,2) (1.13)

and therefore problem (1.1), (1.2) has an infinite set of solutions{(
x1,x2

)
: x1(t)≡ x2(t)≡ c, c ∈R

}
. (1.14)

This example shows that the condition r(A) < 1 in Theorem 1.1 is nonimprovable and it
cannot be replaced by the condition r(A)≤ 1.

Theorem 1.3. Let

Xi(ω)=Λ1, det
(
Λ2−X2(ω)

) �= 0, (1.15)

det
(
Q0
) �= 0, (1.16)

where

Q0 =
∫ ω

0
X−1

1 (τ)�12(τ)Q(τ)dτ,

Q(t)=
∫ t+ω

t
G2(t,s)�21(s)X1(s)ds.

(1.17)

Let, further, there exist a nonnegative matrix A∈Rn2×n2 such that r(A) < 1, and∫ t+ω

t

[
H(t,τ) +

∫ τ+ω

τ

∣∣Q(t)Q−1
0 X−1

1 (τ)�12(τ)
∣∣H(τ,s)ds

]
dτ ≤A for 0≤ t ≤ ω,

(1.18)

where

H(t,τ)=
∫ τ

0

∣∣G2(t,τ)�21(τ)X1(τ)X−1
1 (s)�12(s)

∣∣Λ20(s)ds. (1.19)

Then problem (1.1), (1.2) has a unique solution.

Example 1.4. Consider the problem

dx1

dt
= B1x2,

dx2

dt
= εB2x1 +Bx2,

xi(t+ω)= xi(t) for t ∈R (i= 1,2),
(1.20)

where ε is a positive constant, B1 ∈Rn1×n2 , B2 ∈Rn2×n1 , B ∈Rn2×n2 , and det(B) �= 0. This
problem is obtained from problem (1.1), (1.2) when Λi = Eni (i= 1,2), �1 is a zero ma-
trix, �12(t) ≡ B1, �21(t) ≡ εB2, �22(t) ≡ B, and q(t) ≡ 0. It is obvious that conditions
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(1.5) and (1.15) are fulfilled for this problem. On the other hand, by virtue of (1.17) and
(1.19), we have

Q(t)≡ εB−1B2, Q0 = εωB1B
−1B2,

H(t,τ)= τε
∣∣(exp(−ωB)−En2

)−1
exp

(
(t− τ)B

)
B2B1

∣∣. (1.21)

Therefore, condition (1.16) is fulfilled if and only if

det
(
B1B

−1B2
) �= 0. (1.22)

If the latter inequality is fulfilled, then, by Theorem 1.3, there exists ε0 > 0 such that, for
arbitrary ε ∈]0,ε0[, problem (1.20) has only a trivial solution. If det(B1B−1B2)= 0, then,
for arbitrary ε, problem (1.20) has an infinite set of solutions

{(
x1,x2

)
: x1(t)≡ cx10, x2(t)= cx20, c ∈R

}
, (1.23)

where x10 ∈Rn1 is the eigenvector of the matrix B1B−1B2 corresponding to the zero eigen-
value and x20 =−εB−1B2x10.

Example 1.4 shows that condition (1.16) is essential and cannot be omitted.

Theorem 1.5. Let there exist a matrix A ∈ Rn1×n2 , symmetric matrices Ai ∈ Rni×ni

(i= 1,2), and an integrable function δ : [0,ω]→ [0,+∞[ such that

Λ∗2 AΛ1 =A, Λ∗i AiΛi =Ai (i= 1,2) (1.24)

and the following inequalities are fulfilled almost everywhere on [0,ω]:

λ0
(
A1�11(t) +A∗�21(t)

)≥ δ(t), λ0
(
A2�22(t) +A�12(t)

)≥ δ(t), (1.25)

δ(t)≥ p(t), (1.26)

where

p(t)= 1
2

(∥∥A1�12(t) +A∗�22(t)
∥∥+

∥∥A2�21(t) +A�11(t)
∥∥). (1.27)

If, moreover,

∫ ω

0

(
δ(t)− p(t)

)
dt > 0, (1.28)

then problem (1.1), (1.2) has a unique solution.

Example 1.2 shows that conditions (1.5), (1.24), (1.25), and (1.26) do not guarantee
the unique solvability of problem (1.1), (1.2). Therefore, condition (1.28) in Theorem 1.5
is essential and cannot be omitted.
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2. Auxiliary propositions

In this section, we consider the problem

dx

dt
=�(t)x+ q(t), (2.1)

x(t+ω)=Λx(t) for t ∈R, (2.2)

assuming that Λ ∈ Rn×n is a nonsingular matrix, and � : R→ Rn×n and q : R→ Rn are
matrix and vector functions with components Lebesgue integrable on [0,ω] and satisfy-
ing the conditions

�(t+ω)=Λ�(t)Λ−1 for t ∈R, (2.3)

q(t+ω)=Λq(t) for t ∈R. (2.4)

We denote by X the fundamental matrix of the homogeneous differential system

dx

dt
=�(t)x, (2.5)

satisfying the initial condition

X(0)= En. (2.6)

Condition (2.3) immediately implies the following lemma.

Lemma 2.1. The matrix function X satisfies the identity

X(t+ω)=ΛX(t)Λ−1X(ω) for t ∈R. (2.7)

Lemma 2.2. Problem (2.5), (2.2) has only a trivial solution if and only if

det
(
Λ−X(ω)

) �= 0. (2.8)

Proof. Let x be an arbitrary solution of system (2.5). Then

x(t)= X(t)c for t ∈R, (2.9)

where c ∈Rn. Hence, by Lemma 2.1, it follows that x is a solution of problem (2.5), (2.2)
if and only if (

ΛX(t)−ΛX(t)Λ−1X(ω)
)
c = 0 for t ∈R. (2.10)

However, for the latter identity to be fulfilled, it is necessary and sufficient that c be a
solution of the system of algebraic equations(

Λ−X(ω)
)
c = 0. (2.11)

Therefore, problem (2.5), (2.2) has only a trivial solution if and only if the latter system
has only a trivial solution, that is, if (2.8) is fulfilled. �
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Lemma 2.3. Problem (2.1), (2.2) is uniquely solvable if and only if the corresponding homo-
geneous problem (2.5), (2.2) has only a trivial solution, that is, if inequality (2.8) is fulfilled.
Moreover, if (2.8) is fulfilled, then the solution of problem (2.1), (2.2) admits the representa-
tion

x(t)=
∫ t+ω

t
G(t,s)q(s)ds for t ∈R, (2.12)

where

G(t,s)= X(t)
(
X−1(ω)Λ−En

)−1
X−1(s). (2.13)

Proof. By Lemma 2.2, to prove Lemma 2.3, it is sufficient to establish that if inequality
(2.8) is fulfilled, then the vector function x given by equality (2.12) is a solution of prob-
lem (2.1), (2.2).

According to (2.7) and (2.13), we have

∂G(t,s)
∂t

=�(t)G(t,s) for s∈R and almost all t ∈R,

G(t, t+ω)Λ−G(t, t)= X(t)
(
X−1(ω)Λ−En

)−1(
X−1(t+ω)Λ−X−1(t)

)
= X(t)

(
X−1(ω)Λ−En

)−1(
X−1(ω)Λ−En

)
X−1(t)

= En for t ∈R,

G(t+ω,s+ω)=ΛX(t)Λ−1X(ω)
(
X−1(ω)Λ−En

)−1

× (Λ−1X(ω)
)−1

X−1(t)Λ−1

=ΛG(t,s)Λ−1 for s∈R, t ∈R.

(2.14)

If, along with these identities, we also take into consideration condition (2.4), then, from
(2.12), we obtain

dx(t)
dt

=�(t)x(t) +G(t, t+ω)q(t+ω)−G(t, t)q(t)

=�(t)x(t) +
(
G(t, t+ω)Λ−G(t, t)

)
q(t)

=�(t)x(t) + q(t) for almost all t ∈R
n,

x(t+ω)=
∫ t+2ω

t+ω
G(t+ω,s)q(s)ds=

∫ t+ω

t
G(t+ω,s+ω)q(s+ω)ds

=Λ

∫ t+ω

t
G(t,s)q(s)ds=Λx(t) for t ∈R.

(2.15)

Thus x is a solution of problem (2.1), (2.2). �
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3. Proofs of the main results

Proof of Theorem 1.1. By Lemma 2.3, it is sufficient to show that the homogeneous prob-
lem

dxi
dt
=�i1(t)x1 + �i2(t)x2, (3.1)

xi(t+ω)=Λixi(t) for t ∈R (i= 1,2) (3.2)

has only a trivial solution.
Let (x1,x2) be an arbitrary solution of this problem. By virtue of Lemma 2.3, condition

(1.11) and the equalities

�12(t+ω)x2(t+ω)=Λ1�12(t)x2(t),

�21(t+ω)x1(t+ω)=Λ2�21(t)x1(t) for almost all t ∈R
(3.3)

guarantee the validity of the representations

x1(t)=
∫ t+ω

t
G1(t,s)�12(s)x2(s)ds,

x2(t)=
∫ t+ω

t
G2(t,s)�21(s)x1(s)ds.

(3.4)

Therefore,

x1(t)=
∫ t+ω

t

∫ τ+ω

τ
G1(t,τ)�12(τ)G2(τ,s)�21(s)x1(s)ds. (3.5)

Let

x1(t)= (x1k(t)
)n1

k=1,

ρk =max
{∣∣x1k(t)

∣∣ : 0≤ t ≤ ω
} (

k = 1, . . . ,n1
)
, ρ= (ρk)n1

k=1.
(3.6)

Then by (1.9), (1.10) for i= 1, we have∣∣x1(s)
∣∣≤Λ10(s)ρ for 0≤ s≤ 3ω. (3.7)

If, along with this, we also take into consideration inequality (1.12), then, from represen-
tation (3.5), we obtain ∣∣x1(t)

∣∣≤ Aρ for 0≤ t ≤ ω. (3.8)

Hence ρ ≤Aρ and, therefore, (
En1 −A

)
ρ ≤ 0. (3.9)

According to the condition r(A) < 1 and the nonnegativeness of the matrix A, the matrix
En1 −A is nonsingular and (En1 −A)−1 is nonnegative. Hence the multiplication of the
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latter vector inequality by (En1 −A)−1 gives ρ ≤ 0. Therefore, ρ = 0, that is,

x1(t)= 0 for 0≤ t ≤ ω. (3.10)

By virtue of this equality, from (3.4), it follows that xi(t)= 0 for t ∈R (i= 1,2). �

Proof of Theorem 1.3. Let (x1,x2) be an arbitrary solution of problem (3.1), (3.2). Then
by the Cauchy formula, we have

x1(t)= X1(t)c+
∫ t

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ, (3.11)

where c ∈Rn1 . On the other hand, by Lemma 2.3, the nonsingularity of the matrix Λ2−
X2(ω) and the equality

�21(t+ω)x1(t+ω)=Λ2�21(t)x1(t) for almost all t ∈R (3.12)

guarantee the validity of the representation

x2(t)=
∫ t+ω

t
G2(t,τ)�21(τ)x1(τ)dτ. (3.13)

Hence, by virtue of equalities (1.17) and (3.11), it follows that

x2(t)=Q(t)c+
∫ t+ω

t
z(t,τ)dτ, (3.14)

where

z(t,τ)=
∫ τ

0
G2(t,τ)�21(τ)X1(τ)X−1

1 (s)�12(s)x2(s)ds. (3.15)

By Lemma 2.1 and the equality X1(ω)=Λ1, we have

X1(t+ω)=Λ1X(t) for t ∈R. (3.16)

Therefore, from (3.11), we find

x1(t+ω)=Λ1X1(t)c+Λ1

∫ t+ω

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ. (3.17)

Hence, by (3.2), it follows that

x1(t)= X1(t)c+
∫ t+ω

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ. (3.18)

If now we again apply representation (3.11), then it becomes clear that the identity∫ t+ω

t
X−1

1 (τ)�12(τ)x2(τ)dτ = 0 for t ∈R (3.19)

is valid.
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Using (3.14), from the latter identity, we find

Q̃(t)c =−
∫ t+ω

t

∫ τ+ω

τ
X−1

1 (τ)�12(τ)z(τ,s)dsdτ, (3.20)

where

Q̃(t)=
∫ t+ω

t
X−1

1 (τ)�12(τ)Q(τ)dτ. (3.21)

By Lemma 2.1,

G2(t+ω,s+ω)=Λ2G2(t,s)Λ−1
2 . (3.22)

If, along with this identity, we also take into account identities (1.5) and (3.16), then we
obtain

Q(t+ω)=
∫ t+ω

t
G2(t+ω,s+ω)�21(s+ω)X1(s+ω)ds=Λ2Q(t). (3.23)

Therefore, from (1.17) and (3.21), we have

Q̃(t)=
∫ ω

t
X−1

1 (τ)�12(τ)Q(τ)dτ

+
∫ t

0
X−1

1 (τ +ω)�12(τ +ω)Q(τ +ω)dτ

=
∫ ω

t
X−1

1 (τ)�12(τ)Q(τ)dτ

+
∫ t

0
X−1

1 (τ)�12(τ)Q(τ)dτ =Q0 for t ∈R.

(3.24)

By virtue of this fact and condition (1.16), from (3.11), (3.14), and (3.20), we get

x1(t)=
∫ t

0
X1(t)X−1

1 (τ)�12(τ)x2(τ)dτ

−X1(t)
∫ ω

0

∫ τ+ω

τ
Q−1

0 X−1
1 (τ)�12(τ)z(τ,s)dsdτ,

(3.25)

x2(t)=
∫ t+ω

t

(
z(t,τ)−

∫ τ+ω

τ
Q(t)Q−1

0 X−1
1 (τ)�12(τ)z(τ,s)ds

)
dτ. (3.26)

Let x2(t)= (x2k(t))n2
k=1,

ρk =max
{∣∣x2k(t)

∣∣ : 0≤ t ≤ ω
} (

k = 1, . . . ,n2
)
, ρ = (ρk)n2

k=1. (3.27)

Then, by (1.9), (1.10) for i= 2, we have∣∣x2(s)
∣∣≤Λ20(s)ρ for 0≤ s≤ 3ω. (3.28)

By this inequality and the notation (1.19) and (3.15), we have∣∣z(t,τ)
∣∣≤H(t,τ)ρ for t ∈R, 0≤ τ ≤ 3ω. (3.29)
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Due to this estimate and inequality (1.18), from (3.26), we find

∣∣x2(t)
∣∣≤ Aρ for 0≤ t ≤ ω. (3.30)

Hence it is clear that ρ ≤Aρ and, therefore,

(
En2 −A

)
ρ ≤ 0. (3.31)

By virtue of the condition r(A) < 1 and the nonnegativeness of the matrix A, the latter
inequality implies ρ = 0. Therefore,

x2(t)= 0, z(t,τ)= 0 for 0≤ t ≤ ω, 0≤ τ ≤ 3ω, (3.32)

due to which we find from (3.2) and (3.25) that xi(t)= 0 for t ∈R (i= 1,2). Thus prob-
lem (3.1), (3.2) has only a trivial solution. By Lemma 2.3, this fact guarantee the unique
solvability of problem (1.1), (1.2). �

Proof of Theorem 1.5. By virtue of Lemma 2.3, it is sufficient to establish that problem
(3.1), (3.2) has only a trivial solution.

Let (x1,x2) be an arbitrary solution of problem (3.1), (3.2) and

u(t)= 1
2

(
A1x1(t) · x1(t) +A2x2(t) · x2(t)

)
+Ax1(t) · x2(t). (3.33)

Then

u′(t)=A1x
′
1(t) · x1(t) +A2x

′
2(t) · x2(t) +Ax′1(t) · x2(t) +A∗x′2(t) · x1(t)

= (A1�11(t) +A∗�21(t)
)
x1(t) · x1(t)

+
(
A2�22(t) +A�12(t)

)
x2(t) · x2(t) +

(
A1�12(t) +A∗�22(t)

)
x2(t) · x1(t)

+
(
A2�21(t) +A�11(t)

)
x1(t) · x2(t) for almost all t ∈R.

(3.34)

However, by conditions (1.25) and the Schwartz inequality, for almost all t ∈ [0,ω], we
have

(
A1�11(t) +A∗�21(t)

)
x1(t) · x1(t)≥ δ(t)

∥∥x1(t)
∥∥2

,(
A2�22(t) +A�12(t)

)
x2(t) · x2(t)≥ δ(t)

∥∥x2(t)
∥∥2

,(
A1�12(t) +A∗�22(t)

)
x2(t) · x1(t) +

(
A2�21(t) +A�11(t)

)
x1(t) · x2(t)

≤ 2p(t)
∥∥x1(t)

∥∥∥∥x2(t)
∥∥≤ p(t)

(∥∥x1(t)
∥∥2

+
∥∥x2(t)

∥∥2
)

,

(3.35)

where p is the function given by equality (1.27). Therefore,

u′(t)≥ (δ(t)− p(t)
)(∥∥x1(t)

∥∥2
+
∥∥x2(t)

∥∥2
)

for almost all t ∈ [0,ω]. (3.36)
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On the other hand, by virtue of (1.24) and (3.2), we have

u(ω)= 1
2

(
A1Λ1x1(0) ·Λ1x1(0) +A2Λ2x2(0) ·Λ2x2(0)

)
+AΛ1x1(0) ·Λ2x2(0)

= 1
2

(
Λ∗1 A1Λ1x1(0) · x1(0) +Λ∗2 A2Λ2x2(0) · x2(0)

)
+Λ∗2 AΛ1x1(0) · x2(0)= u(0).

(3.37)

Thus

0=
∫ ω

0
u′(t)dt ≥

∫ ω

0

(
δ(t)− p(t)

)(∥∥x1(t)
∥∥2

+
∥∥x2(t)

∥∥2
)
dt. (3.38)

Hence, by virtue of conditions (1.26) and (1.28), it follows that there exists t0 ∈ [0,ω]
such that

xi
(
t0
)= 0 (i= 1,2). (3.39)

Therefore, xi(t)= 0 for t ∈R (i= 1,2) since system (3.1) with the zero initial conditions
has only a trivial solution. �
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