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Two main results are included in this paper. The first one deals with the leading asymp-
totic term of the magnetic field outside any conductive medium. In accord with physical
reality, it is proved mathematically that the leading approximation is a quadrupole term
which means that the conductive brain tissue weakens the intensity of the magnetic field
outside the head. The second one concerns the orientation of the silent sources when
the geometry of the brain model is not a sphere but an ellipsoid which provides the best
possible mathematical approximation of the human brain. It is shown that what char-
acterizes a dipole source as “silent” is not the collinearity of the dipole moment with its
position vector, but the fact that the dipole moment lives in the Gaussian image space at
the point where the position vector meets the surface of the ellipsoid. The appropriate
representation for the spheroidal case is also included.

1. The magnetic field

The mathematical theory of magnetoencephalography (MEG) is governed by the equa-
tions of quasistatic theory of electromagnetism [11, 14, 15, 19, 20]. If we denote by V−

the region occupied by the conductive brain tissue, with conductivity σ > 0 and magnetic
permeability µ0 > 0, then, as Geselowitz has shown [3, 9, 10], the magnetic field in the
exterior of V− region, V+, due to the internal electric dipole current

Jp(r)=Qδ
(

r− r0
)
, r0 ∈V−, (1.1)

assumes the representation

B(r)= µ0

4π
Q× r− r0∣∣r− r0

∣∣3 −
µ0σ

4π

∫
∂V−

u−(r′)n̂′ × r− r′

|r− r′|3 ds(r′), (1.2)

where r∈V+ and Q stands for the electric dipole moment.
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The scalar field u− in the integrand of (1.2), over the boundary ∂V− of V−, describes
the interior electric potential and solves the interior Neumann problem

σ∆u−(r)=∇· Jp(r), r∈V−, (1.3a)

∂

∂n
u−(r)= 0, r∈ ∂V−, (1.3b)

where Jp is given by (1.1) and the boundary ∂V− is assumed to be smooth.
Note that the solution of the boundary value problem (1.3) is unique up to an additive

constant. Hence, the general solution of (1.3) has the form

u−c (r)= c+u−(r), r∈V−, (1.4)

where u− satisfies (1.3).
What we are going to show in the sequel is that, no matter what the shape of the

smooth bounded boundary ∂V− is, the leading term of the multipole expansion of (1.2)
is not a dipole but a quadrupole term. Observe that an expansion of the source term, in
(1.2) in terms of inverse powers of r, offers the leading dipole term

µ0

4π
Q× r− r0∣∣r− r0

∣∣3 =
µ0

4π
Q× r̂
r2

+O
(

1
r3

)
, r −→∞, (1.5)

where r= r r̂.
Similarly, the surface integral in (1.2) provides the expansion

− µ0σ

4π

∫
∂V−

u−(r′)n̂′ × r− r′

|r− r′|3 ds(r′)

=−µ0σ

4π

∫
∂V−

u−(r′)n̂′ds(r′)× r̂
r2

+O
(

1
r3

)
, r −→∞.

(1.6)

We will show that

Q= σ
∫
∂V−

u−(r)n̂ds(r). (1.7)

To this end we consider the Biot-Savart law

B(r)= µ0

4π

∫
V−

J(r′)× r− r′

|r− r′|3 dυ(r′), r∈V+, (1.8)

where the total current J is written as

J(r′)= Jp(r′) + σE−(r′)=Qδ
(

r′ − r0
)− σ∇r′u

−(r′) (1.9)

and

E− = −∇u− (1.10)

is the interior electric field. The quasistatic form of the Ampere-Maxwell equation

∇×B= µ0J (1.11)
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implies that the total current is a solenoidal field, that is,

∇· J= 0. (1.12)

Then condition (1.12) is used to prove the dyadic identity

∇· (J⊗ r)= (∇· J)r + J ·∇⊗ r= J, (1.13)

in view of which

B(r)= µ0

4π

∫
V−

J(r′)×
(
−∇r

1
|r− r′|

)
dυ(r′)

= µ0

4π
∇r×

∫
V−

J(r′)
|r− r′|dυ(r′)

= µ0

4π
∇r×

[
1
r

∫
V−

J(r′)dυ(r′) +O
(

1
r2

)]

= µ0

4π
∇r×

[
1
r

∫
V−
∇r′ ·

(
J(r′)⊗ r′

)
dυ(r′) +O

(
1
r2

)]

= µ0

4π
∇r×

[
1
r

∫
∂V−

n̂′ · J(r′)⊗ r′ds(r′) +O
(

1
r2

)]

=− µ0

4π
r̂
r2
×
∫
∂V−

n̂′ · J(r′)⊗ r′ds(r′) +O
(

1
r3

)
.

(1.14)

The fact that r0 ∈V−, the expression (1.9) for the current J, and the boundary condition
(1.3b) on ∂V− imply that

n̂′ · J(r′)= 0, r′ ∈ ∂V−. (1.15)

Consequently, (1.14) concludes that

B(r)=O
(

1
r3

)
, r −→∞. (1.16)

In other words, the leading term of B in the exterior of V− is a quadrupole for any smooth
boundary ∂V−. This result is compatible with physical reality.

Note that in the absence of conductive material, surrounding the source dipole current
at r0, the expansion of B starts with a dipole term, that is , a term of order r−2. But, in the
presence of conductive material, the corresponding expansion starts with a quadrupole
term, that is, a term of order r−3. Hence, the conductive material partially “hides” the
dipole.

As far as MEG measurements are concerned, this means that the conductive brain
tissue weakens the intensity of the magnetic field exterior to the head.

This result is in accord with what is known for the special cases, where ∂V− is a sphere
[12, 17], a spheroid [1, 4, 5, 6, 7, 13], or an ellipsoid [2].
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2. Silent sources

For the case of a sphere [17], where a complete expression for the magnetic field outside
the sphere is known in the form

B(r)= µ0

4π

(
Q× r0

) · [Ĩ− r⊗∇]F(r)
F2(r)

(2.1)

with

F(r)= r
∣∣r− r0

∣∣2
+ r · (r− r0

)∣∣r− r0
∣∣, (2.2)

it is obvious that if Q is collinear to r0, then B vanishes. This is then characterized as a
silent source since it represents a nontrivial activity of the brain that is not detectable in
the exterior to the head space.

Unfortunately, the complete expression for B, when ∂V− is an ellipsoid, is not known
and it seems far from being possible with the present knowledge of ellipsoidal harmonics.
On the other hand, since the human brain is actually shaped in the form of an ellipsoid,
with average semiaxes 6, 6.5, and 9 cm [18], even the leading analytic approximation [2]
is of value.

In fact, the quadrupole term of B for a sphere, a prolate spheroid, and an ellipsoid can
be written as

Bq(r)= lim
r→∞r

3B(r)= µ0

8π
d · G̃(r), (2.3)

where d is a vector which involves the location, the intensity, and the orientation of the
source and G̃ is a dyadic which is solely dependent on the geometry of the conductive
medium. Hence, d represents the source and G̃ represents the geometry.

In particular, if ∂V− is a sphere of radius α, then

d= dsr =Q× r0, (2.4)

G̃sr(r)= 1
r3

(Ĩ− 3r̂⊗ r̂). (2.5)

If ∂V− is the prolate spheroid

x2
1

α2
1

+
x2

2 + x2
3

α2
2

= 1, α2 < α1, (2.6)

then

d= dsd =
(

Q× r0
) · x̂1⊗ x̂1 + 2Q · S̃× r0 ·

(
Ĩ− x̂1⊗ x̂1

)
(2.7)

with

S̃= α2
1

α2
1 +α2

2
x̂1⊗ x̂1 +

α2
2

α2
1 +α2

2

(
Ĩ− x̂1⊗ x̂1

)
, (2.8)

and Ĝsd is some complicated dyadic function given in [13].
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Finally, if ∂V− is the triaxial ellipsoid

x2
1

α2
1

+
x2

2

α2
2

+
x2

3

α2
3
= 1, α3 < α2 < α1, (2.9)

then

d= del = 2
(

Q · M̃× r0
) · Ñ (2.10)

with

M̃= α2
1x̂1⊗ x̂1 +α2

2x̂2⊗ x̂2 +α2
3x̂3⊗ x̂3,

Ñ= x̂1⊗ x̂1

α2
2 +α2

3
+

x̂2⊗ x̂2

α2
1 +α2

3
+

x̂3⊗ x̂3

α2
1 +α2

2
,

(2.11)

where again G̃el is given in terms of elliptic integrals and complicated expressions which
can be found in [2].

Note that the dyadic M̃ specifies the ellipsoid in the sense that the equation

r · M̃−1 · r= 1 (2.12)

coincides with the ellipsoid (2.9), while the dyadic Ñ characterizes the principal moments
of inertia of the ellipsoid since

Ñ= m

5
L̃−1, (2.13)

where L̃ is the inertia dyadic of the ellipsoid (2.9) and m is its total mass.
Obviously, the ellipsoid is considered to be homogeneous, in which case its inertia

dyadic reflects its geometrical characteristics.
It is worth noticing that the dyadic S̃ divides the space into the 1D axis of revolution

represented by x̂1⊗ x̂1 and its 2D orthogonal complement represented by

Ĩ− x̂1⊗ x̂1 = x̂2⊗ x̂2 + x̂3⊗ x̂3, (2.14)

where all directions are equivalent (2D isotropy).
In the limit, as α1 → α and α2 → α,

S̃−→ 1
2

Ĩ,

dsd −→Q× r0 = dsr.
(2.15)

Similarly, the complete geometrical anisotropy, carried by the ellipsoid, is expressed via
the dyadics M̃ and Ñ, which dictate the characteristics of each principal direction in space.
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In the limit, as α1 → α, α2 → α, and α3 → α, the following limits are obtained

M̃−→ α2Ĩ, Ñ−→ 1
2α2

Ĩ,

del −→Q× r0 = dsr,
(2.16)

so that the spherical behavior is recovered.
Obviously, the vector dsd for the spheroid and the vector del for the ellipsoid incor-

porate the modifications of the cross product (2.4) that are imposed by the particular
geometry.

If the quadrupole contribution Bq is known, then

d= 8π
µ0

Bq(r) · G̃−1(r), (2.17)

where G̃ is also known if the geometry is given.
This means that, if the spherical model is considered, then Q and r0 belong to the

plane, through the origin, which is perpendicular to dsd.
For the case of the ellipsoid,

del · Ñ−1 = 2Q · M̃× r0, (2.18)

which means that the modified del vector, that is, the vector del · Ñ−1, defines a perpen-
dicular plane on which both the modified moment Q · M̃ and the position vector r0 lie.

The intermediate case of the spheroid shows that if dsd is known, then we can extract
information about the x1-component of Q× r0 and the projection of 2Q · S̃× r0 on the
orthogonal complement of x̂1.

This geometric analysis of the d’s identifies the orientation of the silent sources.
For the simplest case of the sphere, a silent source is a dipole with a radial moment

[17]. For the general case of the ellipsoid a silent source is a dipole with a modified mo-
ment Q · M̃ parallel to r0. Then, since M̃−1 represents the Gaussian map [16], which takes
a position vector on the surface of the ellipsoid to a vector in the normal to the surface
direction at that point, it follows that Q will be silent if it is parallel to the normal of the
ellipsoid in the direction of r0.

This silent direction for Q becomes parallel to r0 for the case of a sphere, but it is now
clear that it is the normal to the surface direction, and not the collinearity with r0, that
characterizes a dipole as silent.

Finally, we consider the spheroidal case. From (2.7), it follows that the vanishing of dsd

comes from the simultaneous solvability of the system
(

Q× r0
) · x̂1 = 0, (2.19)(

Q · S̃× r0
) · x̂2 = 0, (2.20)(

Q · S̃× r0
) · x̂3 = 0. (2.21)

Condition (2.19) holds whenever the projections of Q and r0 on the x2x3-plane are paral-
lel, while (2.20) and (2.21) hold whenever the projections of Q · S̃ and r0 on the x1x3 and
on the x1x2 planes are also parallel.
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From (2.20) and (2.21), we obtain

α2
1

α2
2

Q1

Q2
= x01

x02
,

α2
1

α2
2

Q1

Q3
= x01

x03
, (2.22)

where Q= (Q1,Q2,Q3) and r0 = (x01,x02,x03).
Taking the ratio of (2.22), we obtain

Q2

Q3
= x02

x03
, (2.23)

which is exactly what comes out of (2.19). Interpreting everything in geometrical lan-
guage, we see that the vectors Q and r0 should be coplanar and they should lie on the
meridian plane specified by r0. Then Q should point in the direction of the normal to the
ellipse on this meridian plane in the direction of r0. We see, once more, that Q should be
normal to the surface of the spheroid in the direction of r0. The only difference with the
ellipsoid is that, as a consequence of the rotational symmetry, both Q and r0 always lie on
a meridian plane.

As a final conclusion we remark that modeling the human brain, which is a genuine
triaxial ellipsoid, by a sphere, the MEG measurements are misinterpreted, since detectable
sources are considered as silent while at the same time information is lost from detectable
sources that we think they are silent.

For a complete characterization of silent electromagnetic activity within the brain,
which concerns not only a single dipole but any current distribution inside a spherical
conductor, we refer to the work of Fokas, et al. [8].

Acknowledgments

The authors want to express their appreciation to Professor Athanassios Fokas for fruitful
discussion during the preparation of the present work.

References

[1] B. N. Cuffin and D. Cohen, Magnetic fields of a dipole in special volume conductor shapes, IEEE
Trans. Biomedical Eng. 24 (1977), no. 4, 372–381.

[2] G. Dassios and F. Kariotou, Magnetoencephalography in ellipsoidal geometry, J. Math. Phys. 44
(2003), no. 1, 220–241.

[3] , On the Geselowitz formula in biomagnetics, Quart. Appl. Math. 61 (2003), no. 2, 387–
400.

[4] J. C. de Munck, The potential distribution in a layered anisotropic spheroidal volume conductor,
J. Appl. Phys. 64 (1988), no. 2, 464–470.

[5] T. Fieseler, A. Ioannides, M. Liu, and H. Nowak, Model studies of the accuracy of the conducting
sphere model in MEG using the spheroid, Biomagnetism: Fundamental Research and Clinical
Applications (Proceedings of the 9th International Conference on Biomagnetism, Vienna,
1993) (C. Baumgartner, L. Deecke, G. Stroink, and S. J. Williamson, eds.), Studies in Ap-
plied Electromagnetics and Mechanics, vol. 7, IOS Press, Amsterdam, 1995, pp. 445–449.

[6] , A numerically stable approximation for the magnetic field of the conducting spheroid
close to the symmetry axis, Biomag 96: Proceedings of the 10th International Conference
Biomagnetism (Santa Fe, 1996), Springer-Verlag, New york, 2000, pp. 209–212.



314 Exterior field and silent sources in MEG

[7] T. Fieseler, A. Ioannides, and H. Nowak, Influence of the global volume conductor curvature on
point and distributed inverse solutions studied with the spheroid model., Models for Biomag-
netic Inverse/Forward Problem (11th International Conference on Biomagnetism, Sendai,
1998) (T. Yoshimoto et al., eds.), Tohok University Press, Sendai, 1999, pp. 185–188.

[8] A. S. Fokas, I. M. Gelfand, and Y. Kurylev, Inversion method for magnetoencephalography, In-
verse Problems 12 (1996), no. 3, L9–L11.

[9] D. B. Geselowitz, Multipole representation for an equivalent cardiac generator, Proc. IRE 48
(1960), no. 1, 75–79.

[10] , On the magnetic field generated outside an inhomogeneous volume conductor by internal
current sources, IEEE Trans. Magn. 6 (1970), no. 2, 346–347.
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