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Papkovich and Neuber (PN), and Palaniappan, Nigam, Amaranath, and Usha (PNAU)
proposed two different representations of the velocity and the pressure fields in Stokes
flow, in terms of harmonic and biharmonic functions, which form a practical tool for
many important physical applications. One is the particle-in-cell model for Stokes flow
through a swarm of particles. Most of the analytical models in this realm consider spher-
ical particles since for many interior and exterior flow problems involving small particles,
spherical geometry provides a very good approximation. In the interest of producing
ready-to-use basic functions for Stokes flow, we calculate the PNAU and the PN eigen-
solutions generated by the appropriate eigenfunctions, and the full series expansion is
provided. We obtain connection formulae by which we can transform any solution of
the Stokes system from the PN to the PNAU eigenform. This procedure shows that any
PNAU eigenform corresponds to a combination of PN eigenfunctions, a fact that reflects
the flexibility of the second representation. Hence, the advantage of the PN representation
as it compares to the PNAU solution is obvious. An application is included, which solves
the problem of the flow in a fluid cell filling the space between two concentric spherical
surfaces with Kuwabara-type boundary conditions.

1. Introduction

Slow motion of a mass of particles relative to a viscous fluid has been studied extensively
because of its importance in practical applications. In order to construct tractable math-
ematical models of the flow systems involving particles, it is necessary to conform to a
number of simplifications. A dimensionless criterion, which determines the relative im-
portance of inertial and viscous effects, is the Reynolds number [3]. Stokes equations for
the steady flow of a viscous, incompressible fluid at small Reynolds number (creeping
flow) have been known for over one and a half centuries (1851). They connect the vector
velocity with the scalar total pressure field [3]. The total pressure and vorticity fields are
harmonic, while the velocity is biharmonic and divergence-free.
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Complications often arise because of the complex geometry encountered in assem-
blages composed of particles of arbitrary shape. There are many efficient methods in use
to solve this kind of problems with Stokes flow, such as numerical computation, stream-
function techniques, and analytic-function methods [10]. One of the largest physical ar-
eas of importance concerns the construction of particle-in-cell models which are useful
in the development of simple but reliable analytical expressions for heat and mass trans-
fer in swarms of particles. The technique of cell models is based on the idea according to
which a large enough porous concentration of particles within a fluid can be represented
by many separate unit cells where every cell contains one particle. Thus, the considera-
tion of a full-dimensional porous media is being referred to as that of a single particle
and its fluid cover. That way, the mathematical formulation of any physical problem is
significantly simplified. For many interior and exterior flow problems involving small
particles, spherical geometry [6] provides very good approximation and stands for the
simplest geometry that can be employed. Although relative physical problems enjoy ro-
tational symmetry, we retain the nonaxisymmetric character of three-dimensional (3D)
flows.

The introduction of differential representations of the solutions of Stokes equations
[1, 8, 9, 10] serves to unify our own approach on all 3D incompressible fluid motions.
Based on the previous formulation of cell models, the problem is now focused on the use
of the appropriate representation that coincides with the physical problem. The major
advantage of the differential representations is that they provide us with the flow fields
for Stokes flow in terms of harmonic potentials. The most famous general spatial so-
lutions are the PN solution [8, 10], the Boussinesq-Galerkin solution [1, 10], and the
PNAU solution [9]. Recently, a method of connecting 3D differential representations has
been developed [2], where the PN and the Boussinesq-Galerkin differential representa-
tions were interrelated and connection formulae between the corresponding spherical
harmonic and biharmonic potentials were developed.

Here we are interested in the connection of the PN solution with the PNAU repre-
sentation in spherical coordinates. This is made possible by connecting the appropriate
eigenfunctions that generate the flow fields through these representations. Our aim is
to calculate the nonaxisymmetric flow fields, generated by the vector spherical harmonic
eigenfunctions [4, 7], through the PN representation and then to face the inverse problem
of determining those vector spherical harmonic and biharmonic eigenfunctions [4, 6, 10],
which lead to the same velocity and total pressure fields via the PNAU representation.
Furthermore, both the internal and the external flow problems are being examined. The
above procedure cannot be inverted as a consequence of the flexibility that the PN repre-
sentation enjoys as it compares to the PNAU solution. This indicates that the use of the
PN differential representation forms a more complete way to solve particle-in-cell flow
problems.

As a demonstration of the usefulness and the possibilities offered by the PN repre-
sentation, we derive the solution of the problem of creeping flow through a swarm of
stationary spherical particles, embedded within an otherwise quiescent Newtonian fluid
that moves with constant uniform velocity in the axial direction using the Kuwabara-type
boundary conditions [5].
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2. Fundamentals of stokes flow

Stokes flow which is characterized by steady, nonaxisymmetric 3D, creeping (Re� 1),
incompressible (density ρ = const), and viscous (dynamic viscosity µ = const) motion
around particles embedded within smooth, bounded domains Ω(R3) is governed by the
following set of partial differential equations [3]:

µ∆v(r)−∇P(r)= 0, r∈Ω
(
R

3), (2.1)

∇· v(r)= 0, r∈Ω
(
R

3), (2.2)

where v(r) is the biharmonic velocity field, P(r) is the harmonic total pressure field, and
r stands for the position vector. An immediate consequence of (2.1) is that, for creeping
flow, the generated pressure is compensated by the viscous forces while equation (2.2) se-
cures the incompressibility of the fluid. Once the velocity field is obtained, the harmonic
vorticity field is defined as

ω(r)=∇× v(r), r∈Ω
(
R

3). (2.3)

Papkovich and Neuber [8] proposed the following 3D differential representation of
the solutions for Stokes flow, in terms of the harmonic potentials Φ(r) and Φ0(r):

vPN(r)=Φ(r)− 1
2
∇(r ·Φ(r) +Φ0(r)

)
, r∈Ω

(
R

3),
PPN(r)= PPN

0 −µ∇·Φ(r), r∈Ω
(
R

3), (2.4)

whereas PPN
0 is a constant pressure and

∆Φ(r)= 0, ∆Φ0(r)= 0, r∈Ω
(
R

3). (2.5)

On the other hand, Palaniappan et al. [9] assumed another 3D differential representa-
tion for the solutions of Stokes equations as a function of the harmonic and biharmonic
potentials A(r) and B(r), respectively:

vPNAU(r)=∇×∇× (rA(r)
)

+∇× (rB(r)
)
, r∈Ω

(
R

3),
PPNAU(r)= PPNAU

0 +µ
(
1 + r ·∇)∆A(r), r∈Ω

(
R

3), (2.6)

where PPNAU
0 is a constant pressure, while

∆2A(r)= 0, ∆B(r)= 0, r∈Ω
(
R

3), (2.7)

and ∆ and∇ stand for the Laplacian and the gradient operators, respectively.
In what follows, we find the interrelation of these differential representations in or-

der to obtain connection formulae between the spherical harmonic (Φ,Φ0,B) and bihar-
monic (A) eigenfunctions. Putting it in a different way, given an eigenmode of one of the
representations, we look for the particular combination of eigenmodes of the other repre-
sentation that generates the same velocity and total pressure fields. Initially, the physically
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important internal and external fields of the velocity and the total pressure (v,P) are con-
structed using the representations (2.4) and (2.6). Since spherical geometry is employed,
we are using vector spherical harmonics [7] in order to simplify our calculations.

Furthermore, in order to demonstrate the usefulness of the PN differential represen-
tation, we use it to solve the Stokes flow problem within a fluid cell limited between
two concentric spherical surfaces. In this way, we are led to recover the solution of the
Kuwabara-type problem [5] for the small Reynolds number flow around spheres embed-
ded in a viscous fluid.

3. Vector spherical harmonic and biharmonic eigenfunctions

Introducing the spherical coordinate system [6] (ζ = cosθ, −1≤ ζ ≤ 1),

x1 = r
√

1− ζ2 cosϕ, x2 = r
√

1− ζ2 sinϕ, x3 = rζ , (3.1)

where 0≤ r < +∞, 0≤ θ ≤ π, and 0≤ ϕ < 2π, we define the sphere Br for r > 0 as the set

Br =
{

r∈R
3 | x2

1 + x2
2 + x2

3 ≤ r2}. (3.2)

The outward unit normal vector on the surface of the sphere r = r0 is furnished by the
formula

n̂
(
r0,ζ ,ϕ

)= (√1− ζ2 cosϕ,
√

1− ζ2 sinϕ,ζ
)
= r

(
r0,ζ ,ϕ

)
r0

, (3.3)

where for any nondegenerate sphere Br0 , we have r0 > 0. Furthermore, |ζ| ≤ 1. The differ-
ential operators∇ and ∆, in spherical coordinates, assume the forms

∇= r̂
∂

∂r
−
√

1− ζ2

r
ζ̂
∂

∂ζ
+

1

r
√

1− ζ2
ϕ̂

∂

∂ϕ
, (3.4)

∆= 1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

∂

∂ζ

[(
1− ζ2) ∂

∂ζ

]
+

1
r2
(
1− ζ2

) ∂2

∂ϕ2
, (3.5)

while r̂, ζ̂ , and ϕ̂ stand for the coordinate unit vectors of our system for r > 0 and |ζ| ≤ 1.
For every value of n = 0,1,2, . . . , there exist (2n + 1) linearly independent spherical

surface harmonics [4] given by

Yms
n (r̂)= Pm

n (ζ)


cosmϕ, s= e,

sinmϕ, s= o,
(3.6)

for m= 0,1,2, . . . ,n, |ζ| ≤ 1, ϕ∈ [0,2π), where

∮
S2
Yms
n (r̂)Ym′s′

n′ (r̂)dS(r̂)= 4π
2n+ 1

(n+m)!
(n−m)!

δnn′δmm′δss′
1
εm

, (3.7)

with δi j , i = n,m,s, j = n′,m′,s′, the Kronecker delta, εm the Neumann factor (εm = 1,
m = 0, and εm = 2, m ≥ 1), and s denoting the even (e) or the odd (o) character of the
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spherical surface harmonics; Pm
n = Pm

n (ζ) are the associated Legendre functions of the
first kind [4] given by the relation

Pm
n (ζ)=

(
1− ζ2

)m/2

2nn!
dn+m

dζn+m

(
ζ2− 1

)n
, |ζ| < 1, (3.8)

where n denotes the degree and m the order.
In spherical coordinates, the linear space of harmonic functions can be expressed via

the complete set of internal and external solid spherical harmonics, that is,

∆g(r)= 0⇐⇒ g(r)=

r

nYms
n (r̂),

r−(n+1)Yms
n (r̂),

(3.9)

for n≥ 0, m= 0,1, . . . ,n, and s= e,o. Similarly, according to the representation theorem
of Almansi (1897) [10], every biharmonic function permits an appropriate decomposi-
tion into two harmonic functions h1(r) and h2(r), that is,

h(r)= h1(r) + r2h2(r) with ∆h1(r)= ∆h2(r)= 0. (3.10)

For every−1≤ ζ ≤ 1 and ϕ∈ [0,2π), the vector spherical surface harmonics [7] which
are defined by the relations

Pms
n (r̂)= r̂Yms

n (r̂), (3.11)

Bms
n (r̂)= 1√

n(n+ 1)

[
−
√

1− ζ2ζ̂
∂

∂ζ
+

1√
1− ζ2

ϕ̂
∂

∂ϕ

]
Yms
n (r̂), (3.12)

Cms
n (r̂)=− 1√

n(n+ 1)
r̂×
[
−
√

1− ζ2ζ̂
∂

∂ζ
+

1√
1− ζ2

ϕ̂
∂

∂ϕ

]
Yms
n (r̂), (3.13)

for any n≥ 0, m= 0,1, . . . ,n, and s= e,o, are pointwise perpendicular; that is,

Pms
n ·Cms

n = Cms
n ·Bms

n = Bms
n ·Pms

n = 0. (3.14)

Moreover they satisfy the orthogonality relations

∮
S2

Pms
n (r̂) ·Pm′s′

n′ (r̂)dS(r̂)=
∮
S2

Bms
n (r̂) ·Bm′s′

n′ (r̂)dS(r̂)

=
∮
S2

Cms
n (r̂) ·Cm′s′

n′ (r̂)dS(r̂)

= 4π
2n+ 1

(n+m)
(n−m)

δnn′δmm′δss′
1
εm

,

(3.15)

where

εm =

1, m= 0,

2, m≥ 1.
(3.16)
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Thus, for any r∈Ω(R3), the internal vector spherical harmonics [7] are provided as

N(i)ms
n (r)=∇(rn+1Yms

n+1(r̂)
)= √(n+ 1)(n+ 2)rnBms

n+1(r̂) + (n+ 1)rnPms
n+1(r̂) (3.17)

for n= 0,1,2, . . ., m= 0,1, . . . ,n+ 1, and s= e,o;

M(i)ms
n (r)=∇× (rrnYms

n (r̂)
)= √n(n+ 1)rnCms

n (r̂) (3.18)

for n= 1,2, . . ., m= 0,1, . . . ,n, and s= e,o;

G(i)ms
n (r)= r2n+1N(e)ms

n (r)=
√
n(n− 1)rnBms

n−1(r̂)−nrnPms
n−1(r̂) (3.19)

for n = 0,1,2, . . ., m = 0,1, . . . ,n− 1, and s = e,o. On the other hand, the external vector
spherical harmonics [7] assume the forms

N(e)ms
n (r)=∇(r−nYms

n−1(r̂)
)= √n(n− 1)r−(n+1)Bms

n−1(r̂)−nr−(n+1)Pms
n−1(r̂) (3.20)

for n= 1,2, . . ., m= 0,1, . . . ,n− 1, and s= e,o;

M(e)ms
n (r)=∇× (rr−(n+1)Yms

n (r̂)
)= √n(n+ 1)r−(n+1)Cms

n (r̂) (3.21)

for n= 1,2, . . ., m= 0,1, . . . ,n, and s= e,o;

G(e)ms
n (r)= r−(2n+1)N(i)ms

n (r)

=
√

(n+ 1)(n+ 2)r−(n+1)Bms
n+1(r̂) + (n+ 1)r−(n+1)Pms

n+1(r̂)
(3.22)

for n= 0,1,2, . . ., m= 0,1, . . . ,n+ 1, and s= e,o. Then, the following complete expansion
of any vector function u(r) which belongs to the kernel space of the operator ∆ is ob-
tained:

u(r)=
∑
s=e,o

a(i)0s
0 N(i)0s

0 (r) +
∑
s=e,o

a(i)1s
0 N(i)1s

0 (r)

+
∑
s=e,o

c(e)0s
0 G(e)0s

0 (r) +
∑
s=e,o

c(e)1s
0 G(e)1s

0 (r)

+
∞∑
n=1

n+1∑
m=0

∑
s=e,o

a(i)ms
n N(i)ms

n (r) +
∞∑
n=1

n−1∑
m=0

∑
s=e,o

a(e)ms
n N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

b(i)ms
n M(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

b(e)ms
n M(e)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

c(i)ms
n G(i)ms

n (r) +
∞∑
n=1

n+1∑
m=0

∑
s=e,o

c(e)ms
n G(e)ms

n (r)

(3.23)

for every r∈Ω(R3). In the interest of making this work more complete and independent,
we provide in an appendix some relations between the vector spherical harmonics. The
relevant information and recurrence relations for the associated Legendre functions of
the first kind can be found in [4].
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4. PN eigenflows

In view of equations (2.4), (2.5) and (3.9), (3.23), the harmonic eigenfunctions Φ(r) and

Φ0(r), r ∈Ω(R3), with constant coefficients a(i)ms
n , b(i)ms

n , c(i)ms
n , a(e)ms

n , b(e)ms
n , c(e)ms

n , and
d(i)ms
n , d(e)ms

n , respectively,

Φ(r)=
∞∑
n=0

n+1∑
m=0

∑
s=e,o

a(i)ms
n N(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

b(i)ms
n M(i)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

c(i)ms
n G(i)ms

n (r) +
∞∑
n=1

n−1∑
m=0

∑
s=e,o

a(e)ms
n N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

b(e)ms
n M(e)ms

n (r) +
∞∑
n=0

n+1∑
m=0

∑
s=e,o

c(e)ms
n G(e)ms

n (r),

(4.1)

Φ0(r)=
∞∑
n=0

n∑
m=0

∑
s=e,o

d(i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

d(e)ms
n

(
r−(n+1)Yms

n (r̂)
)

(4.2)

generate the velocity and total pressure fields vPN, PPN. In terms of (3.11)–(3.22) and
(A.1)–(A.11), the PN flow fields are written as

vPN(r)=
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
− (n− 1)

2
a(i)ms
n − 1

2
d(i)ms
n+1 +

(n+ 2)(2n+ 5)
2(2n+ 3)

c(i)ms
n+2 r2

]
N(i)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
(n+ 2)

2
a(e)ms
n − 1

2
d(e)ms
n−1 − (n− 1)(2n− 3)

2(2n− 1)
c(e)ms
n−2 r2

]
N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

[
b(i)ms
n

]
M(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

[
b(e)ms
n

]
M(e)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
(n− 1)

(2n− 1)
c(i)ms
n

]
G(i)ms

n (r)

+
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
(n+ 2)

(2n+ 3)
c(e)ms
n

]
G(e)ms

n (r),

(4.3)

PPN(r)= PPN
0 +µ

{ ∞∑
n=0

n∑
m=0

∑
s=e,o

(n+ 1)(2n+ 3)c(i)ms
n+1

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

n(2n− 1)c(e)ms
n−1

(
r−(n+1)Yms

n (r̂)
)} (4.4)

for every r∈Ω(R3).
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5. PNAU eigenflows

According to (2.6), (2.7) and (3.9), (3.10), (3.23), the biharmonic and harmonic eigen-

functions A(r) and B(r), r∈Ω(R3), with constant coefficients f (i)ms
n , g(i)ms

n , f (e)ms
n , g(e)ms

n ,

and e(i)ms
n , e(e)ms

n , respectively,

A(r)=
∞∑
n=0

n∑
m=0

∑
s=e,o

f (i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

f (e)ms
n

(
r−(n+1)Yms

n (r̂)
)

+ r2
∞∑
n=0

n∑
m=0

∑
s=e,o

g(i)ms
n

(
rnYms

n (r̂)
)

+ r2
∞∑
n=0

n∑
m=0

∑
s=e,o

g(e)ms
n

(
r−(n+1)Yms

n (r̂)
)
,

(5.1)

B(r)=
∞∑
n=0

n∑
m=0

∑
s=e,o

e(i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

e(e)ms
n

(
r−(n+1)Yms

n (r̂)
)

(5.2)

generate the PNAU velocity and total pressure fields vPNAU and PPNAU by virtue of (3.11)–
(3.22) as well as (A.1)–(A.11). That is,

vPNAU(r)=
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
(n+ 2) f (i)ms

n+1 +
(n+ 2)(2n+ 5)

(2n+ 3)
g(i)ms
n+1 r2

]
N(i)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
− (n− 1) f (e)ms

n−1 − (n− 1)(2n− 3)
(2n− 1)

g(e)ms
n−1 r2

]
N(e)ms

n (r)

+
∞∑
n=1

n∑
m=0

∑
s=e,o

[
e(i)ms
n

]
M(i)ms

n (r) +
∞∑
n=1

n∑
m=0

∑
s=e,o

[
e(e)ms
n

]
M(e)ms

n (r)

+
∞∑
n=1

n−1∑
m=0

∑
s=e,o

[
2(n− 1)
(2n− 1)

g(i)ms
n−1

]
G(i)ms

n (r)

+
∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
2(n+ 2)
(2n+ 3)

g(e)ms
n+1

]
G(e)ms

n (r),

(5.3)

PPNAU(r)= PPNAU
0 +µ

{ ∞∑
n=0

n∑
m=0

∑
s=e,o

2(n+ 1)(2n+ 3)g(i)ms
n

(
rnYms

n (r̂)
)

+
∞∑
n=0

n∑
m=0

∑
s=e,o

2n(2n− 1)g(e)ms
n

(
r−(n+1)Yms

n (r̂)
)}

,

(5.4)

for every r∈Ω(R3).

6. Comparison of the PN and PNAU representations

In this section, our aim is to find the exact harmonic and biharmonic potentials given
by equations (4.1), (4.2) and (5.1), (5.2), which lead to the same velocity and total pres-
sure fields. From this point of view, we look for connection formulae for the differential
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representations that secure the identities

vPN(r)= vPNAU(r), PPN(r)= PPNAU(r), r∈Ω
(
R

3). (6.1)

By virtue of (6.1), we proceed by interrelating the PN flow fields (4.3), (4.4) with the
corresponding PNAU flow fields (5.3), (5.4). This correlation leads to connection formu-
lae that interrelate the corresponding constant coefficients of the potentials (4.1), (4.2),
(5.1), and (5.2). What is actually happening is that the connection of the velocity and
total pressure fields has been transferred to the corresponding connection of the constant
coefficients of the potentials. Indeed, after some calculations, we obtain the relations

c(i)ms
n+1 = 2g(i)ms

n for n= 0,1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.2)

c(e)ms
n−1 = 2g(e)ms

n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.3)

b(i)ms
n = e(i)ms

n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.4)

b(e)ms
n = e(e)ms

n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.5)

(n− 2)a(i)ms
n−1 +d(i)ms

n =−2(n+ 1) f (i)ms
n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.6)

(n+ 3)a(e)ms
n+1 −d(e)ms

n =−2n f (e)ms
n for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.7)

which establish the connection between the PN and PNAU representations at the coef-
ficient level. The cases that do not follow the general relations (6.2)–(6.7) for n = 0 are
treated separately. These concern the coefficients

g(e)0e
0 , e(i)0e

0 , e(e)0e
0 , d(i)0e

0 , f (i)0e
0 , f (e)0e

0 ∈R. (6.8)

Furthermore, the interrelation of the total pressures implies the equation of the constant
pressures defined earlier, that is,

PPN
0 = PPNAU

0 . (6.9)

Flows of zero vorticity are irrotational flows. Consequently, irrotational fields force the
corresponding terms of the potentials, or of the flow fields, to vanish. Then, according to
(4.3) and (5.3) of the velocity fields, in view of (2.3) and the relations (A.7), (A.9), and
(A.11), the following constant coefficients are set to zero on the basis of orthogonality
arguments:

c(i)ms
n+1 = g(i)ms

n = 0 for n= 0,1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.10)

c(e)ms
n−1 = g(e)ms

n = 0 for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.11)

b(i)ms
n = e(i)ms

n = 0 for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o, (6.12)

b(e)ms
n = e(e)ms

n = 0 for n= 1,2, . . . , m= 0,1, . . . , n, s= e,o. (6.13)



356 Differential representations for Stokes flow

Even though the biharmonic part of the biharmonic potential A and the harmonic
potential B are connected directly to the G-component and the M-component of the
harmonic potential Φ, respectively, as shown from the general equations (6.2)–(6.5), the
procedure of interrelation is not invertible. The reason for this lack of invertibility is due
to the general connection relations (6.6) and (6.7), where the harmonic part of the bihar-
monic potential A is given through the N-component of the harmonic potential Φ and
through the harmonic potential Φ0. The transformation from one representation to the
other is not obtainable analytically in the sense that one can start with the PN differential
representation and regain the results from the PNAU differential solution through the
relations above, but one cannot come the opposite way since two sets of internal and ex-
ternal constant coefficients of the PN solution cannot be determined. Consequently, we
deal with a higher number of degrees of freedom for the PN differential representation,
a fact that implies the flexibility of the PN representation. In other words, for the same
eigenflow, the PN representation lives in a higher-dimensional space than the PNAU one.

7. Application: the Kuwabara sphere-in-cell model

In order to demonstrate the usefulness of the PN differential representation ((2.4), (2.5)
or (4.3), (4.4)), we use it to solve the axisymmetric Stokes flow problem through a swarm
of stationary spherical particles, embedded within an otherwise quiescent Newtonian
fluid that moves with constant uniform velocity in the polar direction. In other words,
according to the idea of particle-in-cell models described in the introduction, we are in-
terested in solving the creeping flow within a fluid cell limited between two concentric
spherical surfaces.

Two concentric spheres are considered. The inner one, indicated by Sα, at r = α, is solid
and stationary. It lives within a spherical layer, which is confined by the outer sphere in-
dicated by Sb, at r = b. A uniformly approaching velocity of magnitude U , in the negative
direction of the x3-axis, generates the axisymmetric flow in the fluid layer between the
two spheres. The boundary conditions assume the forms

υr = 0 on r = α, (7.1)

υζ = 0 on r = α, (7.2)

υr =−Uζ on r = b, (7.3)

ωϕ ≡ ϕ̂ ·ω = 0 on r = b, (7.4)

where υr and υζ are the r and ζ components of the axisymmetric PN velocity field and ωϕ

refers to the ϕ component of the vorticity field given by (2.3). Equations (7.1) and (7.2)
express the nonslip flow condition. Equation (7.3) implies that there is a flow across the
boundary of the fluid envelope Sb. Furthermore, according to the Kuwabara argument,
the vorticity is assumed to vanish on the external sphere, as shown by equation (7.4). This
completes the statement of a well-posed boundary value problem.

Since the PN representation covers 3D flow fields, for 2D flows, as in our case, we are
obliged to make a considerable reduction considering rotational symmetry. This is attain-
able and requires the same velocity field on every meridian plane. That is, the velocity is
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independent of the azimuthal angle ϕ:

∂vPN(r)∂ϕ= 0, r∈Ω
(
R

3), (7.5)

and its vector lives on a meridian plane:

ϕ̂ · vPN(r)= 0, r∈Ω
(
R

3). (7.6)

Now, imposing the axisymetric conditions (7.5) and (7.6) to our representation, the
velocity field (4.3) is written in a suitable form:

vPN(r,ζ)= υPN
r (r,ζ)r̂ + υPN

ζ (r,ζ)ζ̂ , r > 0, |ζ| ≤ 1, (7.7)

where the components of the velocity are expressed in terms of the radial component and
Legendre functions of the first kind via

υPN
r (r,ζ)=

∞∑
n=0

1
2

{
(n+ 1)

(
(n+ 3)

(2n+ 3)
c̃(e)
n+1 + d̃(e)

n

)
r−(n+2) +

n(n+ 1)
(2n− 1)

c̃(e)
n−1r

−n

−n
(

(n− 2)
(2n− 1)

c̃(i)
n−1 + d̃(i)

n

)
rn−1− n(n+ 1)

(2n+ 3)
c̃(i)
n+1r

n+1
}
Pn(ζ),

(7.8)

υPN
ζ (r,ζ)=

∞∑
n=1

1
2

{(
(n+ 3)

(2n+ 3)
c̃(e)
n+1 + d̃(e)

n

)
r−(n+2) +

(n− 2)
(2n− 1)

c̃(e)
n−1r

−n

+
(

(n− 2)
(2n− 1)

c̃(i)
n−1 + d̃(i)

n

)
rn−1 +

(n+ 3)
(2n+ 3)

c̃(i)
n+1r

n+1
}
P1
n(ζ),

(7.9)

while for the total pressure we obtain, from equation (4.4),

PPN(r,ζ)= PPN
0 −µ

∞∑
n=0

{
(n+ 1)c̃(i)

n+1r
n−nc̃(e)

n−1r
−(n+1)

}
Pn(ζ), r > 0, |ζ| ≤ 1. (7.10)

The vorticity field given in (2.3), in view of (7.7), (7.8), and (7.9), is easily confirmed to
be expressible in

ωPN(r,ζ)= ϕ̂ωPN
ϕ (r,ζ), r > 0, |ζ| ≤ 1, (7.11)

whereas

ωPN
ϕ (r,ζ)=

∞∑
n=1

{
c̃(i)
n+1r

n + c̃(e)
n−1r

−(n+1)
}
P1
n(ζ). (7.12)

The constant coefficients c̃(i)
n , c̃(e)

n , d̃(i)
n , and d̃(e)

n , n≥ 0, must be determined from the ap-
propriate boundary conditions.
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In order to apply the boundary conditions (7.1)–(7.4), we use the expressions (7.8),
(7.9), and (7.12) as well as certain recurrence and orthogonality relations for the Le-
gendre functions [4]. After some extensive algebra, one obtains a complicated system of
linear algebraic equations involving the unknown constant coefficients, where only the
first term provides us with the solution and then we obtain the corrected solution of the
Kuwabara-type boundary value problem [5], that is,

vPN(r,ζ
)= υPN

r

(
r,ζ
)

r̂ + υPN
ζ

(
r,ζ
)
ζ̂ , (7.13)

υPN
r

(
r,ζ
)= Uζ

2K

[
3

5�3

(
r

α

)2

−
(

2 +
1
�3

)
+ 3
(
α

r

)
−
(

1− 2
5�3

)(
α

r

)3]
, (7.14)

υPN
ζ

(
r,ζ
)=−U

√
1− ζ2

2K

[
6

5�3

(
r

α

)2

−
(

2 +
1
�3

)
+

3
2

(
α

r

)
+

1
2

(
1− 2

5�3

)(
α

r

)3]
, (7.15)

ωPN(r,ζ
)= ϕ̂

3U
√

1− ζ2

2αK

[
− 1
�3

(
r

α

)
+
(
α

r

)2]
, (7.16)

PPN(r,ζ
)= PPN

0 +
3µUζ

2αK

[
2
�3

(
r

α

)
+
(
α

r

)2]
, (7.17)

where � = b/α > 1, K = (�− 1)3(1 + 3� + 6�2 + 5�3)/5�6, and α, b are the radii of the con-
centric spheres. We remark here on the simple way one can obtain the solution preserving
at the same time the mathematical rigor.

8. Conclusions

A method for connecting two differential representations for nonaxisymmetric Stokes
flow was developed. Based on this method, we examined the Papkovich-Neuber (PN)
[8, 10] and the Palaniappan et al. (PNAU) [9] differential representations, which offer so-
lutions for such flow problems in spherical geometry. The important physical flow fields
(velocity, total pressure) are presented in terms of vector spherical harmonics. Further-
more, interrelation of the flow fields leads to connection formulae for the constant co-
efficients of the potentials, using the corresponding potentials as a function of spherical
eigenfunctions. An immediate consequence of the interrelation of our representations for
Stokes flow is that this procedure cannot be inverted. Consequently, one can always cal-
culate the flow fields via the PNAU representation once the PN eigenmodes are known,
but one cannot obtain relations that provide the PN potentials through the harmonic and
biharmonic PNAU potentials.

An application of the present theory to an axisymmetric Stokes flow problem in a
spherical cell (as a mean of modeling flow through a swarm of spherical particles) with
the help of the PN differential representation was provided. An extension of the problem
presented here to the case of ellipsoidal geometry for the creeping flow of small ellipsoidal
particles is under current investigation.
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Appendix

For completeness, we present the following relations between the vector surface and solid
spherical harmonics:

Bms
n ×Pms

n = Yms
n Cms

n , Pms
n ×Cms

n = Yms
n Bms

n , (A.1)

Bms
n = r̂×Cms

n , Cms
n = Bms

n × r̂, (A.2)

Pms
n (r̂)= r−n+1

(2n+ 1)
N(i)ms

n−1 (r)− rn+2

(2n+ 1)
N(e)ms

n+1 (r), (A.3)

Bms
n (r̂)=

√
n+ 1
n

r−n+1

(2n+ 1)
N(i)ms

n−1 (r) +
√

n

n+ 1
rn+2

(2n+ 1)
N(e)ms

n+1 (r), (A.4)

Cms
n (r̂)= r−n

2
√
n(n+ 1)

M(i)ms
n (r) +

rn+1

2
√
n(n+ 1)

M(e)ms
n (r), (A.5)

for n= 0,1,2, . . ., m= 0,1, . . . ,n+ 1, s= e,o, and r∈Ω(R3). Finally, for the vector spheri-
cal harmonics, one can easily derive the following relations:

∇·N(i)ms
n (r)= 0, ∇·N(e)ms

n (r)= 0, (A.6)

∇×N(i)ms
n (r)= 0, ∇×N(e)ms

n (r)= 0, (A.7)

∇·M(i)ms
n (r)= 0, ∇·M(e)ms

n (r)= 0, (A.8)

∇×M(i)ms
n (r)= (n+ 1)N(i)ms

n−1 (r), ∇×M(e)ms
n (r)=−nN(e)ms

n+1 (r), (A.9)

∇·G(i)ms
n (r)=−n(2n+ 1)rn−1Yms

n−1(r̂),

∇·G(e)ms
n (r)=−(n+ 1)(2n+ 1)r−(n+2)Yms

n+1(r̂),
(A.10)

∇×G(i)ms
n (r)=−(2n+ 1)M(i)ms

n−1 (r), ∇×G(e)ms
n (r)= (2n+ 1)M(e)ms

n+1 (r). (A.11)
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