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We establish sufficient conditions for the existence of solutions for semilinear differential
inclusions, with nonlocal conditions. We rely on a fixed-point theorem for contraction
multivalued maps due to Covitz and Nadler and on the Schaefer’s fixed-point theorem
combined with lower semicontinuous multivalued operators with decomposable values.

1. Introduction

In this paper, we are concerned with proving the existence of solutions of differential
inclusions, with nonlocal initial conditions. More precisely, in Section 2, we consider the
following differential inclusion, with nonlocal initial conditions:

y′ ∈ F(t, y), t ∈ J = [0,b], (1.1a)

y(0) +
p∑

k=1

ck y
(
tk
)= y0, (1.1b)

where F : J ×Rn →�(Rn) is a multivalued map, �(Rn) is the family of all subsets of Rn,
y0 ∈Rn, and 0≤ t1 < t2 < ··· < tp ≤ b, p ∈N, ck �= 0, k = 1,2, . . . , p.

The single-valued case of problem (1.1) was studied by Byszewski [5], in which a new
definition of mild solution was introduced. In the same paper, it was remarked that the
constants ck, k = 1, . . . , p, from condition (1.1b) can satisfy the inequalities |ck| ≥ 1, k =
1, . . . , p. As pointed out by Byszewski [4], the study of initial value problems with nonlocal
conditions is of significance since they have applications in problems in physics and other
areas of applied mathematics.

The initial value problem (1.1) was studied by Benchohra and Ntouyas [1] in the semi-
linear case where the right-hand side is assumed to be convex-valued. Here, we drop
this restriction and consider problem (1.1) with a nonconvex-valued right-hand side.
By using the fixed-point theorem for contraction multivalued maps due to Covitz and
Nadler [7] and the Schaefer’s theorem combined with a selection theorem of Bressan
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and Colombo for lower semicontinuous (l.s.c.) multivalued operators with decompos-
able values, existence results are proposed for problem (1.1).

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis, which are used throughout this paper.

We denote by �(E) the set of all subsets of E normed by ‖ · ‖� and by C(J ,Rn) the
Banach space of all continuous functions from J into Rn with the norm

‖y‖∞ = sup
{∣∣y(t)

∣∣ : t ∈ J}. (1.2)

Also, L1(J ,Rn) denotes the Banach space of measurable functions y : J → Rn which are
Lebesgue integrable and normed by

‖y‖L1 =
∫ b

0

∣∣y(t)
∣∣dt. (1.3)

Let A be a subset of J ×Rn. The set A is �⊗� measurable if A belongs to the σ-
algebra generated by all sets of the form N ×D, where N is Lebesgue measurable in J and
D is Borel measurable in Rn. A subset B of L1(J ,Rn) is decomposable if, for all u,v ∈ B
and N ⊂ J measurable, the function uχN + vχJ−N ∈ B, where χ denotes the characteristic
function.

Let E be a Banach space, X a nonempty closed subset of E, and G : X → �(E) a
multivalued operator with nonempty closed values. The operator G is l.s.c. if the set
{x ∈ X : G(x)∩ C �= ∅} is open for any open set C in E. The operator G has a fixed
point if there is x ∈ X such that x ∈G(x). For more details on multivalued maps, we refer
to Deimling [8], Górniewicz [10], Hu and Papageorgiou [11], and Tolstonogov [13].

Definition 1.1. Let Y be a separable metric space and let N : Y →�(L1(J ,Rn)) be a mul-
tivalued operator. The operator N has property (BC) if

(1) N is l.s.c.;
(2) N has nonempty closed and decomposable values.

Let F : J ×Rn →�(Rn) be a multivalued map with nonempty compact values. Assign
to F the multivalued operator

� : C
(
J ,Rn

)−→�
(
L1(J ,Rn

))
(1.4)

by letting

�(y)= {w ∈ L1(J ,Rn
)

:w(t)∈ F(t, y(t)
)

for a.e. t ∈ J}. (1.5)

The operator � is called the Niemytzki operator associated with F.

Definition 1.2. Let F : J ×Rn →�(Rn) be a multivalued function with nonempty com-
pact values. The multivalued map F is of l.s.c. type if its associated Niemytzki operator �
is l.s.c. and has nonempty closed and decomposable values.

Next, we state a selection theorem due to Bressan and Colombo [3].
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Theorem 1.3 (see [3]). Let Y be a separable metric space and let N : Y →�(L1(J ,Rn)) be
a multivalued operator which has property (BC). Then N has a continuous selection, that is,
there exists a (single-valued) continuous function g : Y → L1(J ,Rn) such that g(y)∈ N(y)
for every y ∈ Y .

Let (X ,d) be a metric space. We use the following notations:

P(X)= {Y ∈�(X) : Y �= ∅},

Pcl(X)= {Y ∈ P(X) : Y closed
}

,

Pb(X)= {Y ∈ P(X) : Y bounded
}

,

Pcp(X)= {Y ∈ P(X) : Y compact
}
.

(1.6)

Consider Hd : P(X)×P(X)→R+∪{∞} given by

Hd(A,B)=max
{

sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}

, (1.7)

where d(A,b)= infa∈A d(a,b) and d(a,B)= infb∈B d(a,b).
Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized metric space.

Definition 1.4. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd
(
N(x),N(y)

)≤ γd(x, y) for each x, y ∈ X ; (1.8)

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

For more details on multivalued maps and the proofs of known results cited in this
section, we refer to Deimling [8], Górniewicz [10], Hu and Papageorgiou [11], and Tol-
stonogov [13].

In the sequel, we will use the following fixed-point theorem for contraction multival-
ued operators given by Covitz and Nadler [7] (see also Deimling [8, Theorem 11.1]).

Lemma 1.5. Let (X ,d) be a complete metric space. If N : X → Pcl(X) is a contraction, then
fixN �= ∅.

2. Main results

Definition 2.1. Assume that
∑p

k=1 ck �= −1. A function y ∈ C(J ,Rn) is called a mild solu-
tion of (1.1) if there exists a function v ∈ L1(J ,Rn) such that v(t) ∈ F(t, y(t)) a.e. on J ,
and

y(t)= A
(
y0−

p∑
k=1

ck

∫ tk
0
v(s)ds

)
+
∫ t

0
v(s)ds, (2.1)

where A= (1 +
∑p

k=1 ck)−1.
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We will need the following assumptions:

(H1) F : J ×Rn→ Pcp(Rn) has the property that F(·, y) : J → Pcp(Rn) is measurable for
each y ∈Rn;

(H2) there exists l ∈ L1(J ,R+) such that

Hd
(
F(t, y),F(t, y)

)≤ l(t)|y− y| for almost each t ∈ J , y, y ∈R
n,

d
(
0,F(t,0)

)≤ �(t) for almost each t ∈ J ; (2.2)

(H3) assume that

p∑
k=1

ck �= −1; (2.3)

(H4) |A|∑p
k=1 |ck|L(tk) +L(b) < 1, where L(t)= ∫ t0 l(s)ds.

Theorem 2.2. Assume that hypotheses (H1), (H2), (H3), and (H4) are satisfied. Then prob-
lem (1.1) has at least one mild solution on J .

Proof. Transform problem (1.1) into a fixed-point problem. Consider the multivalued
operator N : C(J ,Rn)→�(C(J ,Rn)) defined by

N(y) :=
{
h∈ C(J ,Rn

)
: h(t)=A

(
y0−

p∑
k=1

ck

∫ tk
0
g(s)ds

)
+
∫ t

0
g(s)ds : g ∈ SF,y

}
, (2.4)

where

SF,y =
{
g ∈ L1(J ,Rn

)
: g(t)∈ F(t, y(t)

)
for a.e. t ∈ J}. (2.5)

We will show that N satisfies the assumptions of Lemma 1.5. The proof will be given
in two steps.
Step 1. We prove that N(y)∈ Pcl(C(J ,Rn)) for each y ∈ C(J ,Rn).

Indeed, let (yn)n≥0 ∈N(y) such that yn → ỹ in C(J ,Rn). Then ỹ ∈ C(J ,Rn) and there
exist gn ∈ SF,y such that

yn(t)= A
(
y0−

p∑
k=1

ck

∫ tk
0
gn(s)ds

)
+
∫ t

0
gn(s)ds. (2.6)

Using the fact that F has compact values, and from (H2), we may pass to a subsequence
if necessary to get that gn converges to g in L1(J ,E) and hence g ∈ SF,y . Then for each
t ∈ [0,b],

yn(t)−→ ỹ(t)=A
(
y0−

p∑
k=1

ck

∫ tk
0
g(s)ds

)
+
∫ t

0
g(s)ds. (2.7)

So, ỹ ∈N(y).
Step 2. We prove that Hd(N(y1),N(y2))≤ γ‖y1− y2‖∞ for each y1, y2 ∈ C(J ,Rn) (where
γ < 1).
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Let y1, y2 ∈ C(J ,Rn) and h1 ∈N(y1). Then there exists g1(t)∈ F(t, y1(t)) such that

h1(t)=A
(
y0−

p∑
k=1

ck

∫ tk
0
g1(s)ds

)
+
∫ t

0
g1(s)ds, t ∈ J. (2.8)

From (H2), it follows that

Hd
(
F
(
t, y1(t)

)
,F
(
t, y2(t)

))≤ l(t)∣∣y1(t)− y2(t)
∣∣, t ∈ J. (2.9)

Hence, there is w ∈ F(t, y2(t)) such that
∣∣g1(t)−w∣∣≤ l(t)∣∣y1(t)− y2(t)

∣∣, t ∈ J. (2.10)

Consider U : J →�(Rn) given by

U(t)= {w ∈R
n :
∣∣g1(t)−w∣∣≤ l(t)∣∣y1(t)− y2(t)

∣∣}. (2.11)

Since the multivalued operator V(t) = U(t)∩ F(t, y2(t)) is measurable (see [6, Proposi-
tion III.4]), there exists g2(t) a measurable selection for V . So, g2(t)∈ F(t, y2(t)) and

∣∣g1(t)− g2(t)
∣∣≤ l(t)∣∣y1(t)− y2(t)

∣∣ for each t ∈ J. (2.12)

We define for each t ∈ J ,

h2(t)=A
(
y0−

p∑
k=1

ck

∫ tk
0
g2(s)ds

)
+
∫ t

0
g2(s)ds, t ∈ J. (2.13)

Then we have

∣∣h1(t)−h2(t)
∣∣≤

∣∣∣∣∣A
p∑

k=1

ck

∫ tk
0

[
g1(s)− g2(s)

]
ds+

∫ t
0

[
g1(s)− g2(s)

]
ds

∣∣∣∣∣
≤ |A|

p∑
k=1

∣∣ck∣∣∥∥y1− y2
∥∥∞
∫ tk

0
�(s)ds

+
∥∥y1− y2

∥∥∞
∫ t

0
l(s)ds

≤
(
|A|

p∑
k=1

∣∣ck∣∣L(tk)+L(b)

)∥∥y1− y2
∥∥∞.

(2.14)

Then

∥∥h1−h2
∥∥∞ ≤

(
|A|

p∑
k=1

∣∣ck∣∣L(tk)+L(b)

)∥∥y1− y2
∥∥∞. (2.15)

By the analogous relation obtained by interchanging the roles of y1 and y2, it follows that

Hd
(
N
(
y1
)
,N
(
y2
))≤

(
|A|

p∑
k=1

∣∣ck∣∣L(tk)+L(b)

)∥∥y1− y2
∥∥∞. (2.16)
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From (H4), we have that

γ := |A|
p∑

k=1

∣∣ck∣∣L(tk)+L(b) < 1. (2.17)

Then N is a contraction, and thus, by Lemma 1.5, it has a fixed point y which is a mild
solution to (1.1). �

Remark 2.3. Consider the Bielecki-type norm (see [2]) on C(J ,Rn), defined by

‖y‖� =max
t∈J

{∣∣y(t)
∣∣e−τL(t)}, (2.18)

where L(t)= ∫ t0 l(s)ds. Since

e−τL(b)‖y‖∞ ≤ ‖y‖� ≤ ‖y‖∞, (2.19)

the norms ‖y‖� and ‖y‖∞ are equivalent.
Then we can prove Step 2 of Theorem 2.2, that is, Hd(N(y1),N(y2)) ≤ γ‖y1 − y2‖�

for each y1, y2 ∈ C(J ,Rn), where

γ = 1
τ

(
|A|

p∑
k=1

∣∣ck∣∣eτL(tk) + 1

)
. (2.20)

Indeed, we have

∥∥h1−h2
∥∥

� =max
t∈J

e−τL(t)

∣∣∣∣∣A
p∑

k=1

ck

∫ tk
0

[
g1(s)− g2(s)

]
ds

+
∫ t

0

[
g1(s)− g2(s)

]
ds

∣∣∣∣∣
≤ |A|

p∑
k=1

∣∣ck∣∣∥∥y1− y2
∥∥

�

∫ tk
0
�(s)eτL(s)ds

+
∥∥y1− y2

∥∥
�

∫ t
0
l(s)eτL(s)ds

≤
(
|A|

p∑
k=1

∣∣ck∣∣eτL(tk)

τ
+

1− e−τL(b)

τ

)∥∥y1− y2
∥∥

�

≤
(
|A|

p∑
k=1

∣∣ck∣∣eτL(tk)

τ
+

1
τ

)∥∥y1− y2
∥∥

�.

(2.21)

We can choose τ such that γ < 1. In this case, (H4) must be deleted.

By the help of the Schaefer’s fixed-point theorem combined with the selection theorem
of Bressan and Colombo for l.s.c. maps with decomposable values, we will present an
existence result for problem (1.1). Before this, we introduce the following hypotheses
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which are assumed hereafter:

(H5) F : J ×C(J ,Rn)→�(Rn) is a nonempty compact-valued multivalued map such
that
(a) (t,u) �→ F(t,u) is �⊗� measurable;
(b) u �→ F(t,u) is l.s.c. for a.e. t ∈ J ;

(H6) for each r > 0, there exists a function hr ∈ L1(J ,R+) such that

∥∥F(t,u)
∥∥

� := sup
{|v| : v ∈ F(t,u)

}≤ hr(t) for a.e. t ∈ J , u∈R
n with |u| ≤ r.

(2.22)

In the proof of Theorem 2.5, we will need the next auxiliary result.

Lemma 2.4 (see [9]). Let F : J ×C(J ,Rn)→�(Rn) be a multivalued map with nonempty,
compact values. Assume that (H5) and (H6) hold. Then F is of l.s.c. type.

Theorem 2.5. Suppose, in addition to hypotheses (H5) and (H6), that the following also
holds:

(H7) Assume that ‖F(t, y)‖� := sup{|v| : v ∈ F(t, y)} ≤ p(t)ψ(|y|) for almost all t ∈ J
and all y ∈Rn, where p ∈ L1(J ,R+) and ψ : R+ → (0,∞) is continuous and increas-
ing with

∫∞ du

ψ(u)
=∞. (2.23)

Then the initial value problem (1.1) has at least one solution on J .

Proof. By Lemma 2.4, (H5) and (H6) imply that F is of l.s.c. type. Then, from Theorem
1.3, there exists a continuous function f : C(J ,Rn)→ L1(J ,Rn) such that f (y)∈�(y) for
all y ∈ C(J ,Rn).

We consider the problem

y′(t)= f (y)(t), t ∈ J ,

y(0) +
p∑

k=1

ck y
(
tk
)= y0.

(2.24)

We remark that if y ∈ C(J ,Rn) is a solution of problem (2.24), then y is a solution to
problem (1.1).

Transform problem (2.24) into a fixed-point problem by considering the operatorN1 :
C(J ,Rn)→ C(J ,Rn) defined by

N1(y)(t) := A
(
y0−

p∑
k=1

ck

∫ tk
0
f (y)(s)ds

)
+
∫ t

0
f (y)(s)ds. (2.25)

We will show that N1 is a compact operator.



432 On a nonlocal Cauchy problem for differential inclusions

Step 1. The operator N1 is continuous.
Let {yn} be a sequence such that yn→ y in C(J ,Rn). Then

∣∣∣N1
(
yn
)
(t)−N1(y)(t)

∣∣∣≤ |A|
p∑

k=1

∣∣ck∣∣
∫ tk

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds

+
∫ t

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds

≤ |A|
p∑

k=1

∣∣ck∣∣
∫ b

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds

+
∫ b

0

∣∣ f (yn)(s)− f (y)(s)
∣∣ds.

(2.26)

Since the function f is continuous, then

∥∥N1
(
yn
)−N1(y)

∥∥∞ −→ 0 as n−→∞. (2.27)

Step 2. The operator N1 maps bounded sets into bounded sets in C(J ,Rn).
Indeed, it is enough to show that there exists a positive constant c such that for each

y ∈ Bq = {y ∈ C(J ,E) : ‖y‖∞ ≤ q}, one has ‖N1(y)‖∞ ≤ c. By (H6), we have for each
t ∈ J ,

∣∣N1(y)(t)
∣∣≤ |A|

(∣∣y0
∣∣+

p∑
k=1

∣∣ck∣∣
∫ tk

0

∣∣ f (y)(s)
∣∣ds

)
+
∫ t

0

∣∣ f (y)(s)
∣∣ds

≤ |A|
(∣∣y0

∣∣+
p∑

k=1

∣∣ck∣∣∥∥hq∥∥L1

)
+
∥∥hq∥∥L1(J ,R+).

(2.28)

Step 3. The operator N1 maps bounded sets into equicontinuous sets of C(J ,Rn).
Let τ1,τ2 ∈ J , τ1 < τ2, and Bq = {y ∈ C(J ,Rn) : ‖y‖∞ ≤ q} a bounded set of C(J ,E).

Thus,

∣∣N1(y)
(
τ2
)−N1(y)

(
τ1
)∣∣≤

∫ τ2

τ1

hq(s)ds. (2.29)

As τ2 → τ1, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1, 2, and 3, together with the Arzelá-Ascoli theorem, we can

conclude that N1 is completely continuous.
Step 4. Now, it remains to show that the set

�
(
N1
)

:= {y ∈ C(J ,Rn
)

: y = λN1(y) for some 0 < λ < 1
}

(2.30)

is bounded.
Let y ∈�(N1). Then y = λN1(y) for some 0 < λ < 1 and

y(t)= λA
(
y0−

p∑
k=1

ck

∫ tk
0
f (y)(s)ds

)
+ λ

∫ t
0
f (y)(s)ds, t ∈ J. (2.31)
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This implies, by (H7), that for each t ∈ J , we have

∣∣y(t)
∣∣≤ |A|∣∣y0

∣∣+ |A|
p∑

k=1

∣∣ck∣∣
∫ tk

0
p(t)ψ

(∣∣y(t)
∣∣)dt+

∫ t
0
p(s)ψ

(∣∣y(s)
∣∣)ds. (2.32)

We take the right-hand side of the above inequality as v(t), then we have

v(0)= |A|∣∣y0
∣∣+ |A|

p∑
k=1

∣∣ck∣∣
∫ tk

0
p(t)ψ

(∣∣y(t)
∣∣)dt, ∣∣y(t)

∣∣≤ v(t), t ∈ J ,

v′(t)= p(t)ψ
(∣∣y(t)

∣∣), t ∈ J.
(2.33)

Using the nondecreasing character of ψ, we get

v′(t)≤ p(t)ψ
(
v(t)

)
, t ∈ J. (2.34)

This implies that for each t ∈ J ,
∫ v(t)

v(0)

du

ψ(u)
≤
∫ b

0
p(s)ds < +∞. (2.35)

This inequality, together with hypothesis (H7), implies that there exists a constant d such
that v(t) ≤ d, t ∈ J , and hence ‖y‖∞ ≤ d, where d depends only on the functions p and
ψ. This shows that �(N1) is bounded. As a consequence of Schaefer’s theorem [12], we
deduce that N1 has a fixed point y which is a solution to problem (2.24). Then y is a
solution to problem (1.1). �
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