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Received 10 December 2002

We study the existence of zero-convergent solutions for the second-order nonlinear dif-
ference equation ∆(anΦp(∆xn)) = g(n,xn+1), where Φp(u) = |u|p−2u, p > 1, {an} is a
positive real sequence for n ≥ 1, and g is a positive continuous function on N× (0,u0),
0 < u0 ≤∞. The effects of singular nonlinearities and of the forcing term are treated as
well.

1. Introduction

In this paper, we study decaying nonoscillatory solutions of the second-order difference
equation

∆
(
anΦp

(
∆xn

))= g
(
n,xn+1

)
, (1.1)

where ∆ is the forward difference operator ∆xn = xn+1 − xn, {an} is a positive real se-
quence for n ≥ 1, g is a positive continuous function on N× (0,u0), 0 < u0 ≤ ∞, and
Φp(u) = |u|p−2u with p > 1. The left-hand side in (1.1) is the one-dimensional discrete
analogue of the p-Laplacian u→ div |∇u|p−2∇u that appears in searching for radial solu-
tions of nonlinear partial equations modelling various reaction-diffusion problems (see,
e.g., [8]).

Observe that our assumptions on g allow us to consider the “singular case,” that is, the
case in which the nonlinearity g is unbounded with respect to the second variable in a
right neighborhood of zero. From this point of view, a typical example is the nonlinear
equation

∆
(
anΦp

(
∆xn

))= bn
[
Φq
(
xn+1

)]−1
+ rn, (1.2)

where {bn} and {rn} are real sequences with bn ≥ 0, rn ≥ 0, and bn + rn > 0 for n≥ 1 and
q > 1.
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Equation (1.1) includes also the “regular case” with the forcing term

∆
(
anΦp

(
∆xn

))= bnΦq
(
xn+1

)
+ rn. (1.3)

Positive decreasing solutions of (1.3) when bn > 0 and rn ≡ 0 for n≥ 1 have been investi-
gated in [5, 6].

Our aim is to study the existence of decaying solutions of (1.1), that is, positive solu-
tions {xn} of (1.1) approaching zero as n→∞, in view of their crucial role in a variety
of physical applications (see, e.g., [8]). By using a topological approach, we study mainly
the effects of singular nonlinearities and those of the forcing term. Our results are also
motivated also by some recent effects stated in the continuous case, see, for example,
[1, 4, 9, 12] and the references therein. Our results complement the ones in [10, 11],
where the existence of unbounded solutions of (1.1) is considered under the assumption
bn < 0. Finally, we recall that boundary value problems for equations in a discrete inter-
val [1,N0] with singular nonlinear term in this interval have been considered recently in
[2, 3].

2. Notation and preliminaries

A solution {xn} of (1.1) is said to be a decaying solution if xn > 0, ∆xn < 0 eventually, and
limn xn = 0. According to the asymptotic behavior of the quasidifference

x[1]
n = anΦp

(
∆xn

)
, (2.1)

a decaying solution {xn} of (1.1) is called a regularly decaying solution or a strongly decay-

ing solution according to limn x
[1]
n < 0 or limn x

[1]
n = 0, respectively. It is easy to show that

every decaying solution {xn} of (1.1) satisfies, for every n≥ 1,

xn > 0, ∆xn < 0. (2.2)

Indeed, assume that (2.2) is verified for n≥ N > 1 and suppose there exists n0 < N such
that ∆xn0 ≥ 0, ∆xi < 0, xi > 0, for i= n0 + 1, . . . ,N . From (1.1) we obtain

x[1]
N = x[1]

n0
+

N−1∑
i=n0

g
(
i,xi+1

)
> 0 (2.3)

that implies ∆xN > 0, that is, a contradiction.
The set of decaying solutions will be denoted by D and those of regularly decaying

solutions and strongly decaying solutions by DR and DS, respectively. Clearly, D=DR∪DS

and

DR =
{{

xn
}

solution of (1.1) : xn > 0, ∆xn < 0, lim
n
xn = 0, lim

n
x[1]
n < 0

}
,

DS =
{{

xn
}

solution of (1.1) : xn > 0, ∆xn < 0, lim
n
xn = 0, lim

n
x[1]
n = 0

}
.

(2.4)
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Some notations are in order. Denote

Ya = lim
m→∞

m∑
n=1

1
Φp∗

(
an
) , (2.5)

where p∗ denotes the conjugate number of p, that is, p∗ = p/(p− 1) or 1/p+ 1/p∗ = 1.
When Ya <∞, denote by {An} the sequence given by

An =
∞∑
k=n

1
Φp∗

(
ak
) . (2.6)

We close this section by recalling the following lemma which is the discrete analogue
of the Lebesgue dominated convergence theorem and plays an important role in prov-
ing topological properties of certain operators associated to the problem of existence of
decaying solutions of (1.1).

Lemma 2.1. Let {αi,k} be a double real sequence, αi,k ≥ 0, for i,k ∈ N. Assume that the
series

∑∞
k=1αi,k totally converges, that is, there exists a sequence {βk} such that αi,k ≤ βk,∑∞

k=1βk <∞, and let limi→∞αi,k = ρk for every k ∈ N. Then the series
∑∞

k=1 ρk converges
and

lim
i→∞

∞∑
k=1

αi,k =
∞∑
k=1

ρk. (2.7)

3. Regularly decaying solutions

In this section, we study the existence of solutions in the class DR. We start with a neces-
sary condition. The following proposition holds.

Proposition 3.1. If DR 
= ∅, then Ya <∞.

Proof. Let x = {xn} be a solution of (1.1) in the class DR. Because {x[1]
n } is negative in-

creasing and limn x
[1]
n = x[1]∞ < 0, it holds that

anΦp
(
∆xn

)
< x[1]

∞ . (3.1)

This implies, for n < N ,

Φp∗
(∣∣x[1]

∞
∣∣)N−1∑

j=n
Φp∗

(
1
aj

)
≤ xn− xN (3.2)

that gives the assertion as N →∞. �

Remark 3.2. For any solution {xn} ∈ DR, it holds that anΦp(∆xn) ≥ x[1]
1 . Hence, from

(3.2), we obtain the following upper and lower bounds:

−Φp∗
(
x[1]
∞
)
An ≤ xn ≤−Φp∗

(
x[1]

1

)
An. (3.3)
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In addition, regularly decaying solutions {xn} are asymptotic to the sequence (2.6), that is,

lim
n

xn
An
= cx, 0 < cx <∞, (3.4)

where Φp(cx)= |x[1]∞ |, as the Stolze theorem yields.

Assumption Ya <∞ is not sufficient for the existence of solutions in the class DR as the
following example shows.

Example 3.3. Consider the equation

∆
(
n2Φp

(
∆xn

))= 1
xn+1

. (3.5)

Let {xn} be a solution of (3.5) in the class DR and let n0 ≥ 1 such that xn+1 < 1 for n > n0.
Hence, for n > n0,

∆
(
n2Φp

(
∆xn

))
> 1 (3.6)

or

x[1]
n+1 > x[1]

n0
+n−n0 (3.7)

that gives a contradiction as n→∞.

The following theorem holds.

Theorem 3.4. Assume the following conditions:

(i) Ya <∞;
(ii) there exists a continuous function F : N× (0,δ]→ (0,∞), δ < u0, monotone with re-

spect to the second variable such that for (n,v)∈N× (0,δ],

g(n,v)≤ F(n,v), (3.8)
∞∑
n=1

F
(
n,An+1

)
<∞. (3.9)

Then (1.1) has solutions in the class DR. More precisely, for every c ≥ 1, there exists a
positive solution {xn} such that

lim
n

xn
An
= c, (3.10)

where Φp(c)= limn |x[1]
n |.

Proof. First, we prove the statement for F nonincreasing. Choose n0 ≥ 1 such that

Φp∗(2)An0 < δ, (3.11)
∞∑

n=n0

F
(
n,An+1

)
< 1. (3.12)
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Denote by �∞n0
the Banach space of all bounded sequences defined for n ≥ n0 and en-

dowed with the topology of supremum norm. Let Ω be the nonempty subset of �∞n0
given

by

Ω= {{un}∈ �∞n0
: An ≤ un ≤Φp∗(2)An

}
. (3.13)

Clearly, Ω is a bounded, closed, and convex subset of �∞n0
. We define the mapping T : Ω→

�∞n0
by

wn =
∞∑
j=n

Φp∗

(
1
aj

)
Φp∗


1 +

∞∑
i= j

g
(
i,ui+1

) . (3.14)

We prove that T satisfies the hypotheses of Schauder fixed-point theorem.
(a) The mapping T maps Ω into itself. Obviously, An ≤wn. Conditions (ii) and (3.12)

imply

∞∑
j=n0

g
(
j,uj+1

)≤ ∞∑
j=n0

F
(
j,uj+1

)≤ ∞∑
j=n0

F
(
j,Aj+1

)≤ 1, (3.15)

and taking into account (3.14) and monotonicity of Φp∗ , we have

wn ≤
∞∑
j=n

Φp∗

(
2
aj

)
=Φp∗(2)An. (3.16)

(b) The mapping T is continuous in Ω. Let {U (i)} be a sequence in Ω converging to

U in �∞n0
. Because Ω is closed, U ∈Ω. Let U (i) = {u(i)

n }, U = {un} and W (i) = T(U (i)) =
{w(i)

n }, W = T(U)= {wn}. It holds for every integer n≥ n0 that

∥∥T(U (i))−T(U)
∥∥

= sup
n≥n0

∣∣w(i)
n −wn

∣∣

≤ sup
n≥n0

∞∑
k=n

Φp∗

(
1
ak

)∣∣∣∣∣∣Φp∗


1 +

∞∑
j=k

g
(
j,u(i)

j+1

)−Φp∗


1 +

∞∑
j=k

g
(
j,uj+1

)
∣∣∣∣∣∣

≤
∞∑

k=n0

αi,k,

(3.17)

where

αi,k =Φp∗

(
1
ak

)∣∣∣∣∣∣Φp∗


1 +

∞∑
j=k

g
(
j,u(i)

j+1

)−Φp∗


1 +

∞∑
j=k

g
(
j,uj+1

)
∣∣∣∣∣∣ . (3.18)

From the continuity of g, we obtain

lim
i
g
(
j,u(i)

j+1

)
= g

(
j,uj+1

)
for j ≥ n0, (3.19)
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and, in view of (ii) and the fact that U (i) ∈Ω,

∣∣∣g( j,u(i)
j+1

)∣∣∣≤ F
(
j,Aj+1

)
. (3.20)

Then the series
∑∞

j=k g( j,u(i)
j+1) is totally convergent and, by Lemma 2.1,

lim
i
Φp∗


1 +

∞∑
j=k

g
(
j,u(i)

j+1

)=Φp∗


1 +

∞∑
j=k

g
(
j,uj+1

) , (3.21)

that is,

lim
i
αi,k = 0 for every k ≥ n0. (3.22)

In addition, using (3.12), we find

αi,k ≤
(
Φp∗

(
1
ak

))Φp∗


1 +

∞∑
j=k

F
(
j,u(i)

j+1

)+Φp∗


1 +

∞∑
j=k

F( j,uj+1
)



≤ 2
(
Φp∗

(
1
ak

))
Φp∗


1 +

∞∑
j=k

F( j,Aj+1
)≤ 2Φp∗(2)

(
Φp∗

(
1
ak

))
.

(3.23)

Since Ya <∞, the series
∑∞

k=n0
αi,k is totally convergent. Applying again Lemma 2.1, it

follows from (3.17) and (3.22) that

lim
i

∥∥T(U (i))−T(U)
∥∥≤ lim

i

∞∑
k=n0

αi,k =
∞∑

k=n0

[
lim
i
αi,k
]
= 0. (3.24)

Hence, T is continuous in Ω.
(c) The set T(Ω) is relatively compact. By a result in [7, Theorem 3.3], it is sufficient

to prove that T(Ω) is uniformly Cauchy in the topology of �∞n0
, that is, for every ε > 0,

there exists an integer nε ≥ n0 such that |wm1 −wm2| < ε whenever m1,m2 > ε for every
W = {wn} ∈ T(Ω). Let W = T(U), U = {un}, and, without loss of generality, assume
m1 <m2. From (3.14), we obtain

∣∣wm1 −wm2

∣∣=
∣∣∣∣∣∣
m2−1∑
j=m1

Φp∗

(
1
aj

)
Φp∗


1 +

∞∑
i= j

g
(
i,ui+1

)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣
m2−1∑
j=m1

Φp∗

(
1
aj

)
Φp∗


1 +

∞∑
i= j

F
(
i,Ai+1

)
∣∣∣∣∣∣

≤Φp∗(2)
m2−1∑
j=m1

Φp∗

(
1
aj

)
,

(3.25)

and the Cauchy criterion gives the relative compactness of T(Ω).
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Hence, by Schauder fixed-point theorem, there exists {xn} ∈Ω such that xn = T(xn)
or, from (3.14),

xn =
∞∑
j=n

Φp∗


 1
aj


1 +

∞∑
i= j

g
(
i,xi+1

)

 . (3.26)

One can easily check that {xn} is a solution of (1.1) with ∆xn < 0, limn xn = 0, and

limn x
[1]
n = −1, and so {xn} ∈ DR. Clearly, in view of Remark 3.2, {xn} satisfies (3.10)

with c = 1.
To obtain the existence of a positive solution {xn} such that limn[xn/An]= c > 1, it is

sufficient to observe that (3.9) and monotonicity of F imply that the series

∞∑
n=1

F
(
n,λAn+1

)
(3.27)

is convergent for any λ≥ 1. Now, the assertion follows by considering in the subset

Ωλ =
{{
un
}∈ �∞n0

: Φp∗(λ)An ≤ un ≤Φp∗(2λ)An
}

(3.28)

the operator T : {un} → {wn} given by

wn =
∞∑
j=n

Φp∗

(
1
aj

)
Φp∗


λ+

∞∑
i= j

g
(
i,ui+1

) (3.29)

and using an analogous argument as above.
In case F is nondecreasing on (0,δ], the proof is quite similar with some minor chan-

ges. It is sufficient to consider the subset Ω and the operator T as follows:

Ω=
{{

un
}∈ �∞n0

:
1
2
An ≤ un ≤An

}
,

wn =
∞∑
j=n

Φp∗


 1
aj


1

2
+
∞∑
i= j

g
(
i,ui+1

)

 ,

(3.30)

where n0 is chosen such that

∞∑
n=n0

F
(
n,An+1

)
<

1
2
. (3.31)

The details are left to the reader. �

Remark 3.5. The existence of regularly decaying solutions {xn} satisfying (3.10) for c ∈
(0,1) is guaranteed by the condition

∞∑
n=1

F
(
n,Φp∗(c)An+1

)
<∞ (3.32)

instead of (3.9) and can be proved using an analogous argument as given in the proof of
Theorem 3.4.
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For the special case of (1.2), assumption (ii) of Theorem 3.4 becomes

∞∑
n=1

bn
[
Φq
(
An+1

)]−1
<∞,

∞∑
n=1

rn <∞. (3.33)

In this case, by applying Theorem 3.4 to (1.2), for every c > 0, we obtain the existence of
solutions satisfying (3.10). In addition, for (1.2), conditions Ya <∞ and (3.33) become
also necessary for the existence in DR as the following result shows.

Corollary 3.6. Equation (1.2) has solutions in the class DR if and only if Ya <∞ and
(3.33) hold.

Proof. In view of Proposition 3.1 and Theorem 3.4, it is sufficient to prove that if DR 
= ∅,
then (3.33) is verified. Let {xn} be a solution of (1.2) in the class DR. By the summation
of (1.2) from n to N − 1 and taking into account (3.3), we have

−x[1]
n =−x[1]

N +
N−1∑
j=n

bj
[
Φq
(
xj+1

)]−1
+

N−1∑
j=n

r j

> λ
N∑
j=n

bj
[
Φq
(
Aj+1

)]−1
+

N∑
j=n

r j ,

(3.34)

where λ= [Φq[Φp∗(−x[1]
1 )]]−1. As N →∞, we obtain the assertion. �

Theorem 3.4 is applicable even if the nonlinearity g is bounded with respect to the
dependent variable in a right neighborhood of zero, that is, the boundary value problem
is “regular.” In such a case, assumption (ii) of Theorem 3.4 can be simplified.

Corollary 3.7. If Ya <∞ and

∞∑
n=1

bnΦq
(
An+1

)
<∞,

∞∑
n=1

rn <∞, (3.35)

then (1.3) has solutions in the class DR. More precisely, for every c > 0, there exists a positive

solution {xn} such that (3.10) is verified with Φp(c)= limn |x[1]
n |.

Proof. The assertion follows from Theorem 3.4 and Remark 3.5 by choosing F(n,v) =
bnΦq(v) + rn. �

4. Strongly decaying solutions

Here we study the existence of solutions in the class DS for equations with possible singu-
lar nonlinearity. More precisely, in this section, we will assume that g satisfies the condi-
tion

inf
v∈(0,δ]

g(i,v)=mi > 0 (4.1)

for infinitely many i, where δ is a positive constant, δ < u0. The following necessary con-
ditions hold.
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Proposition 4.1. If DS 
= ∅, then

∞∑
n=1

mn <∞, (4.2)

∞∑
j=1

Φp∗


 1
aj

∞∑
i= j

mi


 <∞, (4.3)

where mj is given in (4.1).

Proof. Let {xn} be a solution of (1.1) in the class DS. Without loss of generality, we can
assume xn < δ for n≥ 1. Hence,

g
(
i,xi+1

)≥ inf
v∈(0,δ]

g(i,v)=mi. (4.4)

By summing (1.1) from n to∞, we obtain

−x[1]
n =

∞∑
i=n

g
(
i,xi+1

)≥ ∞∑
i=n

mi (4.5)

that implies (4.2). By summing again from n to∞, we have

xn ≥
∞∑
i=n

Φp∗


 1
aj

∞∑
i= j

mi


 , (4.6)

and so (4.3) is proved. �
Remark 4.2. Because

N∑
j=1

Φp∗


 1
aj

N∑
i= j

mj


≥Φp∗


 1
a1

N∑
i=1

mj


=Φp∗

(
1
a1

)
Φp∗


 N∑
i=1

mj


 , (4.7)

condition (4.3) implies (4.2).

A sufficient criterion for existence in DS is given by the following theorem.

Theorem 4.3. Assume (4.1) and (4.3). If there exists a continuous function F : N× (0,δ]→
(0,∞), 0 < δ < u0, nonincreasing with respect to the second variable such that, for (n,v) ∈
N× (0,δ],

g(n,v)≤ F(n,v),

∞∑
n=1

Φp∗


 1
an

∞∑
j=n

F
(
j,Bj+1

) <∞,
(4.8)

where

Bn =
∞∑
j=n

Φp∗


 1
aj

∞∑
i= j

mi


 , (4.9)

then (1.1) has solutions in the class DS.
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Proof. Choose n0 ≥ 1 such that

Bn0 < δ,
∞∑

n=n0

Φp∗


 1
an

∞∑
j=n

F
(
j,Bj+1

) < δ. (4.10)

Let Ω be the subset of �∞n0
given by

Ω= {{un}∈ �∞n0
: Bn ≤ un ≤ δ

}
. (4.11)

In view of (4.1), it holds that Bn > 0. In addition, because {Bn} is nonincreasing, from
(4.10) the set Ω is nonempty. Clearly, Ω is bounded, closed, and convex in �∞n0

. We define
the mapping T : Ω→ �∞n0

by

wn =
∞∑
j=n

Φp∗


 1
an

∞∑
j=n

g
(
j,uj+1

) . (4.12)

Because

g
(
j,uj+1

)≥ inf
v∈(0,δ]

g( j,v)=mj , (4.13)

we have

wn ≥
∞∑
j=n

Φp∗


 1
an

∞∑
j=n

mj


= Bn. (4.14)

In addition, it holds for j ≥ n0 that

∞∑
j=n

g
(
j,uj+1

)≤ ∞∑
j=n

F
(
j,uj+1

)≤ ∞∑
j=n

F
(
j,Bj+1

)
(4.15)

or, in view of (4.10),

wn ≤
∞∑
j=n

Φp∗


 1
an

∞∑
j=n

F
(
j,Bj+1

) < δ. (4.16)

Thus, T(Ω)⊆Ω. The continuity of T in Ω and the compactness of T(Ω) follow by using a
similar argument as in the proof of Theorem 3.4. Hence, by applying the Schauder fixed-
point theorem, we obtain the existence of a fixed point {xn} of T . Clearly,

xn =
∞∑
j=n

Φp∗


 1
aj

∞∑
i= j

g
(
i,xi+1

) , (4.17)

and so {xn} ∈DS. �

For the special case of singular equation (1.2) with rn = 0 for n∈N, Theorem 4.3 yields
the following result.
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Corollary 4.4. Consider the equation

∆
(
anΦp

(
∆xn

))= bn
[
Φq
(
xn+1

)]−1
(4.18)

with bn > 0 for infinitely many n. Assume

lim
m→∞

m∑
n=1

Φp∗


 1
an

m∑
k=n

bk


 <∞ (4.19)

and denote

βn =
∞∑
i=n

Φp∗


 1
ai

∞∑
k=i

bk


 . (4.20)

If

lim
m→∞

m∑
n=1

Φp∗


 1
an

m∑
j=n

bj
[
Φq
(
βj+1

)]−1


 <∞, (4.21)

then (4.18) has solutions in the class DS.

The assumption in Theorem 4.3 (and Corollary 4.4) is not necessary for DS 
= ∅ as the
following example shows.

Example 4.5. Consider the equation

∆2xn = 2
n(n+ 1)2(n+ 2)

(
xn+1

)−1
. (4.22)

Clearly, (4.19) is satisfied. We have

βn =
∞∑
i=n

∞∑
j=i

2
j( j + 1)2( j + 2)

<
∞∑
i=n

∞∑
j=i

2
j4
. (4.23)

Taking into account that for n∈N, n > 1, and γ real positive constant, γ > 1, the following
inequality holds

∞∑
i=n

1
iγ
<
∫∞
n−1

1
xγ

dx = 1
(γ− 1)(n− 1)γ−1 , (4.24)

from (4.23) we obtain

βn+1 <
∞∑

i=n+1

2
3(i− 1)3

= 2
3

∞∑
i=n

1
i3
<

1
3(n− 1)2

. (4.25)

Hence

∞∑
n=1

∞∑
j=n

bj
(
βj+1

)−1
>

∞∑
n=1

∞∑
j=n

6( j− 1)2

j( j + 1)2( j + 2)
=∞, (4.26)
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and so condition (4.21) is not satisfied. But it is easy to verify that the sequence {xn},
xn = 1/n, is a solution of (4.22) and {xn} ∈DS.

The following result gives an application of Theorem 4.3 to the regular equation (1.3)
with the forcing term.

Corollary 4.6. If rn > 0 for infinitely many n and

lim
m→∞

m∑
n=1

Φp∗

(
1
an

m∑
k=n

(
bk + rk

))
<∞, (4.27)

then (1.3) has solutions in the class DS.

Proof. The assertion follows from Theorem 4.3 by choosing F(n,v)= bn + rn and noting
that (4.1) is satisfied because mi = ri > 0. �

5. Concluding remarks

(1) The continuous case. Decaying solutions of second-order nonlinear singular differ-
ential equations without the forcing term have been investigated in [9, 12]. Corollaries
3.6 and 4.4 can be regarded as the discrete counterparts of [9, Theorem 4.2] and [12,
Theorem 5.2], respectively.

(2) An effect of singular nonlinearities. If Ya =∞ and

lim
m→∞

m∑
n=1

Φp∗


 1
an

m∑
k=n

bk


=∞, (5.1)

then, from Propositions 3.1 and 4.1, it follows that (4.18) does not possess any decaying
solution. This fact cannot occur for equations with regular nonlinearity; for instance, the
linear equation

∆2xn = (1 +n)−1xn+1 (5.2)

has strongly decaying solutions (see, e.g., [5, Corollary 3.3(a)]) and, in this case, Ya =∞
and (5.1) is verified.

(3) An effect of the forcing term rn. As we have already noted, (1.3) without the forcing
term rn has been investigated in [5]. Comparing the results presented here and in [5],
one can see that the existence of regularly decaying solutions of (1.3) remains valid for
the equation with the forcing term rn such that

∑
rn <∞, while the existence of strongly

decaying solutions of (1.3) is caused by the forcing term. More precisely, if (4.19) is sat-
isfied, then (1.3) with rn ≡ 0 and p ≤ q does not have strongly decaying solutions, see [5,
Theorem 2.3]. On the contrary, by Corollary 4.6, (1.3), with the forcing term rn, rn > 0,
for infinitely many n, and satisfying (4.27), has strongly decaying solutions.
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[5] M. Cecchi, Z. Došlá, and M. Marini, Limit behavior of quasilinear difference equations, to appear
in J. Difference Equ. Appl.

[6] , Positive decreasing solutions of quasi-linear difference equations, Comput. Math. Appl.
42 (2001), no. 10-11, 1401–1410.

[7] S. S. Cheng and W. T. Patula, An existence theorem for a nonlinear difference equation, Nonlinear
Anal. 20 (1993), no. 3, 193–203.

[8] J. I. Dı́az, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic Equa-
tions, Research Notes in Mathematics, vol. 106, Pitman (Advanced Publishing Program),
Massachusetts, 1985.

[9] T. Kusano and T. Tanigawa, Positive solutions to a class of second order differential equations with
singular nonlinearities, Appl. Anal. 69 (1998), no. 3-4, 315–331.

[10] W.-T. Li, X.-L. Fan, and C. Zhong, On unbounded positive solutions of second-order difference
equations with a singular nonlinear term, J. Math. Anal. Appl. 246 (2000), no. 1, 80–88.

[11] , Positive solutions of discrete Emden-Fowler equation with singular nonlinear term, Dy-
nam. Systems Appl. 9 (2000), no. 2, 247–254.

[12] T. Tanigawa, Asymptotic behavior of positive solutions to nonlinear singular differential equations
of second order, Studia Sci. Math. Hungar. 35 (1999), no. 3-4, 427–444.

Mariella Cecchi: Department of Electronics and Telecommunications, University of Florence, Via
S. Marta 3, 50139 Florence, Italy

E-mail address: cecchi@det.unifi.it
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