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In 1952, for the wave equation, Protter formulated some boundary value problems
(BVPs), which are multidimensional analogues of Darboux problems on the plane. He
studied these problems in a 3D domain Ω0, bounded by two characteristic cones Σ1 and
Σ2,0 and a plane region Σ0. What is the situation around these BVPs now after 50 years?
It is well known that, for the infinite number of smooth functions in the right-hand side
of the equation, these problems do not have classical solutions. Popivanov and Schneider
(1995) discovered the reason of this fact for the cases of Dirichlet’s or Neumann’s con-
ditions on Σ0. In the present paper, we consider the case of third BVP on Σ0 and obtain
the existence of many singular solutions for the wave equation. Especially, for Protter’s
problems in R3, it is shown here that for any n∈N there exists a Cn(Ω̄0) - right-hand side
function, for which the corresponding unique generalized solution belongs to Cn(Ω̄0\O),
but has a strong power-type singularity of order n at the point O. This singularity is iso-
lated only at the vertex O of the characteristic cone Σ2,0 and does not propagate along the
cone.

1. Introduction

In 1952, at a conference of the American Mathematical Society in New York, Protter in-
troduced some boundary value problems (BVPs) for the 3D wave equation

�u≡ ux1x1 +ux2x2 −utt = f (1.1)

in a domain Ω0 ⊂ R3. These problems are three-dimensional analogous of the Darboux
problems (or Cauchy-Goursat problems) on the plane. The simply connected domain

Ω0 :=
{(
x1,x2, t

)
: 0 < t <

1
2

, t <
√
x2

1 + x2
2 < 1− t

}
(1.2)
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is bounded by the disk

Σ0 := {(x1,x2, t
)

: t = 0, x2
1 + x2

2 < 1
}

, (1.3)

centered at the origin O(0,0,0) and by the two characteristic cones of (1.1)

Σ1 :=
{(
x1,x2, t

)
: 0 < t <

1
2

,
√
x2

1 + x2
2 = 1− t

}
,

Σ2,0 :=
{(
x1,x2, t

)
: 0 < t <

1
2

,
√
x2

1 + x2
2 = t

}
.

(1.4)

Similar to the plane problems, Protter formulated and studied [24] some 3D problems
with data on the noncharacteristic disk Σ0 and on one of the cones Σ1 and Σ2,0. These
problems are known now as Portter’s problems, defined as follows.

Protter’s problems. Find a solution of the wave equation (1.1) in Ω0 with the boundary
conditions

(P1) u|Σ0∪Σ1 = 0,
(P1∗) u|Σ0∪Σ2,0 = 0,

(P2) u|Σ1 = 0, ut|Σ0 = 0,
(P2∗) u|Σ2,0 = 0, ut|Σ0 = 0.

Substituting the boundary condition on Σ0 by the third-type condition [ut +αu]|Σ0 =
0, we arrive at the following problems.

Problems (Pα) and (P∗α ). Find a solution of the wave equation (1.1) in Ω0 which satisfies
the boundary conditions

(Pα) u|Σ1 = 0, [ut +αu]|Σ0\O = 0,
(P∗α ) u|Σ2,0 = 0, [ut +αu]|Σ0\O = 0,

where α∈ C1(Σ̄0\O).
The boundary conditions of problem (P1∗) (resp., of (P2∗)) are the adjoined bound-

ary conditions to such ones of (P1) (resp., of (P2)) for the wave equation (1.1) in Ω0. Note
that Garabedian in [10] proved the uniqueness of a classical solution of problem (P1).
For recent results concerning Protter’s problems (P1) and (P1∗), we refer to [23] and the
references therein. For further publications in this area, see [1, 2, 8, 14, 17, 18, 19, 21].
For problems (Pα), we refer to [11] and the references therein. In the case of the hyper-
bolic equation with the wave operator in the main part, which involves either lower-order
terms or other type perturbations, problem (Pα) in Ω0 has been studied by Aldashev in
[1, 2, 3] and by Grammatikopoulos et al. [12]. On the other hand, Ar. B. Bazarbekov and
Ak. B. Bazarbekov [5] give another analogue of the classical Darboux problem in the same
domain Ω0. Some other statements of Darboux-type problems can be found in [4, 6, 16]
in bounded or unbounded domains different from Ω0.

It is well known that, in contrast to the Darboux problem on the plane, the 3D prob-
lems (P1) and (P2) are not well posed. It is due to the fact that their adjoint homogeneous
problems (P1∗) and (P2∗) have smooth solutions, whose span is infinite-dimensional
(see, e.g., Tong [26], Popivanov and Schneider [22], and Khe [18]).
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Now we formulate the following useful lemma, the proof of which is given in Section 2.

Lemma 1.1. Let (ρ,ϕ, t) be the polar coordinates in R3 : x1 = ρcosϕ, x2 = ρ sinϕ, and x3 = t.
Let n∈N, n≥ 4,

Hn
k (ρ, t)=

k∑
i=0

Aki
t
(
ρ2− t2)n−3/2−k−i

ρn−2i
,

Enk (ρ, t)=
k∑
i=0

Bki

(
ρ2− t2)n−1/2−k−i

ρn−2i
,

(1.5)

where

Aki := (−1)i
(k− i+ 1)i(n− 1/2− k− i)i

i!(n− i)i ,

Bki := (−1)i
(k− i+ 1)i(n+ 1/2− k− i)i

i!(n− i)i ,
(1.6)

and ai := a(a+ 1)···(a+ i− 1). Then the functions

Vn,1
k (ρ, t,ϕ)=Hn

k (ρ, t)sinnϕ, Vn,2
k (ρ, t,ϕ)=Hn

k (ρ, t)cosnϕ, (1.7)

for k = 0,1, . . . , [n/2]− 2, are classical solutions of the homogeneous problem (P1∗) (i.e., for
f ≡ 0), and the functions

Wn,1
k (ρ, t,ϕ)= Enk(ρ, t)sinnϕ, Wn,2

k (ρ, t,ϕ)= Enk(ρ, t)cosnϕ, (1.8)

for k = 0,1, . . . , [(n− 1)/2]− 1, are classical solutions of the homogeneous problem (P2∗).

A necessary condition for the existence of a classical solution for problem (P2) is the
orthogonality of the right-hand side function f to all solutions Wn,i

k of the homoge-
neous adjoined problem. In order to avoid an infinite number of necessary conditions
in the frame of classical solvability, Popivanov and Schneider in [22, 23] gave definitions
of a generalized solution of problem (P2) with an eventual singularity on the characteris-
tic cone Σ2,0, or only at its vertex O. On the other hand, Popivanov and Schneider [23]
and Grammatikopoulos et al. [11] proved that for the right-hand side f =Wn,i

0 the cor-
responding unique generalized solution of problem (Pα) behaves like (x2

1 + x2
2 + t2)−n/2

around the origin O (for more comments about this subject, we refer to Remarks 1.4 and
1.6). Now we know some solutions, Wn,i

k , of the homogeneous adjoined problem (P2∗),
and if we take one of these solutions in the right-hand side of (1.1), then we have to ex-
pect that the generalized solution of problem (Pα) will also be singular, possibly with a
different power type of singularity. An analogous result, in the case of problem (P1) and
functions Vn,i

k , has been proved by Popivanov and Popov in [21]. Having this in mind,
here we are looking for some new singular solutions of problem (Pα), which are different
from those found in [11].

In the case of problem (Pα) with α(x) �= 0, there are only few publications, while for
problem (Pα), concerning the wave equation (1.1), see the results of [11]. Moreover, some
results of this type can also be found in Section 3.
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For the homogeneous problem (P∗α ) even for the wave equation (except the case α ≡
0, i.e., except problem (P2∗)), we do not know nontrivial solutions analogous to (1.7)
and (1.8). In Section 2, we give an approach for finding nontrivial solutions. Relatively,
we refer to Khe [18], who found nontrivial solutions for the homogeneous problems
(P1∗) and (P2∗), but in the case of the Euler-Poisson-Darboux equation. These results
are closely connected to such ones of Lemma 1.1.

In order to obtain our results, we formulate the following definition of a generalized
solution of problem (Pα) with a possible singularity at O.

Definition 1.2. A function u= u(x1,x2, t) is called a generalized solution of the problem

(Pα) �u= f , u|Σ1 = 0, [ut +α(x)u]|Σ0 = 0,

in Ω0, if

(1) u∈ C1(Ω̄0\O), [ut +α(x)u]|Σ0\O = 0, and u|Σ1 = 0,
(2) the identity

∫
Ω0

(
utvt −ux1vx1 −ux2vx2 − f v

)
dx1dx2dt =

∫
Σ0

α(x)(uv)(x,0)dx1dx2 (1.9)

holds for all v in

V0 := {v ∈ C1(Ω̄0
)

:
[
vt +αv

]∣∣
Σ0
= 0, v = 0 in a neighborhood of Σ2,0

}
. (1.10)

Existence and uniqueness results for a generalized solution of problems (P1) and (P2)
can be found in [23], while for problem (Pα), see [11].

In order to deal successfully with the encountered difficulties, as are singularities of
generalized solutions on the cone Σ2,0, we introduce the region

Ωε =Ω0∩{ρ− t > ε}, ε ∈ [0,1), (1.11)

which in polar coordinates becomes

Ωε =
{

(ρ,ϕ, t) : t > 0, 0≤ ϕ < 2π, ε+ t < ρ < 1− t}. (1.12)

Note that a generalized solution u, which belongs to C1(Ω̄ε)∩C2(Ωε) and satisfies the
wave equation (1.1) in Ωε, is called a classical solution of problem (Pα) in Ωε, ε ∈ (0,1). It
should be pointed out that the case ε = 0 is totally different from the case ε �= 0.

This paper is an extension of some results obtained in [11, 12] and, besides the in-
troduction, involves two more sections. In Section 2, we formulate the 2D BVPs corre-
sponding to the 3D Protter’s problems. Using Riemann functions, we show the way for
finding nontrivial solutions. For the same goal, we consider functions orthogonal to the
Legendre one and formulate some open questions for finding more functions of this type
in the frame of nontrivial solutions of problems (P1∗), (P2∗), and (P∗α ). Also, using the
results of Sections 1 and 2, in Section 3, we study the existence of a singular generalized
solution of 3D problem (Pα). To investigate the behavior of such singular solutions, we
need some information about them. In Theorem 3.1, we state a maximum principle for
the singular generalized solution of 2D problem (Pα,2), corresponding to problem (Pα)
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in Ω0. This solution is a classical one in each domain Ωε, ε ∈ (0,1). Note that this max-
imum principle can be applied even in the cases where the right-hand side changes its
sign in the domain. (Theorem 1.3 deals exactly with this special situation.) Other max-
imum principles can be found in [6, 25]. Using information of this kind, we present
singular generalized solutions which are smooth enough away from the point O, while at
the point O, they have power-type singularity. More precisely, in Section 3, we prove the
following theorem.

Theorem 1.3. Let α= α(ρ)∈ C∞(0,1]∩C[0,1] and let α(ρ)≥ 0 be an arbitrary function.
Then, for each n∈N, n≥ 4, there exists a function fn ∈ Cn−3(Ω̄0)∩C∞(Ω0), for which the
corresponding unique generalized solution un of problem (Pα) belongs to Cn−1(Ω̄0\O) and
satisfies the estimates

∣∣un(x1,x2,|x|)∣∣≥ 1
2

∣∣un(2x1,2x2,0
)∣∣+ |x|−(n−2)

∣∣∣∣cosn
(

arctan
x2

x1

)∣∣∣∣,
∣∣∣∣un

(
x1,x2,

1− τn1

1 + τn1
|x|
)∣∣∣∣≥ |x|−(n−2)

∣∣∣∣cosn
(

arctan
x2

x1

)∣∣∣∣, 0≤ τ ≤ 1,
(1.13)

where the constant n1 ∈ (0,1) depends only on n.

Remark 1.4. For the right-hand side of the wave equation equals Wn,2
0 , the exact be-

havior of the corresponding singular solution un(x1,x2, t) around the origin O is (x2
1 +

x2
2 + t2)−n/2 cosn(arctanx2/x1) (see [11, 12]), while for the right-hand side equals
Wn,2

1 = ∂2/∂t2{Wn,2
0 }, the singularities are at least of type (x2

1 + x2
2 + t2)−(n−2)/2 cos

n(arctanx2/x1) (see Theorem 1.3 ). The following open question arises: is this the exact
type of singularity or not? If the last case is true, it would be possible, using an appropri-
ate linear combination of both right-hand sides, to find a solution of the last lower-type
singularity. Then the result of this kind could give an answer to Open Question (1).

Remark 1.5. It is interesting that for any parameter α(x) ≥ 0, involved in the bound-
ary condition (Pα) on Σ0, there are infinitely many singular solutions of the wave equa-
tion. Note that all these solutions have strong singularities at the vertex O of the cone
Σ2,0. These singularities of generalized solutions do not propagate in the direction of the
bicharacteristics on the characteristic cone. It is traditionally assumed that the wave equa-
tion with right-hand side sufficiently smooth in Ω̄0 cannot have a solution with an iso-
lated singular point. For results concerning the propagation of singularities for second-
order operators, see Hörmander [13, Chapter 24.5]. For some related results in the case
of the plane Darboux problem, see [20].

Remark 1.6. Considering problems (P1) and (P2), Popivanov and Schneider [22] an-
nounced the existence of singular solutions for both wave and degenerate hyperbolic
equations. First a priori estimates for singular solutions of Protter’s problems (P1) and
(P2), concerning the wave equation in R3, were obtained in [23]. In [1], Aldashev men-
tioned the results of [22] and, for the case of the wave equation in Rm+1, showed that
there exist solutions of problem (P1) (resp., (P2)) in the domain Ωε, which grow up on
the cone Σ2,ε like ε−(n+m−2) (resp., ε−(n+m−1)), and the cone Σ2,ε := {ρ = t + ε} approxi-
mates Σ2,0 when ε→ 0. It is obvious that, for m = 2, these results can be compared to
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the estimates of [11]. Finally, we point out that in the case of an equation which involves
the wave operator and nonzero lower-order terms, Karatoprakliev [15] obtained a priori
estimates, but only for the enough smooth solutions of problem (P1) in Ω0.

We fix the right-hand side as a trigonometric polynomial of the order l:

f
(
x1,x2, t

)= l∑
n=2

{
f 1
n (t,ρ)cosnϕ+ f 2

n (t,ρ)sinnϕ
}
. (1.14)

We already know that the corresponding solution u(x1,x2, t) may have behavior of type
(x2

1 + x2
2 + t2)−l/2 at the point O. We conclude this section with the following questions.

Open Questions. (1) Find the exact behavior of all singular solutions at the point O,
which differ from those of Theorem 1.3. In other words,

(i) are there generalized solutions for the right-hand side (1.14) with a higher order
of singularity, for example, of the form (x2

1 + x2
2 + t2)−k−l/2, k > 0?

(ii) are there generalized solutions for the right-hand side (1.14) with a lower order
of singularity, for example, of the form (x2

1 + x2
2 + t2)k−l/2, k > 0?

(2) Find appropriate conditions for the function f under which problem (Pα) has only
classical solutions. We do not know any kind of such results even for problem (P2).

(3) From the a priori estimates, obtained in [11], for all solutions of problem (Pα),
including singular ones, it follows that, as ρ→ 0, none of these solutions can grow up
faster than the exponential one. The arising question is: are there singular solutions of
problem (Pα) with exponential growth as ρ→ 0 or any such solution is of polynomial
growth less than or equal to (x2

1 + x2
2 + t2)−l/2?

(4) Why there appear singularities for smooth right-hand side, even for the wave equa-
tion? Can we explain this phenomenon numerically?

In the case of problem (P1), the answers to Open Questions (1), (2), and (3) can be
found in [21].

2. Nontrivial solutions for the homogeneous problems (P1∗), (P2∗), and (P∗α )

Suppose that the right-hand side f of the wave equation is of the form

f (ρ, t,ϕ)= f 1
n (ρ, t)cosnϕ+ f 2

n (ρ, t)sinnϕ, n∈N. (2.1)

Then we are seeking solutions of the wave equation of the same form

u(ρ, t,ϕ)= u1
n(ρ, t)cosnϕ+u2

n(ρ, t)sinnϕ, (2.2)

and due to this fact, the wave equation reduces to

(
un
)
ρρ +

1
ρ

(
un
)
ρ−

(
un
)
tt −

n2

ρ2
un = fn (2.3)

in G0 = {0 < t < 1/2; t < ρ < 1− t} ⊂R2.
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Now introduce the new coordinates x = (ρ+ t)/2, y = (ρ− t)/2 and set

v(x, y)= ρ1/2un(ρ, t), g(x, y)= ρ1/2 fn(ρ, t). (2.4)

Then, denoting ν = n− (1/2), problems (P1∗), (P2∗), and (P∗α ) transform into the fol-
lowing problems.

Problems (P31), (P32), and (P3α). Find a solution v(x, y) of the equation

vxy − ν(ν + 1)
(x+ y)2

v = g (2.5)

in the domain D = {0 < x < 1/2; 0 < y < x} with the following corresponding boundary
conditions:

(P31) v(x,x)= 0, x ∈ (0,1/2) and v(1/2, y)= 0, y ∈ (0,1/2),
(P32) (vy − vx)(x,x)= 0, x ∈ (0,1/2) and v(1/2, y)= 0, y ∈ (0,1/2),
(P3α) (vy − vx)(x,x)−α(x)v(x,x)= 0, x ∈ (0,1/2) and v(1/2, y)= 0, y ∈ (0,1/2).

A basic tool for our treatment of problems (P3) is the Legendre functions Pν (for more
information, see [9]). Note that the function

R
(
x1, y1;x, y

)= Pν

(
(x− y)

(
x1− y1

)
+ 2x1y1 + 2xy(

x1 + y1
)
(x+ y)

)
(2.6)

is a Riemann one for (2.5) (see Copson [7]), that is, with respect to the variables (x1, y1),
it is a solution of (2.5) with g = 0, and

R
(
x, y1;x, y

)= 1, R
(
x1, y;x, y

)= 1. (2.7)

Therefore, we can construct the function u(x, y) in the following way. Integrating (2.5)
over the characteristic triangle � with vertices M(x, y) ∈ D, P(y, y), and Q(x,x), and
using the properties (2.7) of the Riemann function, we see that∫∫

�
R
(
x1, y1;x, y

)
g
(
x1, y1

)
dx1dy1

=
∫ x
y

[
R
(
x1,x1;x, y

)
vx1

(
x1,x1

)−R(x1, y;x, y
)
vx1

(
x1, y

)]
dx1

−
∫ x
y

[
Ry1

(
x, y1;x, y

)
v
(
x, y1

)−Ry1

(
y1, y1;x, y

)
v
(
y1, y1

)]
dy1

=
∫ x
y

[
R
(
x1,x1;x, y

)
vx1

(
x1,x1

)
+Ry1

(
x1,x1;x, y

)
v
(
x1,x1

)]
dx1

− v(x, y) + v(y, y).

(2.8)

Hence

v(x, y)= v(y, y) +
∫ x
y

[
R
(
x1,x1;x, y

)
vx1

(
x1,x1

)
+Ry1

(
x1,x1;x, y

)
v
(
x1,x1

)]
dx1

−
∫∫
�
R
(
x1, y1;x, y

)
g
(
x1, y1

)
dx1dy1.

(2.9)
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In the case of g = 0, we obtain

v(x, y)= v(y, y) +
∫ x
y

[
Pν

(
x2

1 + xy
x1(x+ y)

)
vx1

(
x1,x1

)

+P′ν

(
x2

1 + xy
x1(x+ y)

)(
x1− x

)(
x1 + y

)
2x2

1(x+ y)
v
(
x1,x1

)]
dx1.

(2.10)

Using the condition v(x,0)= 0, finally we find that

0=
∫ x

0
Pν

(
x1

x

)
vx1

(
x1,x1

)
+P′ν

(
x1

x

)(
x1− x

)
2x1x

v
(
x1,x1

)
dx1

=
∫ x

0
Pν

(
x1

x

){
vx1

(
x1,x1

)− ∂

∂x1

[
v
(
x1,x1

)(x1− x
)

2x1

]}
dx1

(2.11)

if we suppose, in addition, that lim t−1v(t, t)= 0, t→ +0. Thus,

∫ 1

0
Pν(t)

{
t+ 1
t
vx(tx, tx) +

1− t
t

vy(tx, tx)− 1
xt2

v(tx, tx)
}
dt = 0. (2.12)

Suppose that there exist two functions ψ and ψ1 such that

ψ(t)ψ1(x)= t+ 1
t
vx(tx, tx) +

1− t
t

vy(tx, tx)− 1
xt2

v(tx, tx). (2.13)

Then we are looking for a solution ψ(t) of the equation

∫ 1

0
Pν(t)ψ(t)dt = 0. (2.14)

Now we are ready to formulate the following useful lemma.

Lemma 2.1. The following identity holds:

∫ 1

0
tpPν(t)dt = 0, p = ν− 2,ν− 4, . . . ; p >−1. (2.15)

Proof. As known, the Legendre functions Pν(t) are solutions of the Legendre differential
equation

(
1− t2)z′′ − 2tz′ + ν(ν + 1)z = 0. (2.16)
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Using this fact, we see that

ν(ν + 1)
∫ 1

0
tpPν(t)dt =

∫ 1

0
tp
[(
t2− 1

)
P′ν(t)

]′
dt

=−p
∫ 1

0

(
tp+1− tp−1)P′ν(t)dt

= p
∫ 1

0

(
tp+1− tp−1)P′ν(t)dt

= p
∫ 1

0

[
(p+ 1)tp− (p− 1)tp−2]Pν(t)dt

(2.17)

if p > 1. This means that

[
ν(ν + 1)− p(p+ 1)

]∫ 1

0
tpPν(t)dt =−p(p− 1)

∫ 1

0
tp−2Pν(t)dt, p > 1. (2.18)

Since, for p = ν, the left-hand side here is zero, clearly

∫ 1

0
tν−2Pν(t)dt = 0. (2.19)

Using this fact and (2.18) with p = ν− 2, we conclude that

∫ 1

0
tν−4Pν(t)dt = 0, if ν− 2 > 1, (2.20)

and so the proof of the lemma follows by induction. �

Since, in our case, ν = n− 1/2, returning to problems (P1∗), (P2∗), and (P∗α ), we re-
mark that, for each of these problems, we have the following conclusions.

Problem (P1∗). On the line {y = x}, we have the condition v(x,x)= 0. Thus, (vx + vy)(x,
x)= 0 and (2.13) becomes ψ(t)ψ1(x)= 2vx(tx, tx). It follows that in this case, by Lemma
2.1, possible solutions are the functions

v(x,x)= 0, vx(x,x)= xp, (2.21)

where p=n− 5/2, n− 9/2, . . . ,1/2, if n is an odd number, or p = n− 5/2, n− 9/2, . . . ,−1/2,
if n is an even number. Thus, the solution v(x, y) of the homogeneous problem (P1∗) is
explicitly found by (2.10) with values of v and vx on {y = x} given by (2.21).

Problem (P2∗). In this case, for y=x, we have (vx − vy)(x,x)=0. Denote h(x) := v(x,x),
then h′(x)= vx(x,x) + vy(x,x). Hence, we see that vx = vy = h′/2 and (2.13) becomes

ψ
(
z

x

)
ψ1(x)= x

z
h′(z)− x

z2
h(z)= x

(
h(z)
z

)′
. (2.22)

By Lemma 2.1, possible solutions of the above equation are the functions

v(x,x)= xp, vx(x,x)= pxp−1

2
, (2.23)
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where p = n− 1/2, n− 5/2, . . . ,5/2, if n is an odd number, or p = n− 1/2, n− 5/2, . . . ,3/2,
if n is an even number. The corresponding solution v(x, y) of the homogeneous problem
(P2∗) is found again by (2.10) with values of v(x,x) and vx(x,x) given by (2.23).

Problem (P∗α ). Denote h(x) := v(x,x). Then together with the condition on the line
{y = x}, we see that

h′(x)= vx(x,x) + vy(x,x), vy(x,x)− vx(x,x)−α(x)v(x,x)= 0, (2.24)

from where we have vy = (h′ +αh)/2 and vx = (h′ −αh)/2. In this case, (2.13) becomes

ψ
(
z

x

)
ψ1(x)= x

(
h(z)
z

)′
−α(z)h(z). (2.25)

If α(z) is not identically zero, it is not obvious whether there are some nontrivial solutions
of problem (P∗α ) or not.

Open problems. (1) Find a solution ψ(t) of (2.14), different from those of (2.15), which
gives a new nontrivial solution of problem (P1∗) or (P2∗).

(2) Using the way described above, find nontrivial solutions of problem (P∗α ), when
α(x) is a nonzero function.

The representation (2.10), together with (2.21) and (2.23), gives us exact formulae
for the solution of the homogeneous problems (P1∗) and (P2∗). Using Lemma 1.1, we
obtain a different representation of the same solutions. The solutions Vn,i

0 and Wn,i
0 were

found by Popivanov and Schneider, while the functions Hn
k and Enk can be found in [18]

with a different presentation, where they are defined by using the Gauss hypergeometric
function.

The following result implies Lemma 1.1.

Lemma 2.2. The representations

∂

∂t
Hn
k (ρ, t)= 2(n− k− 1)Enk+1(ρ, t), (2.26)

∂

∂t
Enk (ρ, t)=−2

(
n− k− 1

2

)
Hn
k (ρ, t) (2.27)

hold, where Hn
k and Enk represent derivatives of En0 (ρ, t) with respect to t, that is,

Hn
k (ρ, t)= (−1)k+1

(2n− 2k− 1)2k+1

(
∂

∂t

)2k+1

(ρ2− t2)n−1/2

ρn


 ,

Enk(ρ, t)= (−1)k

(2n− 2k)2k

(
∂

∂t

)2k

(ρ2− t2)n−1/2

ρn


 .

(2.28)

Proof. It is enough to check directly formulae (2.26) and (2.27). �
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Proof of Lemma 1.1. We already know (see [23]) that Vn,i
0 and Wn,i

0 (i = 1,2) are solu-
tions of the wave equation (1.1). Using formulae (2.26) and (2.27), we conclude that Vn,i

k

and Wn,i
k are also solutions of the wave equation. Thus, the functions ρ1/2Hn

k (t,ρ) and
ρ1/2Enk(t,ρ) are solutions of the 2D equation (2.5). It is easy to see directly that

∂
(
ρ1/2Enk

)
∂t

(ρ,0)= 0,
(
ρ1/2Enk

)
(ρ,0)= ρn−2k−1/2

k∑
i=0

Aki . (2.29)

These Cauchy conditions on {x = y} (i.e., on {t = 0}) coincide with the conditions of
(2.23) for p = n− 2k− 1/2 with the accuracy of a multiplicative constant. Moreover, be-
cause of the uniqueness of the solution of Cauchy problem for (2.5), the function v(x, y)
defined by (2.10), together with the conditions of (2.23) for p = n− 2k− 1/2, coincides
with the function (

∑k
i=0A

k
i )−1ρ1/2Enk (ρ, t). �

3. New singular solutions of problem (Pα)

We are seeking a generalized solution of BVP (Pα) for the wave equation

�u= 1
ρ

(
ρuρ

)
ρ +

1
ρ2
uϕϕ−utt = f (ρ,ϕ, t), (3.1)

which has some power type of singularity at the origin O. While in [11, 23] the function
Wn,i

0 (ρ, t,ϕ) has been used systematically as the right-hand side function, we will try to
use here, for the same reason, the function Wn,i

1 (ρ, t,ϕ). Due to the fact that the function
En1 (ρ, t) changes its sign inside the domain, the appearing situation causes some compli-
cations. Note first that, by Lemma 1.1, the functions

Wn,2
1 (ρ,ϕ, t)=



(
ρ2− t2)n−3/2

ρn
− (n− 3/2)

(n− 1)

(
ρ2− t2)n−5/2

ρn−2


cosnϕ, n≥ 4, (3.2)

with Wn,2
1 ∈ Cn−3(Ω̄0), are classical solutions of problem (P∗α ) when α≡ 0.

To prove Theorem 1.3, consider now the special case of problem (Pα):

�u= 1
ρ

(
ρuρ

)
ρ +

1
ρ2
uϕϕ−utt =Wn,2

1 (ρ,ϕ, t) in Ω0, (3.3)

u|Σ1 = 0,
[
ut +α(ρ)u

]|Σ0\O = 0. (3.4)

Theorem 5.1 of [11] declares that problem (3.3), (3.4) has at most one generalized so-
lution. On the other hand, by [11, Theorem 5.2], we know that for this right-hand side
there exists a generalized solution in Ω0 of the form

un(ρ,ϕ, t)= u(1)
n (ρ, t)cosnϕ∈ Cn−1(Ω̄0\O

)
, (3.5)

which is a classical solution in Ωε, ε ∈ (0,1). By introducing a new function

u(2)(ρ, t)= ρ1/2u(1)(ρ, t), (3.6)
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we transform (3.3) into the equation

u(2)
ρρ −u(2)

tt − 4n2− 1
4ρ2

u(2) = ρ1/2En1 (ρ, t), (3.7)

with the string operator in the main part. The domain, corresponding to Ωε in this case, is

Gε =
{

(ρ, t) : t > 0, ε+ t < ρ < 1− t}. (3.8)

In order to use directly the results of [11], we introduce the new coordinates

ξ = 1− ρ− t, η = 1− ρ + t (3.9)

and transform the singular point O into the point (1,1).
From (3.7), we derive that

Uξη− 4n2− 1
4(2− ξ −η)2

U = 1
4
√

2
(2−η− ξ)1/2F(ξ,η) (3.10)

in Dε = {(ξ,η) : 0 < ξ < η < 1− ε}, where

U(ξ,η)= u(2)(ρ(ξ,η), t(ξ,η)
)
, F(ξ,η)= En1

(
ρ(ξ,η), t(ξ,η)

)
. (3.11)

In order to investigate the smoothness or the singularity of a solution for the original 3D
problem (Pα) on Σ2,0, we are seeking a classical solution of the corresponding 2D problem
(Pα,2), not only in the domain Dε but also in the domain

D(1)
ε := {(ξ,η) : 0 < ξ < η < 1, 0 < ξ < 1− ε}, ε > 0. (3.12)

Clearly, Dε ⊂D(1)
ε . Thus, we arrive at the Goursat-Darboux problem.

Problem (Pα,2). Find a solution of the following BVP:

Uξη− c(ξ,η)U = g(ξ,η) in D(1)
ε ,

U(0,η)= 0,
[
Uη−Uξ +α(1− ξ)U

]∣∣
η=ξ = 0.

(3.13)

Here, the coefficients c(ξ,η) and g(ξ,η) are defined by

c(ξ,η)= 4n2− 1
4(2−η− ξ)2

∈ C∞(D̄(1)
ε

)
, n≥ 4, ε > 0, (3.14)

g(ξ,η)= 2n−(5/2)



[
(1− ξ)(1−η)

]n−3/2

(2−η− ξ)n−1/2
− (n− 3/2)

4(n− 1)

[
(1− ξ)(1−η)

]n−5/2

(2−η− ξ)n−5/2


 , (3.15)
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where g ∈ Cn−3(D̄(1)
ε ). In this case, it is obvious that c(ξ,η)≥ 0 in D̄0\(1,1), but the func-

tion g(ξ,η) is not nonnegative in D0.
Note that, according to [11], solving problem (Pα,2) is equivalent to solving the follow-

ing integral equation:

U
(
ξ0,η0

)=
∫ ξ0

0

∫ η0

ξ0

[
g(ξ,η) + c(ξ,η)U(ξ,η)

]
dηdξ

+ 2
∫ ξ0

0

∫ η
0

[
g(ξ,η) + c(ξ,η)U(ξ,η)

]
dξ dη

+
∫ ξ0

0
α(1− ξ)U(ξ,ξ)dξ for

(
ξ0,η0

)∈ D̄(1)
ε .

(3.16)

For this reason, we define (see [11]) the following sequence of successive approximations
U (m):

U (m+1)(ξ0,η0
)=

∫ ξ0

0

∫ η0

ξ0

[
g(ξ,η) + c(ξ,η)U (m)(ξ,η)

]
dηdξ

+ 2
∫ ξ0

0

∫ η
0

[
g(ξ,η) + c(ξ,η)U (m)(ξ,η)

]
dξ dη

+
∫ ξ0

0
α(1− ξ)U (m)(ξ,ξ)dξ,

(
ξ0,η0

)∈ D̄(1)
ε ,

U (0)(ξ0,η0
)= 0 in D1

ε .

(3.17)

In [11], the uniform convergence of U (m) in each domain D(1)
ε , ε > 0, has been proved.

To use this fact here, we now formulate the following maximum principle, which is very
important for the investigation of the singularity of a generalized solution of problem
(Pα).

Theorem 3.1 (maximum principle). Let c(ξ,η),g(ξ,η)∈ C(D̄(1)
ε ), let c(ξ,η)≥ 0 in D̄(1)

ε ,
let α(ξ)≥ 0 for 0≤ ξ ≤ 1, and

(a) let

∫ ξ0

0

∫ η0

ξ0

g(ξ,η)dηdξ + 2
∫ ξ0

0

∫ η
0
g(ξ,η)dξ dη ≥ 0 in D̄(1)

ε . (3.18)

Then, for the solution U(ξ,η) of problem (3.13), it holds that

U(ξ,η)≥ 0 in D̄(1)
ε . (3.19)

(b) If

∫ ξ0

0
g
(
ξ,η0

)
dξ ≥ 0 in D̄(1)

ε , (3.20)
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then

U(ξ,η)≥ 0, Uη(ξ,η)≥ 0 for (ξ,η)∈ D̄(1)
ε . (3.21)

(c) If g(ξ,η)≥ 0 in D̄(1)
ε , then

U(ξ,η)≥ 0, Uη(ξ,η)≥ 0, Uξ(ξ,η)≥ 0 in D̄(1)
ε . (3.22)

Remark 3.2. Other variants of this maximum principle can be found in [11, 12]. In the
cases which we consider below, the conditions of [11, 12] are not satisfied. For example,
there are subdomains of D(1)

ε where En1 < 0.

Proof of Theorem 3.1. (a) Condition (3.18) says that for the first approximation U (1) of
the sequence (3.17), we directly haveU (1)(ξ0,η0)≥0. Suppose that (U (m)−U (m−1))(ξ0,η0)≥
0 for some m∈N. Then

(
U (m+1)−U (m))(ξ0,η0

)=
∫ ξ0

0

∫ η0

ξ0

c(ξ,η)
(
U (m)−U (m−1))(ξ,η)dηdξ

+ 2
∫ ξ0

0

∫ η
0
c(ξ,η)

(
U (m)−U (m−1))(ξ,η)dξ dη

+
∫ ξ0

0
α(1− ξ)

(
U (m)−U (m−1))(ξ,ξ)dξ

≥ 0 in D̄(1)
ε ,

(3.23)

and thus, by induction,

U
(
ξ0,η0

)= ∞∑
m=0

(
U (m+1)−U (m))(ξ0,η0

)≥ 0 in D̄(1)
ε . (3.24)

(b) If condition (3.20) is satisfied, then it is easy to check that U (1)(ξ0,η0)≥ 0 for any

(ξ0,η0) ∈ D̄(1)
ε , and so, in view of (a), we see that U(ξ0,η0) ≥ 0 for (ξ0,η0) ∈ D̄(1)

ε . Using
the results of [11], we derive the following representation:

Uη0

(
ξ0,η0

)=
∫ ξ0

0
g
(
ξ,η0

)
dξ +

∫ ξ0

0
c
(
ξ,η0

)
U
(
ξ,η0

)
dξ, (3.25)

and hence we conclude that Uη0 ≥ 0 in D̄(1)
ε .

(c) If g(ξ,η)≥ 0 in D̄(1)
ε , then conditions (3.18) and (3.20) are obviously satisfied, and

thus U ≥ 0 and Uη0 ≥ 0 in D̄(1)
ε . The conclusion Uξ0 ≥ 0 in D̄(1)

ε follows from the fact that
(see [11])

Uξ0

(
ξ0,η0

)= α(1− ξ0
)
U
(
ξ0,ξ0

)
+
∫ ξ0

0

[
g
(
ξ,ξ0

)
+ c
(
ξ,ξ0

)
U
(
ξ,ξ0

)]
dξ

+
∫ η0

ξ0

[
g
(
ξ0,η

)
+ c
(
ξ0,η

)
U
(
ξ0,η

)]
dη.

(3.26)

�
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In order to prove our results, we make use of the following proposition.

Proposition 3.3. Let U(ξ,η) be the unique generalized solution for problem (3.13), where
c(ξ,η) and g(ξ,η) are given by (3.14) and (3.15). Then U(ξ,η) ∈ Cn−1(D̄0\(1,1)) and
U(ξ,η) ≥ 0 in D̄0\(1,1); in addition Uξ(ξ,η) ≥ 0, Uη(ξ,η) ≥ 0 in some neighborhood of
the point (1,1).

Proof. First note that in this case neither condition g(ξ,η) ≥ 0 nor condition (3.20) is
fulfilled. We will prove that condition (3.18) is satisfied. Introduce the polar coordinates
(ρ, t) and consider the function g(ρ, t)= ρ1/2En1 (ρ, t) in the domain G0 = {(ρ, t) : t > 0, t <
ρ < 1− t}, then the representation formula (see (2.26))

∂

∂t
ρ1/2Hn

0 (ρ, t)= 2(n− 1)ρ1/2En1 (ρ, t)= 2(n− 1)g(ρ, t) (3.27)

holds. Let 0≤ ρ1 ≤ ρ2 ≤ 1. Using (3.27), it is easy to see that, for the first approximation
U (1) of the solution, one has (see (3.17))

2(n− 1)U (1)
(
ρ1 + ρ2

2
,
ρ2− ρ1

2

)

=
∫ 1

(1+ρ1)/2
ρ1/2Hn

0 (ρ,1− ρ)dρ+
∫ (1+ρ1)/2

ρ1

ρ1/2Hn
0

(
ρ,ρ− ρ1

)
dρ

−
∫ ρ2

(ρ2+ρ1)/2
ρ1/2Hn

0

(
ρ,ρ2− ρ

)
dρ−

∫ (ρ2+ρ1)/2

ρ1

ρ1/2Hn
0

(
ρ,ρ− ρ1

)
dρ

+
∫ 1

(1+ρ2)/2
ρ1/2Hn

0 (ρ,1− ρ)dρ+
∫ (1+ρ2)/2

ρ2

ρ1/2Hn
0

(
ρ,ρ− ρ2

)
dρ.

(3.28)

Since Hn
0 ≥ 0, to prove that U (1) ≥ 0, it is enough to show that

I =
∫ 1

(1+ρ1)/2
ρ1/2Hn

0 (ρ,1− ρ)dρ−
∫ ρ2

(ρ2+ρ1)/2
ρ1/2Hn

0

(
ρ,ρ2− ρ

)
dρ ≥ 0. (3.29)

For this purpose, we see that

I =
∫ 1

(1+ρ1)/2
(1− ρ)ρ−n+1/2(2ρ− 1)n−3/2dρ

−
∫ ρ2

(ρ2+ρ1)/2

(
ρ2− ρ

)
ρ−n+1/2ρn−3/2

2

(
2ρ− ρ2

)n−3/2
dρ

=
∫ 1

(1+ρ1)/2
(1− ρ)ρ−1

(
2− 1

ρ

)n−3/2

dρ

−
∫ 1

(2+ρ1−ρ2)/2
(1− ρ)

(
ρ+ ρ2− 1

)−1
ρn−3/2

2

(
2− ρ2

ρ+ ρ2− 1

)n−3/2

dρ.

(3.30)

As a final step, notice that

2− 1
t
≥ 2− ρ2

t+ ρ2− 1
≥ 0 for

2 + ρ1− ρ2

2
≤ t ≤ 1, (3.31)
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and therefore I ≥ 0. So, we conclude that condition (3.18) is satisfied. It follows now,
by Theorem 3.1, that U(ρ, t)≥ 0 in G0\(0,0). More precisely, for ρ2 < δ, the last term in
(3.30) is small enough for small positive δ, and so

I ≥
∫ 1

3/4
(1− ρ)

(
2− 1

ρ

)n−1/2

dρ := c0 > 0. (3.32)

Thus, we find that U (1)(ρ, t)≥ c0 > 0 in a small neighborhood of the origin (0,0). There-
fore, for the solution U(ξ,η) of problem (Pα,2) in coordinates (ξ,η), it follows that
U(ξ,η)≥U (1)(ξ,η)≥ c0 > 0 in the corresponding neighborhood of the point (1,1). Using
the representation

Uη0

(
ξ0,η0

)=
∫ ξ0

0


g(ξ,η0

)
+

4n2− 1

4
(
2−η0− ξ

)2U
(
ξ,η0

)dξ, (3.33)

it is easy to see now that Uη0 (ξ0,η0) ≥ 0 for 1− δ ≤ ξ0 ≤ η0 ≤ 1 if δ > 0 is small enough.
Furthermore, using the representation (3.26) of Uξ0 (ξ0,η0), we can prove an analogous
result for Uξ0 (ξ0,η0). �

Remark 3.4. In our opinion, the analogous result follows for all functions Enk(ρ, t), k =
2,3, . . . , [n/2]−1. As before, for k > 0, the function Enk (ρ, t) changes its sign in the domain,
but due to the monotonicity of the solutionU(ξ,η), the desired result would follow. Also,
by using the more general formula

∂

∂t
Hn
k (ρ, t)= 2(n− k− 1)Enk+1(ρ, t), (3.34)

this result could be obtained for k > 1 too.

Now we are ready to prove Theorem 1.3 formulated in the introduction.

Proof of Theorem 1.3. We will find the desired lower estimates for the singular solution
u(ρ,ϕ, t) of problem (3.3), (3.4). For the corresponding right-hand side g(ξ,η), defined
by (3.15), set

K =
∫
D(1)

1/2

g2(ξ,η)dηdξ > 0. (3.35)

Let ε ∈ (0,1/2) be fixed. Then, for the generalized solution U(ξ,η) of problem (3.13), it
follows that

0 < K ≤
∫
D(1)
ε

g2(ξ,η)dξ dη

=
∫
D(1)
ε

Uξη(ξ,η)g(ξ,η)dξ dη−
∫
D(1)
ε

c(ξ,η)U(ξ,η)g(ξ,η)dξ dη

=: I1 + I2,

(3.36)
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where

I1 =
∫ 1−ε

0

∫ 1

ξ
Uξη(ξ,η)g(ξ,η)dηdξ

=
∫ 1−ε

0

[
Uξ(ξ,1)g(ξ,1)−Uξ(ξ,ξ)g(ξ,ξ)

]
dξ

−
∫
D(1)
ε

(
Uξgη

)
(ξ,η)dηdξ.

(3.37)

In view of (3.15), it is obvious that g(ξ,1)= 0. Thus,

I1 =−
∫ 1−ε

0
Uξ(ξ,ξ)g(ξ,ξ)dξ −

∫
D(1)
ε

(
Uξgη

)
(ξ,η)dηdξ. (3.38)

Since

∫
D(1)
ε

(
Uξgη

)
(ξ,η)dξ dη =

∫ 1−ε

0

∫ η
0

(
Uξgη

)
(ξ,η)dξ dη

+
∫ 1

1−ε

∫ 1−ε

0

(
Uξgη

)
(ξ,η)dξ dη

=
∫ 1−ε

0

[(
Ugη

)
(η,η)− (Ugη)(0,η)

]
dη

+
∫ 1

1−ε

[(
Ugη

)
(1− ε,η)− (Ugη)(0,η)

]
dη

−
∫
D(1)
ε

(
Ugξη

)
(ξ,η)dξ dη

=
∫ 1−ε

0

(
Ugη

)
(η,η)dη+

∫ 1

1−ε

(
Ugη

)
(1− ε,η)dη

−
∫
D(1)
ε

(
Ugξη

)
(ξ,η)dξ dη,

(3.39)

(3.38) becomes

I1 =−
∫ 1−ε

0

[
Uξ(ξ,ξ)g(ξ,ξ) +U(ξ,ξ)gη(ξ,ξ)

]
dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη+

∫
D(1)
ε

(
Ugξη

)
(ξ,η)dξ dη.

(3.40)

An elementary calculation shows that

gξη(ξ,η)− c(ξ,η)g(ξ,η)= 0,

gξ(ξ,ξ)= gη(ξ,ξ)= 1
32(n− 1)

(5− 2n)(1− ξ)n−7/2 < 0.
(3.41)
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By (3.40) and (3.36), it follows that

0 < K ≤ I1 + I2 =−
∫ 1−ε

0

[
Uξ(ξ,ξ)g(ξ,ξ) +U(ξ,ξ)gξ(ξ,ξ)

]
dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη

+
∫
D(1)
ε

U(ξ,η)
[
gξη− cg

]
(ξ,η)dξ dη.

(3.42)

Thus, we see that

0 < K ≤ I1 + I2 =−
∫ 1−ε

0

[
Uξ(ξ,ξ)g(ξ,ξ) +U(ξ,ξ)gξ(ξ,ξ)

]
dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη,

(3.43)

where, as it is easy to check,

gξ(ξ,ξ)= 1
2

[
g(ξ,ξ)

]
ξ . (3.44)

The function U(ξ,η) is a classical solution of (3.13) in D̄ε, ε∈ (0,1), with

Uξ(ξ,ξ)= 1
2

[
U(ξ,ξ)

]
ξ +

1
2
α(1− ξ)U(ξ,ξ). (3.45)

If we substitute (3.44) and (3.45) into (3.43), we get

K ≤ I1 + I2 =−1
2

∫ 1−ε

0

[
U(ξ,ξ)g(ξ,ξ)

]
ξdξ −

1
2

∫ 1−ε

0
α(1− ξ)U(ξ,ξ)g(ξ,ξ)dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη

=−1
2

(Ug)(1− ε,1− ε)− 1
2

∫ 1−ε

0
α(1− ξ)U(ξ,ξ)g(ξ,ξ)dξ

−
∫ 1

1−ε
U(1− ε,η)gη(1− ε,η)dη.

(3.46)

Note that α(ξ)≥ 0, g(ξ,ξ)≥ 0, and according to Proposition 3.3, we have

U(ξ,η)≥ 0 in D̄(1)
ε , Uη(1− ε,η)≥ 0 for small enough ε > 0. (3.47)

Calculating gη(1− ε,η) and denoting

1−ηε := ε (2n− 3)(2n+ 1)− 2
√

2(2n− 3)(2n+ 1)(n− 1)
4n2− 1

:= εn1, (3.48)

where the number n1 ∈ (0,1), we find

gη(1− ε,η) < 0 for 1− ε < η < ηε,
gη(1− ε,η) > 0 for ηε < η < 1.

(3.49)
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This, together with (3.46), implies that

K ≤ I1 + I2 ≤
∫ ηε

1−ε
U(1− ε,η)

∣∣gη(1− ε,η)
∣∣dη− 1

2
(Ug)(1− ε,1− ε)

−
∫ 1

ηε
U(1− ε,η)

∣∣gη(1− ε,η)
∣∣dη

≤U(1− ε,ηε)
[
g(1− ε,1− ε)− g(1− ε,ηε)]

−U(1− ε,ηε)[g(1− ε,1)− g(1− ε,ηε)]− 1
2

(Ug)(1− ε,1− ε)

=
[
U
(
1− ε,ηε

)− 1
2
U(1− ε,1− ε)

]
g(1− ε,1− ε)

(3.50)

because g(1− ε,1)= 0. Moreover, since g(1− ε,1− ε)= εn−5/2/8(n− 1), we see that

0 < K ≤
[
U
(
1− ε,1− εn1

)− 1
2
U(1− ε,1− ε)

]
cnε

n−(5/2). (3.51)

Using the fact that U ≥ 0 and Uη ≥ 0, we obtain

0 < K ≤U(1− ε,1− τεn1
)
cnε

n−(5/2), 0≤ τ ≤ 1, (3.52)

0 < K ≤
[
U(1− ε,1)− 1

2
U(1− ε,1− ε)

]
cnε

n−(5/2). (3.53)

For ξ = 1− ε, η = 1, we have ρ= t = ε/2 and (3.53) becomes

0 < K1ε
(5/2)−n ≤ u(2)

n

(
ε

2
,
ε

2

)
− 1

2
u(2)
n (ε,0). (3.54)

Finally, the inverse transformation gives

u(1)
n (ρ,ρ)≥ 1

2
u(1)
n (2ρ,0) +K2ρ

−(n−2) ≥ K2ρ
−(n−2), (3.55)

where the positive constant K2 depends only on n. Analogously, (3.52) gives

u(1)
n

(
ρ,

1− τn1

1 + τn1
ρ
)
≥ K2ρ

−(n−2), 0≤ τ ≤ 1. (3.56)

Multiplying the function un by K−1
2 , we see that

∣∣un(ρ,ϕ,ρ)
∣∣≥ 1

2

∣∣un(2ρ,ϕ,0)
∣∣+ ρ−(n−2)

∣∣cosnϕ
∣∣≥ ρ−n+2

∣∣cosnϕ
∣∣,∣∣∣∣un

(
ρ,ϕ,

1− τn1

1 + τn1
ρ
)∣∣∣∣≥ ρ−(n−2)|cosnϕ|, 0≤ τ ≤ 1,

(3.57)

hold, and then (1.13) follows. The proof of the theorem is complete. �
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