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The paper discusses the asymptotic behaviour of all solutions of the differential equa-
tion ẏ(t)=−a(t)y(t) +

∑n
i=1 bi(t)y(τi(t)) + f (t), t ∈ I = [t0,∞), with a positive continu-

ous function a, continuous functions bi, f , and n continuously differentiable unbounded
lags. We establish conditions under which any solution y of this equation can be esti-
mated by means of a solution of an auxiliary functional equation with one unbounded
lag. Moreover, some related questions concerning functional equations are discussed as
well.

1. Introduction

In this paper, we study the problem of the asymptotic bounds of all solutions for the delay
differential equation

ẏ(t)=−a(t)y(t) +
n∑
i=1

bi(t)y
(
τi(t)

)
+ f (t), t ∈ I = [t0,∞), (1.1)

where a is a positive continuous function on I ; bi, f are continuous functions on I , τi are
continuously differentiable functions on I fulfilling τi(t) < t, 0 < τ̇i(t)≤ λi < 1 for all t ∈ I
and τi(t)→∞ as t→∞, i= 1, . . . ,n.

The prototype of such equations may serve the equation with proportional delays

ẏ(t)=−ay(t) +
n∑
i=1

bi y
(
λit
)

+ f (t), t ≥ 0, (1.2)

where a > 0, bi �= 0, 0 < λi < 1, i = 1, . . . ,n, are real scalars. There are numerous inter-
esting applications for (1.2) and its modifications, such as collection of current by the
pantograph head of an electric locomotive, probability theory on algebraic structures or
partition problems in number theory. Various special cases of (1.2) have been studied
because of these applications, as well as for theoretical reasons (see, e.g., Bereketoglu and
Pituk [1], Lim [11], Liu [12], or Ockendon and Taylor [15]).
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The study of these differential equations with proportional delays turned out to be the
useful paradigm for the investigation of qualitative properties of differential equations
with general unbounded lags. Some results of the above-cited papers have been general-
ized in this direction by Heard [7], Makay and Terjéki [13], and in [2, 3, 4]. For further
related results on the asymptotic behaviour of solutions, see, for example, Diblı́k [5, 6],
Iserles [8], or Krisztin [9].

In this paper, we combine standard methods from the theory of functional differential
equations and some results of the theory of functional equations and difference equations
to analyze the asymptotic properties of all solutions of (1.1). The main results are formu-
lated in Sections 3 and 4. In Section 3, we derive the asymptotic estimate of all solutions
of (1.1). Section 4 discusses some particular cases of (1.1) and improves the above de-
rived estimate for these special cases. Both sections also present the illustrating examples
involving, among others, (1.2).

2. Preliminaries

Let t−1 :=min{τi(t0), i= 1,2, . . . ,n} and I−1 := [t−1,∞). By a solution of (1.1), we under-
stand a real-valued function y ∈ C(I−1)∩C1(I) such that y satisfies (1.1) on I .

In the sequel, we introduce the notion of embeddability of given functions into an
iteration group. This property will be imposed on the set of delays {τ1, . . . ,τn} throughout
next sections.

Definition 2.1. Let ψ ∈ C1(I−1), ψ̇ > 0 on I−1. Say that {τ1, . . . ,τn} can be embedded into
an iteration group [ψ] if for any τi there exists a constant di such that

τi(t)= ψ−1(ψ(t)−di
)
, t ∈ I. (2.1)

Remark 2.2. The problem of embeddability of given functions {τ1, . . . ,τn} into an itera-
tion group [ψ] is closely related to the existence of a common solution ψ to the system of
the simultaneous Abel equations

ψ
(
τi(t)

)= ψ(t)−di, t ∈ I , i= 1, . . . ,n. (2.2)

The complete solution of these problems have been described by Neuman [14] and Zdun
[16]. These papers contain conditions under which (2.1) holds for any τi, i= 1, . . . ,n (see
also [10, Theorem 9.4.1]). We only note that the most important necessary condition is
commutativity of any pair τi, τj , i, j = 1, . . . ,n. Notice also, that if τi are delays, then di
must be positive.

3. The asymptotic bound of all solutions of (1.1)

The aim of this section is to formulate and prove the asymptotic estimate of all solutions
of (1.1). We assume that all the assumptions imposed on a, bi, τi, and f in Section 1 are
valid.
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Theorem 3.1. Let {τ1, . . . ,τn} be embedded into an iteration group [ψ]. Let y be a solution
of (1.1), where a(t)≥ K/ exp{αψ(t)}, 0 <

∑n
i=1 |bi(t)| ≤Ma(t) for all t ∈ I and suitable real

constants K > 0, M > 0, α < 1. If f (t)=O(exp{βψ(t)}) as t→∞ for a suitable real β, then

y(t)=O(exp
{
γψ(t)

})
as t −→∞, γ >max

(
α+β,

logM
d1

, . . . ,
logM
dn

)
, (3.1)

where di, i= 1, . . . ,n, are given by (2.1).

Proof. The substitution

s= ψ(t), z(s)= exp
{− γψ(t)

}
y(t) (3.2)

transforms (1.1) into the form

z′(s)=−[a(h(s)
)
h′(s) + γ

]
z(s) +

n∑
i=1

bi
(
h(s)

)
exp

{− γdi}h′(s)z(µi(s))
+ f

(
h(s)

)
exp{−γs}h′(s),

(3.3)

where “′” stands for d/ds, h(s) = ψ−1(s), and µi(s) = ψ(τi(h(s))) = s− di on ψ(I), i =
1, . . . ,n. This form can be rewritten as

d

ds

[
exp

{
γs+

∫ h(s)

s0
a(u)du

}
z(s)

]

=
n∑
i=1

bi
(
h(s)

)
exp

{− γdi}h′(s)exp

{
γs+

∫ h(s)

s0
a(u)du

}
z
(
s−di

)

+ exp

{
γs+

∫ h(s)

s0
a(u)du

}
f
(
h(s)

)
exp{−γs}h′(s),

(3.4)

where s0 ∈ ψ(I) is such that γ+ a(h(s))h′(s) > 0 for all s≥ s0.
Put δ :=min(d1, . . . ,dn) > 0, sk := s0 + kδ, Jk := [sk−1,sk], k = 1,2, . . . . Let s∗ ∈ Jk+1. The

integration of (3.4) over [sk,s∗] yields

exp

{
γs+

∫ h(s)

s0
a(u)du

}
z(s)

∣∣s∗
sk

=
n∑
i=1

∫ s∗
sk
bi
(
h(s)

)
exp

{− γdi}h′(s)exp

{
γs+

∫ h(s)

s0
a(u)du

}
z
(
s−di

)
ds

+
∫ s∗
sk

exp

{
γs+

∫ h(s)

s0
a(u)du

}
f
(
h(s)

)
exp{−γs}h′(s)ds,

(3.5)
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that is,

z
(
s∗
)= exp

{
γ
(
sk − s∗

)−
∫ h(s∗)

h(sk)
a(u)du

}
z
(
sk
)

+ exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

×
n∑
i=1

∫ s∗
sk
bi
(
h(s)

)
exp

{− γdi}h′(s)exp

{
γs+

∫ h(s)

s0
a(u)du

}
z
(
s−di

)
ds

+ exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

×
∫ s∗
sk

exp

{
γs+

∫ h(s)

s0
a(u)du

}
f
(
h(s)

)
exp{−γs}h′(s)ds.

(3.6)

Put Mk := sup{|z(s)|, s∈∪k
p=1Jp}, k = 1,2, . . . . Then one can estimate z(s∗) as

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−
∫ h(s∗)

h(sk)
a(u)du

}

+Mk exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

×
∫ s∗
sk

n∑
i=1

∣∣bi(h(s)
)∣∣exp

{− γdi}h′(s)exp

{
γs+

∫ h(s)

s0
a(u)du

}
ds

+ exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

×
∫ s∗
sk

exp

{
γs+

∫ h(s)

s0
a(u)du

}∣∣ f (h(s)
)∣∣exp{−γs}h′(s)ds.

(3.7)

Noting that

n∑
i=1

∣∣bi(h(s)
)∣∣exp

{− γdi}≤M exp
{− γdi}a(h(s)

)
< a
(
h(s)

)
,

∣∣ f (h(s)
)∣∣exp{−γs} ≤ K1 exp

{
(β− γ)s

}
, K1 > 0,

(3.8)

we can rewrite (3.7) as

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−
∫ h(s∗)

h(sk)
a(u)du

}

+Mk exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

×
∫ s∗
sk
a
(
h(s)

)
h′(s)exp

{
γs+

∫ h(s)

s0
a(u)du

}
ds
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+K1 exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

×
∫ s∗
sk

exp

{
γs+

∫ h(s)

s0
a(u)du

}
h′(s)exp

{
(β− γ)s

}
ds.

(3.9)

From here, we get

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−
∫ h(s∗)

h(sk)
a(u)du

}

+
(
Mk +K2 exp

{
(α+β− γ)sk

})
exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

×
∫ s∗
sk
a
(
h(s)

)
h′(s)exp

{
γs+

∫ h(s)

s0
a(u)du

}
ds,

(3.10)

where K2 = K1/K . Using the assumptions imposed on a and τ̇i, we can estimate the inte-

gral I := ∫ s∗sk a(h(s))h′(s)exp{γs+
∫ h(s)
s0 a(u)du}ds as

I ≤ exp

{
γs+

∫ h(s)

s0
a(u)du

}∣∣s∗
sk

(
1 +K3e

−ωsk), K3 > 0, ω = 1−α > 0 (3.11)

(for a similar situation see also [4]). Hence,

∣∣z(s∗)∣∣≤Mk exp

{
γ
(
sk − s∗

)−
∫ h(s∗)

h(sk)
a(u)du

}

+
(
Mk +K2 exp

{
(α+β− γ)sk

})
exp

{
−
∫ h(s∗)

s0
a(u)du− γs∗

}

× exp

{
γs+

∫ h(s)

s0
a(u)du

}∣∣∣∣
s∗

sk

(
1 +K3 exp

{−ωsk})
≤Mk

(
1 +K3 exp

{−ωsk})+K2 exp
{

(α+β− γ)sk
}(

1 +K3 exp
{−ωsk})

≤M∗
k

(
1 +N exp

{− κsk}),

(3.12)

where M∗
k := max(Mk,K2), κ := min(ω,γ − α− β) > 0, and N > 0 is a constant large

enough. Since s∗ ∈ Jk+1 was arbitrary,

M∗
k+1 ≤M∗

k

(
1 +N exp

{− κsk})≤M∗
1

k∏
j=1

(
1 +N exp

{− κsj}). (3.13)

Now, the boundedness of (M∗
k ) as k →∞ implies via substitution (3.2) the asymptotic

estimate (3.1). �

Remark 3.2. This remark concerns the possible extension of our results to differential
equations with delays intersecting the identity at the initial point t0. These equations
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form a wide and natural class of delay differential equations (see the following examples)
and have many applications (some of them have been mentioned in Section 1). Since we
are interested in the behaviour at infinity, it is obvious that the main notions and results
of this paper can be easily reformulated to this case.

Example 3.3. Consider the equation

ẏ(t)=−(a+ cexp{−t})y(t) +
n∑
i=1

bi y
(
λit
)

+ f (t), t ≥ 0, (3.14)

where a > 0, c ≥ 0, bi �= 0, 0 < λi < 1, i = 1, . . . ,n are constants and f ∈ C([0,∞)) fulfils
f (t) = O(tβ) as t →∞. Let ψ(t) = log t, then functions {λ1t, . . . ,λnt} can be embedded
into an iteration group [ψ]. Indeed,

ψ
(
λit
)= ψ(t)− logλ−1

i , t > 0, i= 1, . . . ,n. (3.15)

Then, by Theorem 3.1, the estimate

y(t)=O(tγ) as t −→∞, γ >max

(
β,

log
∑n

i=1

∣∣bi∣∣/a
logλ−1

1
, . . . ,

log
∑n

i=1

∣∣bi∣∣/a
logλ−1

n

)
(3.16)

holds for any solution y of (3.14).

4. Some particular cases of (1.1)

In this section, we first consider (1.1) in the homogeneous form

ẏ(t)=−a(t)y(t) +
n∑
i=1

bi(t)y
(
τi(t)

)
, t ∈ I. (4.1)

Using a simple modification of the proof of Theorem 3.1, we improve the conclusion of
this theorem for the case of (4.1). We assume that all the assumptions of Theorem 3.1
are valid (the assumptions on f are missing, of course). Using the same notation as in
Theorem 3.1, we have the following theorem.

Theorem 4.1. Let y be a solution of (4.1). Then

y(t)=O(exp
{
γψ(t)

})
as t −→∞, γ =max

(
logM
d1

, . . . ,
logM
dn

)
. (4.2)

Proof. Following the proof of Theorem 3.1, we can see that the condition on γ in (3.1)
becomes

γ >max

(
logM
d1

, . . . ,
logM
dn

)
(4.3)



J. Čermák and P. Kundrát 343

in view of f ≡ 0 on I . Moreover, the inequality (3.8) can be replaced by

n∑
i=1

∣∣bi(h(s)
)∣∣exp

{− γdi}≤ a(h(s)
)
, (4.4)

and this implies the validity of (4.2). �

Now, we consider (1.1) in another special form

ẏ(t)=−ay(t) + by
(
τ(t)

)
+ f (t), t ∈ I , (4.5)

where a > 0, b �= 0 are constants, τ ∈ C1(I), τ(t) < t, 0 < τ̇(t)≤ λ < 1 for all t ∈ I , τ(t)→∞
as t→∞, and f ∈ C(I) fulfils f (t)=O(exp{βψ(t)}) as t→∞. Under these assumptions
on τ, there exists a function ψ ∈ C1(I), ψ̇ > 0 on I such that

ψ
(
τ(t)

)= ψ(t)− logλ−1, t ∈ I (4.6)

(for this and related results concerning (4.6) see, e.g., [10]). Then applying Theorem 3.1
to (4.5), we can easily deduce that the property

y(t)=O(exp
{
γψ(t)

})
as t −→∞, γ >max

(
α+β,

log
(|b|/a)

logλ−1

)
(4.7)

holds for any solution y of (4.5).
The asymptotic behaviour of (4.5) has been studied in [3]. If we put

σ := log
(|b|/a)

logλ−1
, (4.8)

then using the previous notation we can recall the following result.

Theorem 4.2 [3, Theorem 2.3]. Consider (4.5), where a > 0, b �= 0 are constants, τ, f ∈
C1(I), τ(t) < t, 0 < τ̇(t)≤ λ < 1 for all t ∈ I , τ(t)→∞, f (t)=O(exp{βψ(t)}), and ḟ (t)=
O(exp{(β− 1)ψ(t)}) as t→∞. If y is a solution of (4.5), then

y(t)=



O
(

exp
{
σψ(t)

})
as t −→∞ if β < σ ,

O
(

exp
{
σψ(t)

}
ψ(t)

)
as t −→∞ if β = σ ,

O
(

exp
{
βψ(t)

})
as t −→∞ if β > σ.

(4.9)

It is easy to see that relations (4.9) yield sharper estimates of solutions than (4.7). On
the other hand, we emphasize that the proof technique used in [3] is effective just for (4.5)
and cannot be applied to more general equation (1.1). In the final part of this paper, we
propose a simple way on how to extend the conclusions of Theorem 4.2 to some equation
(4.5) with nonconstant coefficients. To explain the main idea, we consider (4.5), where
the delayed argument is a power function.

Example 4.3. We consider the delay equation

ẏ(t)=−ay(t) + by
(
tλ
)

+ f (t), t ≥ 1, (4.10)
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where a > 0, b �= 0, 0 < λ < 1 are constants and f ∈ C1([1,∞)) fulfils the properties

f (t)=O((log t)β
)
, ḟ (t)=O((log t)β−1) as t −→∞. (4.11)

The corresponding Abel equation (4.6) has the form

ψ
(
tλ
)= ψ(t)− logλ−1, t ≥ 1, (4.12)

and admits the function ψ(t)= loglog t as a solution with the required properties. Substi-
tuting this ψ into assumptions and conclusions of Theorem 4.2, we obtain the following
result, where σ is given by (4.8), if y is a solution of (4.10), then

y(t)=



O
(
(log t)σ

)
as t −→∞ if β < σ ,

O
(
(log t)σ loglog t

)
as t −→∞ if β = σ ,

O
(
(log t)β

)
as t −→∞ if β > σ.

(4.13)

Now, we consider the equation

ẏ(t)=−a
t
y(t) +

b

t
y
(
tλ
)

+ f (t), t ≥ 1, (4.14)

where a, b, and λ are the same as above and f ∈ C1([1,∞)).
Setting

s= log t, z(s)= y(t), (4.15)

we can convert (4.14) into the form

z′(s)=−az(s) + bz(λs) + f
(

exp{s})exp{s}, s≥ 0. (4.16)

Now if the forcing term in (4.16) fulfils the required asymptotic properties, then applying
Theorem 4.2 to (4.16) and substituting this back into (4.15), we get that relations (4.13)
are valid for any solution y of (4.14).

Remark 4.4. Following Example 4.3, we can extend asymptotic estimates (4.13) also to
some other equations of the form

ẏ(t)=−ϕ̇(t)
[
ay(t)− by(tλ)]+ f (t), t ≥ 1, (4.17)

where ϕ∈ C1([1,∞)) and ϕ̇ > 0 on [1,∞). If we introduce the change of variables

s= ϕ(t), z(s)= y(t), (4.18)

then (4.17) can be transformed into

z′(s)=−az(s) + bz
(
µ(s)

)
+ f

(
ϕ−1(s)

)(
ϕ−1)′(s), (4.19)

where µ(s)= ϕ((ϕ−1(s))λ), s∈ ϕ(I). Now if the delayed argument and the forcing term in
(4.19) fulfil the assumptions of Theorem 4.2, then we can apply this theorem to (4.19)
and via substituting (4.18) obtain the validity of (4.13) for any solution y of (4.17).
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