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In the case of K �=D(A), we study Cauchy problems and periodic problems for nonlinear
evolution equation u(t)∈ K , u′(t) +Au(t)� f (t,u(t)), 0≤ t ≤ T , where A is a maximal
monotone operator on a Hilbert space H , K is a closed, convex subset of H , V is a sub-
space of H , and f : [0,T]× (K ∩V)→H is of Carathéodory type.

1. Introduction

Let E be a Banach space and let A⊂ E×E be an m-accretive operator. Let K be a closed
subset of E, letT > 0, and let f : [0,T]×K → E. In the case ofK =D(A), many researchers
have studied initial value problems or periodic problems for nonlinear evolution equa-
tion

u(t)∈ K , u′(t) +Au(t)� f
(
t,u(t)

)
for 0≤ t ≤ T ; (1.1)

see [3, 5, 13, 14, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28]. Recently, in the case when
K �=D(A) and f is of Carathéodory type, Bothe [7] showed the existence of solutions of
the initial value problem with u(0)= x ∈ K ∩D(A) for (1.1) under a tangential condition:

lim
s→+0

1
s

inf
z∈K∩D(A)

∥∥S f (t,x)(s)x− z
∥∥= 0 for every (t,x)∈ [0,T)× (K ∩D(A)

)
, (1.2)

where S f (t,x)(·)x is the solution of w(0) = x and w′(s) +Aw(s) � f (t,x) for s ≥ 0. Bothe
[8] also showed the existence of T-periodic solutions for (1.1) under a subtangential con-
dition: K-invariance of resolvent operators and Nagumo-type condition

lim
s→+0

1
s

inf
z∈K

∥∥x+ s f (t,x)− z
∥∥= 0 for a.e. t ∈ (0,T) and for every x ∈ K. (1.3)

A typical case for K �=D(A) is given by K = {v ∈ L2(Ω) : v ≥ 0}; see [1, 15]. For a periodic
problem, Bothe’s result can be applied to a nonlinear parabolic boundary value problem

Copyright © 2004 Hindawi Publishing Corporation
Abstract and Applied Analysis 2004:3 (2004) 183–203
2000 Mathematics Subject Classification: 47H06, 47H20, 35B10
URL: http://dx.doi.org/10.1155/S1085337504311073

http://dx.doi.org/10.1155/S1085337504311073


184 Invariant sets for nonlinear evolution equations

of the form

∂u

∂t
(t,x) +Au(t,x)= g

(
t,x,u(t,x)

)
in R×Ω,

Bu(t,x)= 0 on R× ∂Ω,

u(t,x)= u(t+T ,x) in R×Ω,

0≤ u(t,x)≤ c in R×Ω,

(1.4)

where Ω⊂ RN is a bounded domain with smooth boundary ∂Ω, g : R×Ω×R→ R is a
continuous mapping, A is a nonlinear elliptic operator, B is a boundary operator, and c
is a real number.

For semilinear cases, Amann [2] considered initial value problems and periodic prob-
lems for (1.1) in the case when K �=D(A) and f is not necessarily of Carathéodory type
with respect to the topology of E. The results in [2] can be applied to derive the existence
of T-periodic solutions of the problem

∂u

∂t
(t,x) +Lu(t,x)= g

(
t,x,u(t,x),∇u(t,x)

)
in R×Ω,

Bu(t,x)= 0 on R× ∂Ω,

u(t,x)= u(t+T ,x) in R×Ω,

u(t,x)≥ 0 in R×Ω,

(1.5)

where L is a second-order linear elliptic operator, B is a first-order boundary operator,
and g : R×Ω×R×RN →R is a continuous function. We can see that in problem (1.5),
function g cannot be of Carathéodory type in L2(Ω). To deal with this kind of problems,
it was assumed in [2] that f (t,·) is defined on a subspace V , which is endowed with a
stronger topology than that of E and f (t,·) : V → E is continuous with respect to this
topology. Under these conditions, the existence of solutions of the problems were estab-
lished in [2] imposing a subtangential condition: K-invariance of evolution operators and
Nagumo type condition.

Our purpose in this paper is to establish existence results which can cover problems
of the form (1.5) with L replaced by nonlinear elliptic operators. That is, in the case of
K �= D(A), we give existence results for solutions of initial value problems and periodic
problems for (1.1) under a tangential or subtangential condition in the case when H is
a Hilbert space, V is a subspace of H , and f : [0,T]×V →H is a mapping, which is not
necessarily of Carathéodory type with respect to the topology of H .

The organization of this paper is the following. Section 2 is devoted to some pre-
liminaries and notations. We state our main results in Section 3 and we prove them in
Section 4. Finally, we study an example to which our results are applicable.

2. Preliminaries and notations

Throughout this paper, we denote by N, R, and R+ the set of positive integers, the set of
real numbers, and the set of nonnegative real numbers, respectively. For a subset X of a
normed linear space, we denote by ∂X the boundary of X .
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Let (H ,〈·,·〉) be a Hilbert space. We denote by | · | the norm defined by |x|2 = 〈x,x〉
for x ∈H . We also denote by BH(x,r) the closed ball in H with center x ∈H and radius
r > 0. Let K be a closed, convex subset of H and let P be the metric projection from H onto
K , that is, for each x ∈H , Px is the unique point in K with |x− Px| = dH(x,K), where
dH(x,K) =miny∈K |x− y|. We know that 〈y−Px,x−Px〉 ≤ 0 for all x ∈H and y ∈ K .
We define a tangential cone TK (x) for K at x ∈ K by

TK (x)=
{
y ∈H : lim

s→+0

1
s
dH(x+ sy,K)= 0

}
. (2.1)

Let A be a maximal monotone subset of H ×H . For each λ > 0, we define a resolvent and
a Yosida approximation by Jλ = (I + λA)−1 and Aλ = (I − Jλ)/λ, respectively. We denote
by {S(t) : t ≥ 0} the semigroup generated by the negative of A; see [4, 10, 19]. We say the
semigroup {S(t)} is compact if for each t > 0, S(t) : D(A)→D(A) is compact. Let a,b ∈R

with a < b, let g ∈ L1(a,b;H), and let x ∈ D(A). We say a function u : [a,b]→ H is an
integral solution of the initial value problem

u(a)= x, u′(t) +Au(t)� g(t) for a≤ t ≤ b, (2.2)

if u is continuous on [a,b], u(a)= x, u(t)∈D(A) for every a≤ t ≤ b, and

∣∣u(t)− y
∣∣2 ≤ ∣∣u(s)− y

∣∣2
+ 2

∫ t

s

〈
g(τ)− z,u(τ)− y

〉
dτ (2.3)

for every (y,z)∈ A and s, t with a≤ s≤ t ≤ b. It is known that the initial value problem
(2.2) has a unique integral solution; see [4, 6]. We remark that for each x ∈D(A), S(·)x
is the integral solution of

u(0)= x, u′(t) +Au(t)� 0 for t ≥ 0. (2.4)

For each x ∈D(A) and z ∈H , we denote by Sz(·)x the integral solution of

u(0)= x, u′(t) +Au(t)� z for t ≥ 0, (2.5)

and we define TA
K by

TA
K (x)=

{
z ∈H : lim

s→+0

1
s
dH
(
Sz(s)x,K

)= 0
}

for each x ∈ K ∩D(A). (2.6)

We remark that in the case of K ⊂D(A), TA
K coincides with the one in [7].

Let (V ,‖ · ‖) be a reflexive Banach space which is continuously imbedded into H . We
identify V with a subspace of H . Let ω,ε ≥ 0, let p > 1, and let A be a maximal monotone
subset of H ×H such that D(A) ⊂ V and 〈y1− y2,x1− x2〉 ≥ ω‖x1 − x2‖p + ε|x1 − x2|2
for every (x1, y1),(x2, y2)∈ A. In this case, if u, v are the integral solutions of (2.2) corre-
sponding to (x,g),(y,h)∈D(A)×L1(a,b;H), respectively, then

∣∣u(t)− v(t)
∣∣≤ e−ε(t−s)

∣∣u(s)− v(s)
∣∣+

∫ t

s
e−ε(t−τ)

∣∣g(τ)−h(τ)
∣∣dτ (2.7)
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for a≤ s≤ t ≤ b and

∣∣u(t)− v(t)
∣∣2−∣∣u(s)− v(s)

∣∣2
+ 2ω

∫ t

s

∥∥u(τ)− v(τ)
∥∥pdτ + 2ε

∫ t

s

∣∣u(τ)− v(τ)
∣∣2
dτ

≤ 2
∫ t

s

〈
u(τ)− v(τ),g(τ)−h(τ)

〉
dτ

(2.8)

for a≤ s≤ t ≤ b.
To prove our results, we need the following propositions and theorems. The first one

is a property of the Dini derivative. For a proof, see [9, Proposition 9.1].

Proposition 2.1. Let g be a continuous function from [a,b] into R with a,b ∈R and a < b
such that

lim
s→+0

g(t+ s)− g(t)
s

≤ 0 for every t ∈ (a,b). (2.9)

Then g is decreasing on [a,b].

The next one is a fixed-point theorem, which can be derived from the Leray-Schauder
degree theory [11, 20].

Theorem 2.2. Let X be a bounded, closed, convex subset of a normed linear space E with
nonempty interior. Let H be a continuous mapping from [0,1]×X into a compact subset of
E such that

(i) H(1,X)⊂ X ;
(ii) for every ε∈ [0,1], H(ε,·) has no fixed point on ∂X .

Then H(0,·) has a fixed point in X .

The next proposition shows a sufficient condition that the negative of a maximal
monotone operator generates a compact semigroup; see [18, Lemma 2].

Proposition 2.3. Let (V ,‖ · ‖) be a reflexive Banach space which is compactly imbedded
into a Hilbert space (H ,〈·,·〉) and let A be a maximal monotone subset of H ×H which
satisfies D(A)⊂V and

〈
y1− y2,x1− x2

〉≥ ω
∥∥x1− x2

∥∥p for every
(
x1, y1

)
,
(
x2, y2

)∈A (2.10)

with a constant p > 1. Then the negative of A generates a compact semigroup.

The following two theorems are concerning properties of integral solutions; see
[4, Lemma III.2.1, Theorem III.2.2, Corollary III.2.1].

Theorem 2.4. Let H be a Hilbert space and let A be a maximal monotone subset of H ×H .
Let u0 ∈D(A), let T > 0, and let g ∈ L1(0,T ;H). Let λ > 0 and let uλ be the solution of the
initial value problem

uλ(0)= u0, u′λ(t) +Aλuλ(t)= g(t) for almost every 0 < t < T. (2.11)
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Then {uλ} converges to some u ∈ C(0,T ;H) as λ → +0 with respect to the topology of
C(0,T ;H), and the limit function u is the integral solution of the initial value problem

u(0)= u0, u′(t) +Au(t)� g(t) for 0≤ t ≤ T . (2.12)

Theorem 2.5. Let H and A be as those in Theorem 2.4. Let u0 ∈ D(A), let T > 0, and let
g ∈W1,1(0,T ;H). Then the solution u(t) of the initial value problem (2.12) is everywhere
differentiable from the right on [0,T),

d+

dt
u(t) +

(
Au(t)− g(t)

)0 = 0 for every 0≤ t < T , (2.13)

and

∣∣∣∣d+

dt
u(t)

∣∣∣∣≤ ∣∣(Au(0)− g(0)
)0∣∣+

∫ t

0

∣∣∣∣dgds (s)
∣∣∣∣ds for every 0≤ t < T , (2.14)

where (Au(t)− g(t))0 is the unique element z of Au(t)− g(t) satisfying |z| =min{|w| : w ∈
Au(t)− g(t)}.

The following compactness result is crucial in our argument; see [27, Theorem 2].

Theorem 2.6 (Vrabie). Let H be a Hilbert space and let A be a maximal monotone subset of
H ×H , whose negative generates a compact semigroup. Let B be a bounded subset of D(A),
let T > 0, and let G be a uniformly integrable subset of L1(0,T ;H). Let � be the set of all
integral solutions of

u(0)= x, u′(t) +Au(t)� g(t), 0≤ t ≤ T (2.15)

for x ∈ B and g ∈ G. Then {u(T) : u ∈�} is relatively compact in H . Furthermore, if B is
relatively compact in H , then � is relatively compact in C(0,T ;H).

3. Main results

We begin this section with hypotheses and notations which we will use in our results. The
following are the hypotheses for our general framework:

(H1) (V ,‖ · ‖) is a reflexive Banach space which is compactly imbedded into a Hilbert
space (H ,〈·,·〉) with the norm | · |;

(H2) A⊂H ×H is a maximal monotone subset such that D(A)⊂V and

〈
y1− y2,x1− x2

〉≥ ω
∥∥x1− x2

∥∥p (3.1)

for every (x1, y1),(x2, y2)∈ A, where 1 < p <∞ and ω > 0 are constants;
(H3) K is a closed, convex subset of H such that K ∩V �= ∅ and K ∩D(A) �= ∅, where

D(A) is the closure of D(A) with respect to the topology of H , and the metric
projection P from H onto K with respect to the metric in H satisfies
(i) P(V)⊂V and P : (V ,‖ · ‖)→ (V ,‖ · ‖) is continuous;

(ii) ‖Px‖ ≤ c1‖x‖+ c2 for every x ∈V , where c1, c2 are nonnegative constants;
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(H4) T > 0 and f is a mapping from [0,T]× (K ∩V) into H such that
(i) f (·,x) is strongly measurable for every x ∈ K ∩V ;

(ii) f (t,·) is continuous from K ∩V with respect to the topology of V into H for
almost every t ∈ (0,T);

(iii) there exist α∈ [0, p), a1 ∈ Lp/(p−α)(0,T ;R+), and a2 ∈ L1(0,T ;R+) such that

∣∣ f (t,x)
∣∣≤ a1(t)‖x‖α + a2(t) (3.2)

for almost every t ∈ (0,T) and for every x ∈ K ∩V .

Each one of the following hypotheses guarantees the boundedness of solutions of (1.1).
We remark that if | f (t,x)| is bounded, (B2) is satisfied:

(B1) K is bounded in H ;
(B2) α∈ [0, p− 1), a1 ∈ Lpq/(p−qα)(0,T ;R+), and a2 ∈ Lq(0,T ;R+), where q is the con-

stant with 1/p+ 1/q = 1;
(B3) there exist β ∈ [0, p), b1 ∈ Lp/(p−β)(0,T ;R+), b2 ∈ L1(0,T ;R+), and γ ∈ [0, p/α)

such that

〈
Ax− f (t,x),x

〉≥ ω‖x‖p− b1(t)‖x‖β− b2(t)
(|x|γ + 1

)
(3.3)

for every x ∈D(A) and for almost every t ∈ [0,T];
(B4) 0∈D(A)∩K and there exist β ∈ [0, p), b1 ∈ Lp/(p−β)(0,T ;R+), b2 ∈ L1(0,T ;R+),

and γ ∈ [0,(p/α)min{1, p− 1}) such that

〈
Ax− f (t,Px),x

〉≥ ω‖x‖p− b1(t)‖x‖β− b2(t)
(|x|γ + 1

)
(3.4)

for every x ∈D(A) and for almost every t ∈ [0,T].

Each one of the following hypotheses is a tangential or subtangential condition which
guarantees K-invariance of solutions for (1.1). In applications to elliptic-parabolic prob-
lems, K-invariance of the semigroup in (T2) corresponds to the comparison principle for
parabolic equations, and K-invariance of the resolvents in (T3) corresponds to the com-
parison principle for elliptic equations; see examples in [2] and this paper:

(T1) K ⊂ D(A) and f (t,x)∈ TA
K (x) for almost every t ∈ [0,T] and for every x ∈ K ∩

V ;
(T2) K ⊂ D(A), S(t)K ⊂ K for every t ≥ 0, and f (t,x) ∈ TK (x) for almost every t ∈

[0,T] and for every x ∈ K ∩V ;
(T3) JλK ⊂ K for every λ > 0, and f (t,x) ∈ TK (x) for almost every t ∈ [0,T] and for

every x ∈ K ∩V .

Now, we state our viability theorem.

Theorem 3.1. Assume (H1), (H2), (H3), and (H4) and one of the conditions of (B1), (B2),
and (B3). Assume also one of the conditions of (T1), (T2), and (T3). Then, for each x ∈
K ∩D(A), there exists an integral solution u of

u(0)= x, u′(t) +Au(t)� f
(
t,u(t)

)
for 0≤ t ≤ T (3.5)
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which satisfies

u(t)∈ K for every t ∈ [0,T]. (3.6)

Next, we state the existence of periodic solutions.

Theorem 3.2. Assume (H1), (H2), (H3), and (H4) and one of the conditions of (B1), (B2),
and (B4). Assume also one of the conditions of (T1), (T2), and (T3). Then there exists a
T-periodic, integral solution u of

u′(t) +Au(t)� f
(
t,u(t)

)
for 0≤ t ≤ T (3.7)

which satisfies (3.6).

In the case of K =H , we have the following corollaries as direct consequences of The-
orems 3.1 and 3.2 with assumption (T3); see also [26].

Corollary 3.3 (Vrabie). Assume (H1), (H2), K =H , (H4), and (B3). Then for each x ∈
D(A) and h∈ L1(0,T ;H), there exists an integral solution of

u(0)= x, u′(t) +Au(t)� f
(
t,u(t)

)
+h(t) for 0≤ t ≤ T. (3.8)

Corollary 3.4. Assume (H1), (H2), K =H , (H4), and (B4) as P is identity. Assume also
(p/α)min{1, p− 1} > 1, in particular p ≥ 2. Then for each h ∈ L1(0,T ;H), there exists a
T-periodic, integral solution of

u′(t) +Au(t)� f
(
t,u(t)

)
+h(t) for 0≤ t ≤ T. (3.9)

In the case when f is t-independent, we can solve an elliptic problem as follows.

Corollary 3.5. Assume that the hypotheses of Theorem 3.2 hold. Assume in addition that
f is t-independent, a1, a2 are nonnegative constants, and b1, b2 are nonnegative constants
in the case of (B4). Then there exists x ∈ K ∩D(A) with Ax � f (x).

4. Proof of theorems

Throughout this section, we assume (H1), (H2), (H3), and (H4) and | · | ≤ ‖ · ‖ without
loss of generality. We consider that space C(0,T ;H)∩Lp(0,T ;V) is endowed with a norm
‖ · ‖C(0,T ;H) +‖ · ‖Lp(0,T ;V).

First, we give the proof of Theorem 3.2. The reason is that we want to give the proof
of Theorem 3.2 precisely since its proof is more complicated than that of Theorem 3.1.

For each δ > 0, we set Kδ = {x ∈H : dH(x,K)≤ δ}. Since K ∩D(A) �= ∅, for each δ >
0, there exists (xδ , yδ)∈A with BH(xδ ,δ/2)⊂ Kδ . In the case of (B4), we can set (xδ , yδ)=
(0, y∗) for all δ > 0, where y∗ is an element of A0. Within all lemmas below, we fix δ > 0
and (xδ , yδ)∈A.

The following Lemmas 4.1, 4.2, 4.4, and 4.5 are obtained by similar arguments as those
in [18].
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Lemma 4.1. For each ε > 0 and g ∈ L1(0,T ;H), there exists a unique T-periodic, integral
solution of

u′(t) + ε
(
u(t)− xδ

)
+Au(t)� g(t) for 0≤ t ≤ T. (4.1)

Proof. Let ε > 0 and let g ∈ L1(0,T ;H). We define a mapping U : D(A)→D(A) by Ux =
u(T) for x ∈ D(A), where u is the unique integral solution of the initial value problem
(4.1) with u(0)= x. From (2.7), we have |Ux−Uy| ≤ e−εT|x− y| for every x, y ∈D(A).
By the Banach contraction principle, U has the unique fixed point z. Then the integral
solution u of (4.1) with u(0)= z satisfies u(0)= u(T). �

We define Qδ : (0,∞)×L1(0,T ;H)→ C(0,T ;H)∩Lp(0,T ;V) by Qδ(ε,g)= u for each
(ε,g)∈ (0,∞)×L1(0,T ;H), where u∈ C(0,T ;H)∩Lp(0,T ;V) is the unique T-periodic,
integral solution of (4.1).

Lemma 4.2. There exist k1,k2 ≥ 0 such that

sup
ε>0

∥∥Qδ(ε,g)
∥∥
C(0,T ;H) ≤ k1‖g‖max{1,1/(p−1)}

L1(0,T ;H) + k2 for every g ∈ L1(0,T ;H). (4.2)

In particular, for each bounded subset B of L1(0,T ;H), Qδ((0,∞) × B) is bounded in
C(0,T ;H).

Proof. Let (ε,g)∈ (0,∞)× L1(0,T ;H) and let u=Qδ(ε,g). We set m=min{|u(t)− xδ| :

0 ≤ t ≤ T} and M = max{|u(t)− xδ| : 0 ≤ t ≤ T}. We also set C = T|yδ| +
∫ T

0 |g(t)|dt.
From (2.7), we know M ≤m+C. If M ≤ 2C, then the conclusion holds with arbitrary
k1 ≥ 2 and k2 ≥ 2T|yδ|+ |xδ|+ 1. So we assume M > 2C. From (2.8), we have

ωT
(
M

2

)p

≤ ωTmp ≤ ω
∫ T

0

∣∣u(t)− xδ
∣∣pdt

≤ ω
∫ T

0

∥∥u(t)− xδ
∥∥pdt ≤

∫ T

0

〈
g(t)− yδ ,u(t)− xδ

〉
dt ≤MC,

(4.3)

and we obtain ωTMp−1 ≤ 2pC. Hence, it is easy to see that the conclusion holds. �

Remark 4.3. Using any (z,w)∈A instead of (xδ , yδ), by the same proof, we can show that
there exist k1,k2 ≥ 0 such that

‖u‖C(0,T ;H) ≤ k1‖g‖max{1,1/(p−1)}
L1(0,T ;H) + k2 (4.4)

for every g ∈ L1(0,T ;H) and T-periodic, integral solution u of

u′(t) +Au(t)� g(t) for 0≤ t ≤ T. (4.5)

Lemma 4.4. Qδ : (0,∞)×L1(0,T ;H)→ C(0,T ;H)∩Lp(0,T ;V) is continuous.

Proof. Fix (ε0,g0) ∈ (0,∞)× L1(0,T ;H) and set u0 = Qδ(ε0,g0). By the previous lemma,
there exists C > 0 such that ‖Qδ(ε,g)‖C(0,T ;H) ≤ C for every (ε,g) ∈ (0,∞)× L1(0,T ;H)
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with
∫ T

0 |g(τ)− g0(τ)|dτ ≤ 1. Let (ε,g)∈ (0,∞)×L1(0,T ;H) with
∫ T

0 |g(τ)− g0(τ)|dτ ≤ 1
and set u=Qδ(ε,g). By (2.7) and the periodicity of u and u0, we have

∣∣u(0)−u0(0)
∣∣≤ e−ε0T

∣∣u(0)−u0(0)
∣∣+

∫ T

0

∣∣g(τ)− g0(τ)− (ε− ε0
)(
u(τ)− xδ

)∣∣dτ,

(4.6)

and hence we obtain

∣∣u(t)−u0(t)
∣∣≤ (1 +

1
1− e−ε0T

)(∫ T

0

∣∣g(τ)− g0(τ)
∣∣dτ +

∣∣ε− ε0
∣∣(C+

∣∣xδ∣∣)
)

(4.7)

for all t ∈ [0,T]. From (2.8), we also have

ω
∫ T

0

∥∥u(τ)−u0(τ)
∥∥pdτ ≤ 2C

∫ T

0

∣∣g(τ)− g0(τ)
∣∣dτ + 2C

(
C+

∣∣xδ∣∣)∣∣ε− ε0
∣∣. (4.8)

From these two inequalities, we know that Qδ is continuous at (ε0,g0). �

Lemma 4.5. For each ε0 > 0 and uniformly integrable subset B of L1(0,T ;H), Qδ((0,ε0]×B)
is relatively compact in C(0,T ;H)∩Lp(0,T ;V).

Proof. Let ε0 > 0 and let B be a uniformly integrable subset of L1(0,T ;H). We know
from Lemma 4.2 that {g − ε(Qδ(ε,g)− xδ) : ε ∈ (0,ε0], g ∈ B} is uniformly integrable
and {Qδ(ε,g)(0) : ε ∈ (0,ε0], g ∈ B} is bounded in H . By Theorem 2.6, {Qδ(ε,g)(0) :
ε ∈ (0,ε0], g ∈ B} = {Qδ(ε,g)(T) : ε ∈ (0,ε0], g ∈ B} is relatively compact in H . Using
Theorem 2.6 again, we know that Qδ((0,ε0]×B) is relatively compact in C(0,T ;H). Next,
we will show that Qδ((0,ε0]×B) is relatively compact in Lp(0,T ;V) by the method em-
ployed in the proof of [26, Theorem 3.1]. Fix η > 0. Then there exists {(ε1,g1), . . . , (εn,gn)}
⊂ (0,ε0]× B such that for each (ε,g) ∈ (0,ε0]× B, there exists i such that ‖Qδ(ε,g)−
Qδ(εi,gi)‖C(0,T ;H) ≤ η. Let C = sup{‖Qδ(ε,g)‖C(0,T ;H) : ε ∈ (0,ε0], g ∈ B}. Since

ω
∫ T

0 ‖Qδ(ε,g)(t) − Qδ(εi,gi)(t)‖pdt ≤ η(
∫ T

0 |g(t) − gi(t)|dt + 2(C + |xδ|)ε0) and B is
bounded in L1(0,T ;H), Qδ((0,ε0] × B) is totally bounded in Lp(0,T ;V). Hence
Qδ((0,ε0]×B) is relatively compact in C(0,T ;H)∩Lp(0,T ;V). �

Remark 4.6. By a similar proof, we can show that for each uniformly integrable subset B
of L1(0,T ;H), the set of all T-periodic, integral solutions of (4.5) for g ∈ B is relatively
compact in C(0,T ;H)∩Lp(0,T ;V).

We show an a priori estimate for fixed points of the mapping u �→Qδ(ε, f (·,Pu)) with
respect to norm ‖ · ‖Lp(0,T ;V). We remark that after we obtain this estimate, Lemma 4.2
yields an a priori estimate with respect to norm ‖ · ‖C(0,T ;H). We also remark that as-
sumption 0∈D(A)∩K in (B4) is used to show the following.

Lemma 4.7. Assume one of the conditions of (B1), (B2), and (B4). Then there exists R1 > 0
such that for every ε > 0 and u∈ C(0,T ;H)∩Lp(0,T ;V) satisfying u=Qδ(ε, f (·,Pu)) and
u(t)∈ Kδ for all t ∈ [0,T], there holds ‖u‖Lp(0,T ;V) < R1.
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Proof. Let ε > 0 and let u ∈ C(0,T ;H)∩ Lp(0,T ;V) satisfying u = Qδ(ε, f (·,Pu)) and
u(t) ∈ Kδ for all t ∈ [0,T]. We know that u is a T-periodic, integral solution of u′(t) +
Au(t) + ε(u(t)− xδ)� f (t,Pu(t)) for 0≤ t ≤ T . First, we consider the case of (B1). Since
we have

ω
∫ T

0

∥∥u(τ)− xδ
∥∥pdτ ≤

∫ T

0

〈
f
(
τ,Pu(τ)

)− yδ ,u(τ)− xδ
〉
dτ

≤ sup
0≤t≤T

∣∣u(t)− xδ
∣∣(∫ T

0

∣∣ f (τ,Pu(τ)
)∣∣dτ +T

∣∣yδ∣∣
)

≤ sup
z∈Kδ

∣∣z−xδ∣∣
[(∫ T

0

∣∣a1(τ)
∣∣p/(p−α)

dτ
)(p−α)/p(

c1R1 +c2T
1/p)α

+
∫ T

0

∣∣a2(τ)
∣∣dτ +T

∣∣yδ∣∣
]

,

(4.9)

where c1, c2 are the constants in (H3), we can choose sufficiently large R1 > 0 such that
‖u‖Lp(0,T ;V) < R1 for every ε > 0 and u ∈ C(0,T ;H) ∩ Lp(0,T ;V) satisfying u =
Qδ(ε, f (·,Pu)) and u(t) ∈ Kδ for all t ∈ [0,T]. Next, we consider the case of (B2). Since
we have

ω
∫ T

0

∥∥u(τ)− xδ
∥∥pdτ

≤
∫ T

0

〈
f
(
τ,Pu(τ)

)− yδ ,u(τ)− xδ
〉
dτ

≤
(∫ T

0

∥∥u(τ)− xδ
∥∥pdτ)1/p

[(∫ T

0

∣∣a1(τ)
∥∥Pu(τ)

∥∥α + a2(τ)
∣∣qdτ)1/q

+T1/q
∣∣yδ∣∣

]

≤ (‖u‖Lp(0,T ;V) +T1/p
∥∥xδ∥∥)

[(∫ T

0

∣∣a1(τ)
∣∣pq/(p−qα)

dτ
)(p−qα)/pq(

c1‖u‖Lp(0,T ;V) + c2T
1/p)α

+
(∫ T

0

∣∣a2(τ)
∣∣qdτ)1/q

+T1/q
∣∣yδ∣∣

]
,

(4.10)

where q is the constant in (B2), we obtain the conclusion in this case. Finally, we consider
the case of (B4). From (B4) and xδ = 0, we have

0≥ ω
∫ T

0

∥∥u(t)
∥∥pdt−

∫ T

0
b1(t)

∥∥u(t)
∥∥βdt−

∫ T

0
b2(t)

(∣∣Qδ
(
ε, f

(
t,Pu(t)

))∣∣γ + 1
)
dt

≥ ω‖u‖pLp(0,T ;V)−
(∫ T

0

∣∣b1(t)
∣∣p/(p−β)

dt
)(p−β)/p

‖u‖βLp(0,T ;V)

−
(∫ T

0
b2(t)dt

)([
k1

{(∫ T

0

∣∣a1(t)
∣∣p(p−α)

dt
)(p−α)/p(

c1‖u‖Lp(0,T ;V) + c2T
1/p)α

+
∫ T

0

∣∣a2(t)
∣∣dt}max{1,1/(p−1)}

+ k2

]γ
+ 1

)
,

(4.11)

where k1, k2 are the constants in Lemma 4.2. Hence, we also obtain the conclusion in this
case. �
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Remark 4.8. Using any (z,w) ∈ A instead of (xδ , yδ), by the same proof, we can show
that if one of the conditions of (B1), (B2), and (B4) holds, then there exists R1 > 0 such
that for every T-periodic, integral solution u of u′(t) +Au(t)� f (t,Pu(t)) for 0≤ t ≤ T
satisfying u(t)∈ K1 for all t ∈ [0,T], there holds ‖u‖Lp(0,T ;V) < R1.

We fix R1 as in the previous lemma, and we define a subset Xδ of C(0,T ;H)∩ Lp(0,
T ;V) by

Xδ =
{
u∈ C(0,T ;H)∩Lp(0,T ;V) : ‖u‖Lp(0,T ;V) ≤ R1,u(t)∈ Kδ for every t ∈ [0,T]

}
(4.12)

in the case of (B1), and by

Xδ =
{
u∈ C(0,T ;H)∩Lp(0,T ;V) :

‖u‖Lp(0,T ;V) ≤ R1, u(t)∈ Kδ ∩BH
(
xδ ,R2

)
for every t ∈ [0,T]

} (4.13)

in each case of (B2) or (B4), where R2 is a positive constant satisfying

R2 > sup
{∥∥Qδ

(
ε, f (·,Pv)

)− xδ
∥∥
C(0,T ;H) : ε > 0, ‖v‖Lp(0,T ;V) ≤ R1

}
. (4.14)

We remark that we can choose such R2 by Lemma 4.2.
Next, we will show {Qδ(ε, f (·,Pv)) : v ∈ Xδ} ⊂ Xδ for sufficiently large ε > 0. The fol-

lowing is needed to show this property.

Lemma 4.9. Let a∈ L1(0,T ;R+). Then sup0≤t≤T
∫ t

0 e
−ε(t−τ)a(τ)dτ → 0 as ε→∞.

Proof. Let η > 0. There exists ρ > 0 such that
∫
E a(τ)dτ ≤ η for each Lebesgue measurable

subset E of [0,T], whose Lebesgue measure is less than or equal to ρ. Choose a positive

number ε with e−ερ
∫ T

0 a(τ)dτ ≤ η. Let t ∈ [0,T]. If t ≤ ρ, we have
∫ t

0 e
−ε(t−τ)a(τ)dτ ≤ η. If

t > ρ, we have

∫ t

0
e−ε(t−τ)a(τ)dτ ≤ e−ερ

∫ t−ρ

0
e−ε(t−ρ−τ)a(τ)dτ +

∫ t

t−ρ
a(τ)dτ ≤ 2η. (4.15)

Hence, we obtain the conclusion. �

Lemma 4.10. There exists εδ ≥ 1 such that {Qδ(εδ , f (·,Pv)) : v ∈ Xδ} ⊂ Xδ .

Proof. Fix η ∈ (0,δ/2) such that ‖u‖Lp(0,T ;V) ≤ R1 for every u∈ Lp(0,T ;V) with

ω
∫ T

0

∥∥u(τ)− xδ
∥∥pdτ

≤ η

[(∫ T

0

∣∣a1(τ)
∣∣p/(p−α)

dτ
)(p−α)/p(

c1R1 + c2T
1/p)α +

∫ T

0

∣∣a2(τ)
∣∣dτ +T

∣∣yδ∣∣
]

(4.16)
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and that η ≤ R2 in the case when Xδ is defined by (4.13). Let ε > 0 with 1/(1− e−εT)≤ 2.
Let v be any element of Xδ and set u=Qδ(ε, f (·,Pv)). From (2.7), we have

∣∣u(0)− xδ
∣∣≤ 1

1− e−εT

∫ T

0
e−ε(T−τ)

∣∣ f (τ,Pv(τ)
)− yδ

∣∣dτ, (4.17)

and hence

∥∥u− xδ
∥∥
C(0,T ;H) ≤ sup

0≤t≤T

(
e−εt

∣∣u(0)− xδ
∣∣+

∫ t

0
e−ε(t−τ)

∣∣ f (τ,Pv(τ)
)− yδ

∣∣dτ)

≤ 3 sup
0≤t≤T

(∫ t

0
e−ε(t−τ)(a1(τ)

∥∥Pv(τ)
∥∥α + a2(τ) +

∣∣yδ∣∣)dτ
)

≤ 3 sup
0≤t≤T

[(∫ t

0
e(pε/(p−α))(t−τ)

∣∣a1(τ)
∣∣p/(p−α)

dτ
)(p−α)/p(

c1R1 + c2T
1/p)α

+
∫ t

0
e−ε(t−τ)(a2(τ) +

∣∣yδ∣∣)dτ
]
.

(4.18)

By the previous lemma, there exists εδ ≥ 1 such that supv∈Xδ
‖Qδ(εδ , f (·,Pv))− xδ‖C(0,T ;H)

≤ η. Then we also have

ω
∫ T

0

∥∥Qδ
(
εδ , f

(
τ,Pv(τ)

))− xδ
∥∥pdτ

≤
∫ T

0

〈
f
(
τ,Pv(τ)

)− yδ ,Qδ
(
εδ , f

(
τ,Pv(τ)

))− xδ
〉
dτ

≤ η
[(∫ T

0

∣∣a1(τ)
∣∣p/(p−α)

dτ
)(p−α)/p(

c1R1 + c2T
1/p)α +

∫ T

0

∣∣a2(τ)
∣∣dτ +T

∣∣yδ∣∣
]

,

(4.19)

which implies supv∈Xδ
‖Qδ(εδ , f (·,Pv))‖Lp(0,T ;V) ≤ R1. Hence, we obtain the conclusion.

�

Next, we will show that the mapping u �→Qδ(ε, f (·,Pu)) has no fixed point on ∂Xδ for
every ε > 0. The following play an important role to show this property.

Lemma 4.11. The following hold:

(i) 〈Aλx,x−Px〉 ≥ 0 for each λ > 0 and x ∈H ;
(ii) 〈z,x−Px〉 ≤ 0 for each x ∈H and z ∈ TK (Px);

(iii) if K ⊂D(A) and S(t)K ⊂ K for every t ≥ 0, then 〈y,x−Px〉 ≥ 0 for each (x, y)∈A;
(iv) if K ⊂D(A), then 〈y− z,x−Px〉 ≥ 0 for each (x, y)∈ A and z ∈ TA

K (Px).

Proof. (i) Let λ > 0 and let x ∈H . We know |Jλx−PJλx| ≤ |Jλx− JλPx| ≤ |x−Px|. Hence,
we have

〈
x− Jλx,x−Px

〉= |x−Px|2 +
〈
Px−PJλx,x−Px

〉
+
〈
PJλx− Jλx,x−Px

〉
≥ |x−Px|2−∣∣PJλx− Jλx

∣∣|x−Px| ≥ 0.
(4.20)
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(ii) Let x ∈H and let z ∈ TK (Px). From

0≤ ∣∣x−P(x+ sz)
∣∣2 = ∣∣x+ sz−P(x+ sz)

∣∣2− 2s
〈
z,x+ sz−P(x+ sz)

〉
+ s2|z|2 (4.21)

for every s > 0, we have 〈z,x−Px〉 ≤ 0.
(iii) Assume K ⊂D(A) and S(t)K ⊂ K for every t ≥ 0. Let (x, y)∈ A. Then we have

∫ t

0

〈
y,x− S(τ)Px

〉
dτ ≥ 1

2

∣∣x− S(t)Px
∣∣2− 1

2
|x−Px|2 ≥ 0 for every t > 0. (4.22)

Hence, we have

〈y,x−Px〉 = lim
t→+0

1
t

∫ t

0

〈
y,x− S(τ)Px

〉
dτ ≥ 0. (4.23)

(iv) Assume K ⊂D(A). Let (x, y)∈A and let z ∈ TA
K (Px). We set w(·)= Sz(·)Px. Then

we have for every t > 0,

∫ t

0

〈
y− z,x−w(τ)

〉
dτ ≥ 1

2

∣∣x−w(t)
∣∣2− 1

2
|x−Px|2

≥ 1
2

∣∣Pw(t)−w(t)
∣∣2

+
〈
Pw(t)−w(t),x−Px

〉
.

(4.24)

Hence, by z ∈ TA
K (Px), we obtain

〈y− z,x−Px〉 = lim
t→+0

1
t

∫ t

0

〈
y− z,x−w(τ)

〉
dτ ≥ 0. (4.25)

�

The reason why we define an approximate equation by (4.1) can be found in the proof
of the next lemma.

Lemma 4.12. Assume one of the conditions of (B1), (B2), and (B4), and assume also one
of the conditions of (T1), (T2), and (T3). Then for each ε > 0 and u ∈ Xδ with u = Qδ(ε,
f (·,Pu)), u is an interior point of Xδ .

Proof. Let ε > 0 and u ∈ Xδ with u = Qδ(ε, f (·,Pu)). We know that u is a T-periodic,
integral solution of

u′(t) + ε
(
u(t)− xδ

)
+Au(t)� f

(
t,Pu(t)

)
, 0≤ t ≤ T. (4.26)

Since one of the conditions of (B1), (B2), and (B4) is assumed, by Lemma 4.7 and the def-
inition of Xδ , we have ‖u‖Lp(0,T ;V) < R1 and ‖u− xδ‖C(0,T ;H) < R2 in the case of (B2) and
(B4), respectively. Thus it is enough to show u(t) �∈ ∂Kδ for all t ∈ [0,T]. First, we con-
sider the case of (T3). Let g ∈ C(0,T ;H). Let λ > 0 and let v be the C1(0,T ;H)-solution
of the initial value problem

v(0)= u(0), v′(t) + ε
(
v(t)− xδ

)
+Aλv(t)= g(t), 0≤ t ≤ T. (4.27)
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Let t ∈ [0,T) and let s > 0 with t+ s≤ T . Since

∣∣v(t+ s)−Pv(t+ s)
∣∣2 ≤ ∣∣v(t+ s)−Pv(t)

∣∣2

= ∣∣v(t+ s)− v(t)
∣∣2

+ 2
〈
v(t+ s)− v(t),v(t)−Pv(t)

〉
+
∣∣v(t)−Pv(t)

∣∣2
,

(4.28)

we have

∣∣v(t+ s)−Pv(t+ s)
∣∣2−∣∣v(t)−Pv(t)

∣∣2

s

≤ s
∣∣∣∣v(t+ s)− v(t)

s

∣∣∣∣
2

+ 2
〈
v(t+ s)− v(t)

s
,v(t)−Pv(t)

�
.

(4.29)

By (i) of Lemma 4.11, we get

lim
s→+0

∣∣v(t+ s)−Pv(t+ s)
∣∣2−∣∣v(t)−Pv(t)

∣∣2

s
≤ 2

〈
v′(t),v(t)−Pv(t)

〉
= 2

(〈
g(t),v(t)−Pv(t)

〉− 〈Aλv(t),v(t)−Pv(t)
〉− ε

〈
v(t)− xδ ,v(t)−Pv(t)

〉)
≤ 2

(〈
g(t),v(t)−Pv(t)

〉− ε
〈
v(t)− xδ ,v(t)−Pv(t)

〉)
(4.30)

for every t ∈ [0,T). By Proposition 2.1, we have

∣∣v(T)−Pv(T)
∣∣2−∣∣v(0)−Pv(0)

∣∣2

≤ 2
(∫ T

0

〈
g(τ),v(τ)−Pv(τ)

〉
dτ − ε

∫ T

0

〈
v(τ)− xδ ,v(τ)−Pv(τ)

〉
dτ
)

,
(4.31)

which implies, by Theorem 2.4, Lemma 4.11(ii), and u(0)= u(T),

∫ T

0

〈
u(τ)− xδ ,u(τ)−Pu(τ)

〉
dτ ≤ 0. (4.32)

Let P̃ be the metric projection from H onto Kδ/2. Since xδ ∈ Kδ/2 and P̃u(τ) is in the line
segment between u(τ) and Pu(τ) for all τ ∈ [0,T], we have 〈xδ − P̃u(τ),u(τ)−Pu(τ)〉 ≤
0 for all τ ∈ [0,T]. Hence, we obtain

0≥
∫ T

0

〈
u(τ)− P̃u(τ),u(τ)−Pu(τ)

〉
dτ ≥

∫ T

0

∣∣u(τ)− P̃u(τ)
∣∣2
dτ, (4.33)

which implies u(t) �∈ ∂Kδ for all t ∈ [0,T]. Next, we consider the cases of (T1) and (T2).
Let x ∈D(A), let g ∈ C1(0,T ;H), and let v be the integral solution of

v(0)= x, v′(t) + ε
(
v(t)− xδ

)
+Av(t)� g(t), 0≤ t ≤ T. (4.34)
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By Theorem 2.5, v is everywhere differentiable from the right on [0,T) and there exists
y ∈ L∞(0,T ;H) such that

y(t)∈Av(t),
d+

dt
v(t) + ε

(
v(t)− xδ

)
+ y(t)− g(t)= 0 for every 0≤ t < T. (4.35)

Then we get

lim
s→+0

∣∣v(t+ s)−Pv(t+ s)
∣∣2−∣∣v(t)−Pv(t)

∣∣2

s

≤ 2
〈
d+

dt
v(t),v(t)−Pv(t)

�

= 2
(〈
g(t)− y(t),v(t)−Pv(t)

〉− ε
〈
v(t)− xδ ,v(t)−Pv(t)

〉)
(4.36)

for every t ∈ [0,T). By Proposition 2.1 and Lemma 4.11(ii), (iii), and (iv), we have

∣∣v(T)−Pv(T)
∣∣2−∣∣v(0)−Pv(0)

∣∣2

≤ 2
(∫ T

0

〈
g(τ)− y(τ),v(τ)−Pv(τ)

〉
dτ − ε

∫ T

0

〈
v(τ)− xδ ,v(τ)−Pv(τ)

〉
dτ
)

≤ 2
(∫ T

0

〈
g(τ)− f

(
τ,Pv(τ)

)
,v(τ)−Pv(τ)

〉
dτ − ε

∫ T

0

〈
v(τ)− xδ ,v(τ)−Pv(τ)

〉
dτ
)

,

(4.37)

which implies (4.32). By the same argument as above, we have u(t) �∈ ∂Kδ for all t ∈
[0,T]. �

Lemma 4.13. Assume one of the conditions of (B1), (B2), and (B4), and assume also one of
the conditions of (T1), (T2), and (T3). Then there exists a T-periodic, integral solution u of

u′(t) +Au(t)� f
(
t,Pu(t)

)
for 0≤ t ≤ T (4.38)

which satisfies u(t)∈ Kδ for all t ∈ [0,T].

Proof. Let εδ be a constant obtained in Lemma 4.10. We know that the mapping (ε,u) �→
Qδ(ε, f (·,Pu)) from (0,εδ]×Xδ into C(0,T ;H)∩Lp(0,T ;V) is continuous and compact
by (H4), Lemmas 4.4, and 4.5. By Lemma 4.10 and Theorem 2.2, for each n ∈ N, there
exists un ∈ Xδ such that un =Qδ(1/n, f (·,Pun)). Then un is aT-periodic, integral solution
of u′n(t) + 1/n(un(t)− xδ) +Aun(t) � f (t,Pun(t)) for 0≤ t ≤ T . By Lemmas 4.2 and 4.7,
{un} is bounded inC(0,T ;H)∩Lp(0,T ;V), and by Lemma 4.5, {un} is relatively compact
in C(0,T ;H)∩ Lp(0,T ;V). So we may assume that {un} converges strongly to some u∈
C(0,T ;H)∩ Lp(0,T ;V). We know that u is T-periodic and u(t) ∈ Kδ for all t ∈ [0,T].
Since

∣∣un(t)− x
∣∣2 ≤ ∣∣un(s)− x

∣∣2
+ 2

∫ t

s

〈
f
(
τ,Pun(τ)

)− 1
n

(
un(τ)− xδ

)− y,un(τ)− x
�
dτ

(4.39)
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for every (x, y)∈ A, s, t with 0≤ s≤ t ≤ T , and n∈N, we obtain

∣∣u(t)− x
∣∣2 ≤ ∣∣u(s)− x

∣∣2
+ 2

∫ t

s

〈
f
(
τ,Pu(τ)

)− y,u(τ)− x
〉
dτ (4.40)

for every (x, y)∈A and s, t with 0≤ s≤ t ≤ T , which implies that u is an integral solution
of (4.38). �

Proof of Theorem 3.2. By Lemma 4.13, for each n ∈ N, there exists a T-periodic, inte-
gral solution un of (4.38) satisfying un(t) ∈ K1/n for all t ∈ [0,T]. We know that {un} is
bounded in Lp(0,T ;V) by Remark 4.8, and {un} is bounded in C(0,T ;H) by Remark 4.3.
We also know that {un} is relatively compact by Remark 4.6. So we may assume that
{un} converges strongly to some u ∈ C(0,T ;H)∩ Lp(0,T ;V). It is easy to see that u
is T-periodic and u(t) ∈ K for all t ∈ [0,T]. By similar lines as those in the proof of
Lemma 4.13, there holds (4.40) for every (x, y) ∈ A and s, t with 0 ≤ s ≤ t ≤ T . Since
Pu(t)= u(t) for all t ∈ [0,T], u is a desired solution. �

Proof of Corollary 3.5. From Theorem 3.2, for each n ∈ N, there exists a 1/2n-periodic,
integral solution un of

un(t)∈ K , u′n(t) +Aun(t)� f
(
un(t)

)
for 0≤ t ≤ 1. (4.41)

By Remarks 4.3 and 4.8, {un} is bounded in C(0,1;H)∩Lp(0,1;V). So {un} is relatively
compact in C(0,1;H)∩Lp(0,1;V) by Remark 4.6. Hence, there exists a constant function
u(t)≡ x ∈ K ∩V , which is a cluster point of {un}. Since

〈
f (x)−w,x− z

〉=
∫ 1

0

〈
f
(
u(t)

)−w,u(t)− z
〉
dt ≥ ∣∣u(1)− z

∣∣−∣∣u(0)− z
∣∣= 0

(4.42)

for every (z,w)∈ A, we have (x, f (x))∈A. �

Next, we give the proof of Theorem 3.1. We show the following proposition concern-
ing the existence of local solutions for the initial value problem.

Proposition 4.14. Assume (H1), (H2), (H3), and (H4) and one of the conditions of (T1),
(T2), and (T3). Then for each x ∈ K ∩D(A), there exists T0 ∈ (0,T] and an integral solu-
tion u of

u(0)= x, u′(t) +Au(t)� f
(
t,u(t)

)
for 0≤ t ≤ T0, (4.43)

which satisfies u(t)∈ K for all t ∈ [0,T0].

Proof. Fix x ∈ K ∩D(A). For each T0 ∈ (0,T], we define a mapping GT0 : L1(0,T0;H)→
C(0,T0;H) ∩ Lp(0,T0;V) by GT0g = u for g ∈ L1(0,T0;H), where u ∈ C(0,T0;H) ∩
Lp(0,T0;V) is the unique integral solution of the initial value problem

u(0)= x, u′(t) +Au(t)� g(t) for 0≤ t ≤ T0. (4.44)
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For each T0 ∈ (0,T], we also define a subset XT0 of C(0,T0;H)∩Lp(0,T0;V) by

XT0 =
{
u∈ C

(
0,T0;H

)∩Lp
(
0,T0;V

)
:

u(0)= x, sup
0≤t≤T0

∣∣u(t)− S(t)x
∣∣≤ 1,

∫ T0

0

∥∥u(t)− S(t)x
∥∥pdt ≤ 1

}
.

(4.45)

By similar arguments as those in the case of the periodic problem, it is easy to see that
the mapping v �→ GT0 ( f (·,Pv)) is compact and continuous from XT0 into C(0,T0;H)∩
Lp(0,T0;V) for each T0 ∈ (0,T]. It is also easy to see that if T0 > 0 is sufficiently small,
then GT0 ( f (·,Pv)) ∈ XT0 for all v ∈ XT0 . Fix such T0 ∈ (0,T]. By Schauder’s fixed point
theorem, there exists u∈ XT0 with GT0 ( f (·,Pu))= u, that is, u is an integral solution of
the problem u(0) = x and u′(t) +Au(t) � f (t,Pu(t)) for 0 ≤ t ≤ T0. By similar lines as
those in the proof of Lemma 4.12, we can show that t �→ |u(t)−Pu(t)|2 is decreasing on
[0,T0]. Hence, u(t)∈ K for all t ∈ [0,T0] and u is an integral solution of (4.43). �

Remark 4.15. Intuitively, (T3) seems to imply (T1) in the case of K ⊂ D(A), and (T2)
seems to imply (T1). But it seems to be difficult to give a proof even after we obtain the
proposition above.

Proof of Theorem 3.1. Set T∗ = sup{T0 ∈ (0,T] : there is an integral solution of (4.43)}.
By Theorem 2.6, Proposition 4.14, and a diagonal process argument, we can obtain a
function u : [0,T∗) → K such that for each T0 ∈ (0,T∗), u|[0,T0] ∈ C(0,T0;H)∩ Lp(0,
T0;V) and u|[0,T0] is an integral solution of (4.43). We know u ∈ Lp(0,T∗;V) by simi-
lar lines as those in the proof of Lemma 4.7 and sup0≤t<T∗ |u(t)| <∞ by |u(t)− S(t)x| ≤∫ t

0 | f (τ,u(τ))|dτ for every t ∈ [0,T∗). We will show that limt→T∗−0u(t) exists with re-

spect to the topology of H . Let ε > 0. There exists t0 ∈ [0,T∗) with
∫ T∗
t0 | f (τ,u(τ))|dτ ≤ ε

and there exists δ > 0 such that |S(s)u(t0)− u(t0)| ≤ ε for all s ∈ [0,δ]. Then for each
t,s∈ [max{t0,T∗ − δ},T∗), we have |u(t)−u(s)| ≤ 4ε, since

∣∣u(t)− S
(
T∗ − t0

)
u
(
t0
)∣∣≤ ∣∣u(t)− S

(
t− t0

)
u
(
t0
)∣∣+

∣∣u(t0)− S
(
T∗ − t

)
u
(
t0
)∣∣≤ 2ε.

(4.46)

So, there exists z ∈ K such that |u(t)− z| → 0 as t → T∗ − 0, and hence we can think
u(T∗) = z and u ∈ C(0,T∗;H). It is easy to see that u is an integral solution of (4.43)
on [0,T∗]. We know T∗ = T . Indeed, if T∗ < T , we can derive a contradiction by similar
lines as those in Proposition 4.14. Therefore, u is a desired solution. �

5. An example

We denote by Ω a bounded domain in RN whose boundary ∂Ω is of class C2,γ with 0 <

γ < 1. We define 〈u,v〉 = ∫Ωu(x)v(x)dx for u,v ∈ L2(Ω) and ‖u‖ = (∫Ω |∇u(x)|2dx)1/2

for u∈H1
0 (Ω). We also define u+(x)=max{u(x),0} and u−(x)=max{−u(x),0} for u∈

L2(Ω).
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Let aj ∈ C1,γ(Ω× R× RN ) for each j = 1, . . . ,N such that aj(x,0,0) = 0 for every
x ∈ Ω and j = 1, . . . ,N , and there exists an increasing function µ : R+ → R+ such that
|∂aj/∂xi(x,u,z)| ≤ µ(|u|)|z|2, |∂aj/∂u(x,u,z)| ≤ µ(|u|)|z|, and |∂aj/∂zi(x,u,z)| ≤ µ(|u|)
for every (x,u,z)∈Ω×R×RN and i, j = 1, . . . ,N . We assume that there exists ω > 0 such
that

N∑
j=1

(
aj(x,u,z)− aj(x,v,w)

)(
zj −wj

)≥ ω
N∑
j=1

∣∣zj −wj

∣∣2
(5.1)

for every x ∈Ω, u,v ∈R, and z,w ∈RN . We put

Au=−
N∑
j=1

∂

∂xj
aj
(
x,u(x),∇u(x)

)
, u∈D(A)≡ {u∈H1

0 (Ω) : Au∈ L2(Ω)
}
. (5.2)

Then A satisfies

〈Au−Av,u− v〉 ≥ ω‖u− v‖2 for every u,v ∈D(A). (5.3)

We will show that A is maximal monotone in L2(Ω)×L2(Ω). Let λ > 0 and ũ∈ C1(Ω). By
the solvability in Hölder space [12, Theorem 15.11], there is u∈ C2,γ(Ω) with u+ λAu=
ũ. Since C1(Ω) is dense in L2(Ω), and (I + λA)−1 is nonexpansive on R(I + λA), we obtain
R(I + λA)= L2(Ω). Thus A is maximal monotone. Next, we will show

JλK ⊂ K for every λ > 0, (5.4)

where K = {u ∈ L2(Ω) : u ≥ 0}. By comparison principle [12, Theorem 10.7], for each
u,v ∈ C1(Ω) with u≥ v and λ > 0, there holds Jλu≥ Jλv. Since C1(Ω) is dense in L2(Ω),
and the resolvents are continuous on L2(Ω), we know that the resolvents are order pre-
serving on L2(Ω). By A0= 0 and the order-preserving property of the resolvents, we have
shown JλK ⊂ K for each λ > 0. We set Pu= u+ for each u∈ L2(Ω). Then P is the metric
projection from L2(Ω) onto K , P(H1

0 (Ω)) ⊂ H1
0 (Ω), P : H1

0 (Ω)→H1
0 (Ω) is continuous,

and ‖Pu‖ ≤ ‖u‖ for each u∈H1
0 (Ω). Let g : R×Ω×R×RN →R be a continuous func-

tion, which is T-periodic in its first variable. We assume that

∣∣g(t,x,u,z)
∣∣≤ c

(|u|+ 1
)

for every (t,x,u,z)∈R×Ω×R×R
N (5.5)

with some constant c > 0, and

lim
|u|→∞

g(t,x,u,z)
u

< ωλ1 uniformly in (t,x,z)∈R×Ω×R
N , (5.6)
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where λ1 is the first eigenvalue of the operator−∆ with homogeneous Dirichlet boundary
condition. We also assume that

g(t,x,0,z)≥ 0 for each (t,x,z)∈R×Ω×R
N . (5.7)

We set f (t,u)(x) = g(t,x,u(x),∇u(x)) for each (t,u) ∈ R×H1
0 (Ω). By (5.5), (5.6), and

(5.7), there exist constants C,ε > 0, which satisfy

〈
f (t,Pu),u

〉= 〈g(t,x,u+,∇u+),u+−u−
〉≤ 〈g(t,x,u+,∇u+),u+〉

≤ (ω− ε)λ1|u|2 +C ≤ (ω− ε)‖u‖2 +C
(5.8)

for every u∈H1
0 (Ω). Then we find

〈
Au− f (t,Pu),u

〉≥ ε‖u‖2−C for every (t,u)∈R×H1
0 (Ω), (5.9)

which implies (B4). On the other hand, we have (T3). Indeed, by (5.7) and Lebesgue’s
convergence theorem, we have

lim
s→+0

1
s

(∫
Ω

∣∣(u+ sg(t,x,u,∇u)
)−∣∣2

dx
)1/2

= 0 for each (t,u)∈R× (K ∩H1
0 (Ω)

)
.

(5.10)

Hence, Theorem 3.2 says that the problem

∂u

∂t
−

N∑
j=1

∂

∂xj
aj(x,u,∇u)= g(t,x,u,∇u) in R×Ω,

u(t,x)≥ 0 in R×Ω,

u(t,x)= 0 on R× ∂Ω,

(5.11)

has a T-periodic solution.
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