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Let E be a real, locally convex, locally solid vector lattice of (AM)-type. First, we prove an
approximation theorem of Bishop’s type for a vector subspace of such a lattice. Second,
using this theorem, we obtain a generalization of Nachbin’s density theorem for weighted
spaces.

1. Introduction

In this paper, we introduce the concept of antisymmetric ideal with respect to a pair
(A,F), when A is a subset of the real part of the center of E, and F is a vector subspace of E.
This notion is a generalization, for locally convex lattices, of the notion of antisymmetric
set from the theory of function algebras.

Further, we study some properties of the family of antisymmetric ideals. For example,
we show that every element of this family contains a unique minimal element belonging
to this family.

The main result of this paper is Theorem 4.2 which states that for every x ∈ E we have
x ∈ F if and only if πI(x)∈ πI(F) for any minimal (A,F)-antisymmetric ideal I , where πI
denotes the canonical mapping E→ E/I .

This theorem is a Bishop’s type approximation theorem and generalizes a similar result
for C(X).

Finally, we show that if the pair (A,F) fulfils some supplementary conditions, then F
is dense in E, and also show how Nachbin’s density theorem for weighted spaces follows
from this theorem.

2. Preliminaries

In the sequel, E denotes a real, locally convex, locally solid vector lattice of (AM)-type.
For every closed ideal I of E, we will denote by πI the canonical mapping E→ E/I and by
π′I it’s adjoint. The center Z(E) of E is the algebra of all order-bounded endomorphisms
on E, that is, those U ∈ L(E,E) for which there exists λU > 0 such that |U(x)| ≤ λU |x|, for
all x ∈ E. The real part of the center is ReZ(E)= Z(E)+−Z(E)+.
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Definition 2.1. For every closed ideal I of E and every U ∈ ReZ(E), πI(U) : E/I → E/I is
defined by

πI(U)
(
πI(x)

)= πI
(
U(x)

)
, x ∈ E. (2.1)

It is easily seen that the operator πI(U) is well defined. For every A⊂ Z(E), we denote

πI(A)= {πI(U); U ∈A
}
. (2.2)

Remark 2.2. If A⊂ ReZ(E), then πI(A)⊂ ReZ(E/I).

Indeed, if U ∈ A, then, for every x ∈ E, we have
∣∣πI(U)

(
πI(x)

)∣∣= ∣∣πI
(
U(x)

)∣∣= πI
(∣∣U(x)

∣∣)

≤ πI
(
λU |x|

)= λUπI
(|x|)= λU

∣∣πI(x)
∣∣,

(2.3)

hence πI(U)∈ Z(E/I).

Definition 2.3. Let I and J be two closed ideals of E such that I ⊂ J . Then the following
two mappings can be defined: πIJ : E/I → E/J given by

πIJ
[
πI(x)

]= πJ(x), x ∈ E, (2.4)

and MIJ : ReZ(E/I)→ ReZ(E/J) given by

MIJ(U)
(
πJ(x)

)= πIJ
(
U
(
πI(x)

))
, U ∈ ReZ(E/I). (2.5)

As a consequence of the inequality,
∣∣MIJ(U)

(
πJ(x)

)∣∣= ∣∣πIJ
(
U
(
πI(x)

))∣∣
= πIJ

(∣∣U(πI
)
(x)
∣∣)≤ πIJ

(
λU
∣∣πI(x)

∣∣)

= λUπIJ
(∣∣πI(x)

∣∣)= λUπJ
(|x|)= λU

∣∣πJ(x)
∣∣,

(2.6)

for every x ∈ E, the range of MIJ is included in ReZ(E/J).

3. Antisymmetric ideals

Let A be a subset of ReZ(E) containing 0 and let F be a vector subspace of E.

Definition 3.1. A closed ideal I of E is said to be antisymmetric with respect to the pair
(A,F) if, for every U ∈ πI(A) with the property U[πI(F)] ⊂ πI(F), it follows that there
exists a real number α such that U = α1E/I , where 1E/I is the identity operator on E/I .

Of course, E itself is an antisymmetric ideal with respect to the pair (A,F) for every
A⊂ ReZ(E) and every vector subspace F of E.

Further, we denote by �A,F(E) the family of all (A,F)-antisymmetric ideals of E.
Now we consider the particular case E = C(X ,R), where X is a compact Hausdorff

space. It is well known that there is a one-to-one correspondence between the class of the
closed ideals of C(X ,R) and the class of the closed subsets of X . Namely, for every closed
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subset S of X , the set IS = { f ∈ C(X ,R); f |S= 0} is a closed ideal of C(X ,R) and every
closed ideal of C(X ,R) has this form.

Definition 3.2. Let A be a subset of C(X ,R) with 0 ∈ A and let F be a closed subset of
C(X ,R). A closed subset S of X is said to be antisymmetric with respect to the pair (A,F)
if every f ∈A with the property f · g|S∈ F|S for every g ∈ F is constant on S.

Remark 3.3. A closed subset S of X is (A,F)-antisymmetric if and only if the correspond-
ing ideal IS is (A,F)-antisymmetric in the sense of Definition 3.1.

Indeed, it is sufficient to observe that πIS(a)= a|S for every subset S of X .

Lemma 3.4. Let (Iα) be a family of elements of �A,F(E) such that J =∑αIα �= E. Then

I =∩αIα ∈�A,F(E). (3.1)

Proof. If U ∈ πI(A) has the property U[πI(F)]⊂ πI(F), then

MIIα(U)
(
πIα(F)

)= πIIα
[
U
(
πI(F)

)]⊂ πIIα
[
πI(F)

]= πIα(F). (3.2)

Let V ∈A be such that U = πI(V). For every x ∈ E, we have

MIIα(U)
(
πIα(x)

)= πIIα
[
U
(
πI(x)

)]= πIIα
[
πI(V)

(
πI(x)

)]

= πIIα
[
πI
(
V(x)

)]= πIα
[
V(x)

]= πIα(V)
(
πIα(x)

)
.

(3.3)

Thus, MIIα(U) = πIα(V) ∈ πIα(A) ⊂ ReZ(E/Iα) and MIIα(U)(πIα(F)) ⊂ πIα(F). Since
Iα ∈�A,F(E), it follows that an aα ∈R exists such that MIIα(U)= aα · 1E/Iα .

On the other hand, we have

MIJ(U)=MIαJ
[
MIIα(U)

]= aα · 1E/Iα . (3.4)

Since J �= E, it follows that aα = a (constant) for any α. Therefore,

MIIα(U)= a · 1E/Iα = a ·MIIα

(
1E/I

)
, (3.5)

hence,

MIIα

(
U − a · 1E/I

)= 0, (3.6)

for any α, and this involves U = a · 1E/I . �

Corollary 3.5. Every I ∈�A,F(E) contains a unique minimal ideal Ĩ ∈�A,F(E).

Proof. Let I ∈�A,F(E) be such that I �= E and let Ĩ = ∩{J ∈�A,F(E); J ⊂ I}. According
to Lemma 3.4, Ĩ ∈�A,F(E). It is now obvious that Ĩ ⊂ I and Ĩ is minimal. �

Further, we denote by �̃A,F(E) the family of all minimal closed ideals of E, antisym-
metric with respect to the pair (A,F).
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4. Bishop’s type approximation theorem

Lemma 4.1. Let A be a subset of ReZ(E) with 0 ∈ A, let F be a vector subspace of E, and
let V be a convex and solid neighborhood of the origin of E, which is also a sublattice. If
f ∈ Ext{V 0∩F0} and I = {x ∈ E; | f |(|x|)= 0}, then I ∈�A,F(E).

Proof. Let U ∈ πI(A) be such that U[πI(F)]⊂ πI(F). We can suppose that 0≤U ≤ 1E/I .
Since f ∈ I0, there exists g ∈ (E/I)′ such that f = π′1g. Obviously, g ∈ {[πI(V)]0

∩ [πI(F)]0}. We denote g1 =U ′g, g2 = (1E/I −U)′g, and ai = inf{λ > 0 : gi∈λ[πI(V)]0}=
sup{|gi(y)| : y ∈ πI(V)}, for i= 1,2.

Since g=g1 + g2 ∈ (a1 + a2)[πI(V)]0, it follows that f ∈ (a1 + a2)V 0, hence a1 + a2≥ 1.
On the other hand, for any y1, y2 ∈ πI(V), we have

∣∣g1
(
y1
)∣∣+

∣∣g2
(
y2
)∣∣= ∣∣g(U(y1

))∣∣+
∣∣g(1E/I −U

)(
y2
)∣∣

≤ |g|(U(∣∣y1
∣∣∨∣∣y2

∣∣))+
(

1E/I −U
)(∣∣y1

∣∣∨∣∣y2
∣∣)

= |g|(∣∣y1
∣∣∨∣∣y2

∣∣).
(4.1)

Since πI(V) is a sublattice and g ∈ [πI(V)]0, it follows that |y1|∨ |y2| ∈ πI(V), hence
|g|(|y1|∨ |y2|)≤ 1.

Therefore, |g1(y1)| + |g2(y2)| ≤ 1 for any y1, y2 ∈ πI(V) and this yields a1 + a2 ≤ 1,
hence a1 + a2 = 1.

Now, we observe that if |g|(|y|) = 0, then y = 0. Indeed, let x ∈ E be such that y =
πI(x).

We have 0= |g|(|πI(x)|)= |π′I g|(|x|)= | f |(|x|).
If follows that x ∈ I , hence y = πI(x)= 0.
This remark involves that if g1 = U ′g = 0, then U = 0 and, analogously, g2 = (1E/I −

u)′g = 0 implies U = 1E/I .
Therefore, we can suppose that gi �= 0 for i= 1,2, and hence ai > 0, i= 1,2. Further, we

have

g = a1
g1

a1
+ a2

g2

a2
,

gi
ai
∈ [πI(V)

]0∩ [πI(F)
]0

, i= 1,2. (4.2)

Since g ∈ Ext{[π1(V)]0 ∩ [πI(F)]0}, either g = g1/a1 or g = g2/a2. In the first
case, (U − a11E/I)′(g)= 0.

The last equality yields U = a11E/I . �

The main result concerning antisymmetric ideals is the following Bishop’s type ap-
proximation theorem.

Theorem 4.2. Let E be a real, locally convex, locally solid vector lattice of (AM)-type, A⊂
ReZ(E) with 0∈A, and let F be a vector subspace of E. Then, for any x ∈ E,

x ∈ F ⇐⇒ πI(x)∈ πI(F) (4.3)

for every I ∈ �̃A,F(E).
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Proof. The necessity is clear. We suppose that πI(x)∈ πI(F) for any I ∈ �̃A,F(E) and that
x /∈ F. Then, there exists f ∈ E′ such that f (x) �= 0 and f (y)= 0 for any y ∈ F.

Let V be a solid, convex neighborhood of the origin which is also a sublattice of E. By
the Krein-Milman theorem, we may assume that f ∈ Ext{V 0∩F0}. If we denote J = {x ∈
E; | f |(|x|)= 0}, then, according to Lemma 4.1, we have J ∈ �̃A,F(E). On the other hand,

by Corollary 3.5, it follows that there exists J0 ∈ �̃A,F(E) such that J0 ⊂ J . Since πJ0 (x)∈
πJ0 (F) and f ∈ J0

0 ∩F0, we have f (x)= 0, and this contradicts the choice of f . �

Theorem 4.3. Let E be a real, locally convex, locally solid vector lattice of (AM)-type, let A
be a subset of ReZ(E) with 0∈ A, and let F be a vector subspace of E with the properties

(i) AF ⊂ F,
(ii) F is not included in any maximal ideal of E,

(iii) every closed (A,F)-antisymmetric ideal I of E with the property πI(A)⊂R · 1E/I is a
maximal ideal.

Then F = E.

Proof. Let x ∈ E and I ∈ �̃A,F(E). Hypothesis (i) involves that πI(A)[πI(F)]⊂ πI(F), and
since I is (A,F)-antisymmetric, we have πI(U)= αU · 1E/I for any U ∈ A. Now, from (iii),
it results that I is a maximal ideal and thus that the dimension of πI(E) is one.

Since F ⊂ E, we have either πI(F)= {0} or πI(F)= πI(E).
From (ii), it results that πI(F) �= {0}. Therefore, we have πI(F) = πI(E) and thus

πI(x)∈ πI(F) for any I ∈ �̃A,F(E). According to Theorem 4.2, it follows that x ∈ F. �

5. The case of weighted spaces

Typical examples of locally convex lattices are the weighted spaces.
Let X be a locally compact Hausdorff space and let V be a Nachbin family on X , that

is, a set of nonnegative upper semicontinuous functions on X directed in the sense that,
given v1,v2 ∈V and λ > 0, a v ∈A exists such that vi ≤ λv, i= 1,2. We denote by CV0(X)
the corresponding weighted spaces, that is,

CV0(X)= { f ∈ C(X ,R); f v vanishes at infinity for any v ∈V
}
. (5.1)

The weighted topology on CV0(X) is denoted by ωV and it is determined by the semi-
norms {pv}v∈V , where

pv( f )= sup
{∣∣ f (x)

∣∣v(x) : x ∈ X
}

, for any f ∈ CV0(X). (5.2)

The topology ωV is locally convex and has a basis of open neighborhoods of the origin
of the form

Dv =
{
f ∈ CV0(x) : pv( f ) < 1

}
. (5.3)

Clearly, CV0(X) is a locally convex, locally solid vector lattice of (AM)-type with re-
spect to the topology ωV and to the ordering f ≤ g if and only if f (x)≤ g(x), x ∈ X .
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A result of Goullet de Rugy [1, Lemma 3.8] states that for every closed ideal I of
CV0(X) there exists a closed subset Y of X such that

I = { f ∈ CV0(X) : f |Y = 0
}
. (5.4)

Therefore, there exists a one-to-one map from the family of closed ideals of CV0(X)
onto the family of closed subsets of X .

If X is a compact Hausdorff space and V = {1}, then CV0(X) = C(X ,R) and the
weighted topology ωV coincides with the uniform topology of C(X ,R).

Further, we denote by Cb(X ,R) the algebra of all real bounded continuous functions
on X .

As in the case of C(X), we have the following definition.

Definition 5.1. Let A be a subset of Cb(X) with 0 ∈ A and let F be a vector subspace of
CV0(X). A closed subset S of X is called antisymmetric with respect to the pair (A,F) if
and only if the corresponding ideal

IS =
{
f ∈ CV0(X) : f |S= 0

}
(5.5)

is an (A,F)-antisymmetric ideal, and this means that every a ∈ A with the property
α ·h|S∈ F|S, for any h∈ F, is constant on S.

It is easily seen that every x ∈ X belongs to a maximal (A,F)-antisymmetric set Sx. At
the same time, if x �= y, we have either Sx = Sy or Sx ∩ Sy =∅.

Theorem 4.2 then involves the following theorem.

Theorem 5.2. Let A and F be as in Definition 5.1. Then, a function f ∈ CV0(X) belongs
to F if and only if f |Sx ∈ F|Sx for any x ∈ X .

The following theorem is a generalization of Nachbin’s density theorem for weighted
spaces in the real case.

Theorem 5.3. Let A be a subset of Cb(X ,R) with 0 ∈ A and let F be a vector subspace of
CV0(X) with the properties

(i) AF ⊂ F,
(ii) A separates the points of X ,

(iii) for every x ∈ X , there is an f ∈ F such that f (x) �= 0.

Then F = CV0(X).

Proof. Since the centre of the lattice E = CV0(X) is the algebra Cb(X) of all continuous
bounded functions on X (see, e.g., [2]), it follows that A⊂ ReZ(E). On the other hand,
from (iii), it follows that F is not included in any maximal ideal. Since AF ⊂ F and A
separates the points of X , it results that every (A,F)-antisymmetric subset S of X is a
singleton, and thus the corresponding ideal IS is a maximal ideal. Thus the hypotheses of
Theorem 4.3 are satisfied and so Theorem 5.3 is proved. �
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