SOLVABILITY OF NONLINEAR DIRICHLET PROBLEM FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS

ALBO CARLOS CAVALHEIRO

Received 7 August 2003

We prove an existence result for solution to a class of nonlinear degenerate elliptic equation associated with a class of partial differential operators of the form $Lu(x) = \sum_{i,j=1}^{n} D_j(a_{ij}(x)D_iu(x))$, with $D_j = \partial/\partial x_j$, where $a_{ij} : \Omega \to \mathbb{R}$ are functions satisfying suitable hypotheses.

1. Introduction

In this paper, we prove the existence of solution in $D(A) \subseteq H_0(\Omega)$ for the following nonlinear Dirichlet problem:

$$-Lu(x) + g(u(x))\omega(x) = f_0(x) - \sum_{j=1}^n D_j f_j(x) \quad \text{on } \Omega,$$

$$u(x) = 0 \quad \text{on } \partial\Omega,$$
 (1.1)

where *L* is an elliptic operator in divergence form

$$Lu(x) = \sum_{i,j=1}^{n} D_j(a_{ij}(x)D_iu(x)), \quad \text{with } D_j = \frac{\partial}{\partial x_j}$$
(1.2)

and the coefficients a_{ij} are measurable, real-valued functions whose coefficient matrix $(a_{ij}(x))$ is symmetric and satisfies the degenerate ellipticity condition

$$|\xi|^2 \omega(x) \le \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \le |\xi|^2 \nu(x)$$
(1.3)

for all $\xi \in \mathbb{R}^n$ and almost every $x \in \Omega \subset \mathbb{R}^n$ a bounded open set with piecewise smooth boundary (i.e., $\partial \Omega \in C^{0,1}$), and ω and ν two weight functions (i.e., locally integrable non-negative functions).

Copyright © 2004 Hindawi Publishing Corporation Abstract and Applied Analysis 2004:3 (2004) 205–214 2000 Mathematics Subject Classification: 35J70, 35J60 URL: http://dx.doi.org/10.1155/S1085337504310043

The basic idea is to reduce (1.1) to an operator equation

$$Au = T, \quad u \in D(A), \tag{1.4}$$

where $D(A) = \{u \in H_0(\Omega) : u(x)g(u(x)) \in L^1(\Omega, \omega)\}$, and apply the theorem below.

THEOREM 1.1. Suppose that the following assumptions are satisfied.

(H1) Dual pairs. Let the dual pairs $\{X, X^+\}$ and $\{Y, Y^+\}$ be given, where X, X^+, Y , and Y^+ are Banach spaces with corresponding bilinear forms $\langle \cdot, \cdot \rangle_X$ and $\langle \cdot, \cdot \rangle_Y$ and the continuous embeddings $Y \subseteq X$ and $X^+ \subseteq Y^+$.

The dual pairs are compatible, that is,

$$\langle T, u \rangle_X = \langle T, u \rangle_Y, \quad \forall T \in X^+, \ u \in Y.$$
 (1.5)

Moreover, the Banach spaces X and Y are separable and X is reflexive.

(H2) Operator A. Let the operator $A : D(A) \subseteq X \to Y^+$ be given, and let K be a bounded closed convex set in X containing the zero point as an interior point and $K \cap Y \subseteq D(A)$.

(H3) Local coerciveness. There exists a number $\alpha \ge 0$ such that $\langle Av, v \rangle_Y \ge \alpha$ for all $v \in Y \cap \partial K$, where ∂K denotes the boundary of K in the Banach space X.

(H4) Continuity. For each finite-dimensional subspace Y_0 of the Banach space Y, the mapping $u \mapsto \langle Au, v \rangle_Y$ is continuous on $K \cap Y_0$ for all $v \in Y_0$.

(H5) Generalized condition (M). Let $\{u_n\}$ be a sequence in $Y \cap K$ and let $T \in X^+$. Then, from

$$u_n \rightarrow u \quad in X \text{ as } n \rightarrow \infty,$$
 (1.6)

 \square

$$\langle Au_n, \nu \rangle_Y \longrightarrow \langle T, \nu \rangle_X \quad as \ n \longrightarrow \infty, \ \forall \nu \in Y,$$

$$\overline{\lim_{n \to \infty}} \langle Au_n, u_n \rangle_Y \leq \langle T, u \rangle_X,$$

$$(1.7)$$

it follows that Au = T.

(H6) Quasiboundedness. Let $\{u_n\}$ be a sequence in $Y \cap K$. Then, from (1.6) and $\langle Au_n, u_n \rangle_Y \leq C ||u||_X$ for all n, it follows that the sequence $\{Au_n\}$ is bounded in Y^+ .

(H7) The operator A is coercive, that is, $(Av, v)_Y / ||v||_X \to \infty$ as $||v||_X \to \infty$, $v \in Y$. Then $X^+ \subseteq R(A)$, that is, the equation Au = T has a solution u for each $T \in X^+$.

Proof. See [7, Theorem 27.B and Corollary 27.19].

We will apply this theorem to a sufficiently large ball *K* in the Banach spaces $X = H_0(\Omega), X^+ = (H_0(\Omega))^*$, and $Y^+ = Y^*$.

We make the following basic assumption on the weights ω and ν .

The weighted Sobolev inequality (WSI). Let Ω be an open bounded set in \mathbb{R}^n . There is an index $q = 2\sigma$, $\sigma > 1$, such that for every ball *B* and every $f \in \text{Lip}_0(B)$ (i.e, $f \in \text{Lip}(B)$ whose support is contained in the interior of *B*),

$$\left(\frac{1}{\nu(B)}\int_{B}|f|^{q}\nu\,dx\right)^{1/q} \le CR_{B}\left(\frac{1}{\omega(B)}\int_{B}|\nabla f|^{2}\omega\,dx\right)^{1/2},\tag{1.8}$$

with the constant *C* independent of *f* and *B*, *R*_B the radius of *B*, and the symbol ∇ indicating the gradient, $v(B) = \int_B v(x) dx$, and $\omega(B) = \int_B \omega(x) dx$.

Thus, we can write

$$\left(\int_{B} |f|^{q} \nu \, dx\right)^{1/q} \le C_{B,\omega,\nu} \left(|\nabla f|^{2} \omega \, dx\right)^{1/2},\tag{1.9}$$

where $C_{B,\omega,\nu}$ is called the Sobolev constant and

$$C_{B,\omega,\nu} = \frac{C[\nu(B)]^{1/q} R_B}{[\omega(B)]^{1/2}}.$$
(1.10)

For instance, the WSI holds if ω and ν are as in [6, Chapter X, Theorem 4.8], or if ω and ν are as in [1, Theorem 1.5].

The following theorem will be proved in Section 3.

THEOREM 1.2. Let L be the operator (1.2) and satisfy (1.3). Suppose that the following assumptions are satisfied:

- (i) $(\nu, \omega) \in A_2$;
- (ii) the function $g : \mathbb{R} \to \mathbb{R}$ is continuous with $xg(x) \ge 0$ for all $x \in \mathbb{R}$;
- (iii) $f_0/\nu \in L^{q'}(\Omega,\nu)$ and $f_j/\omega \in L^2(\Omega,\omega)$, j = 1,2,...,n (where q is as in WSI). Then problem (1.1) has solution $u \in D(A) \subseteq H_0(\Omega)$;
- (iv) if the function $g : \mathbb{R} \to \mathbb{R}$ is monotone increasing, then the solution is unique.

Example 1.3. Consider the domain $\Omega = \{(x, y) \in \mathbb{R}^2 : |x| < 1 \text{ and } |y| < 1\}$. By Theorem 1.2, the problem

$$-Lu(x) + u(x, y)e^{u^{2}(x, y)}|x|^{1/2} = 1 - \frac{\partial}{\partial x}(x^{2}|y|) - \frac{\partial}{\partial y}(y^{2}|x|) \quad \text{on } \Omega,$$

$$u(x, y) = 0 \quad \text{on } \partial\Omega,$$

(1.11)

where

$$Lu(x) = \left[\frac{\partial}{\partial x}\left(|x|^{1/2}\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(|x|^{-1/2}\frac{\partial u}{\partial y}\right)\right]$$
(1.12)

has a unique solution $u \in D(A) = \{u \in H_0(\Omega) : g(u(x, y))u(x, y) \in L^1(\Omega, \omega)\}$, where $g(t) = te^{t^2}$, $\omega(x, y) = |x|^{1/2}$, $\nu(x, y) = |x|^{-1/2}$, $f_0(x, y) = 1$, $f_1(x, y) = x^2|y|$, and $f_2(x, y) = y^2|x|$.

2. Definitions and basic results

Let ω be a locally integrable nonnegative function in \mathbb{R}^n and assume that $0 < \omega < \infty$ almost everywhere. We say that ω belongs to the Muckenhoupt class A_p , $1 , or that <math>\omega$ is an A_p -weight if there is a constant $C_1 = C(p, \omega)$ such that

$$\left(\frac{1}{|B|}\int_{B}\omega(x)dx\right)\left(\frac{1}{|B|}\int_{B}\omega^{1/(1-p)}(x)dx\right)^{p-1} \le C_{1},$$
(2.1)

for all balls $B \subset \mathbb{R}^n$, where $|\cdot|$ denotes the *n*-dimensional Lebesgue measure in \mathbb{R}^n . If $1 < q \le p$, then $A_q \subset A_p$ (see [4, 5] for more information about A_p -weights). The weight ω satisfies the doubling condition if $\omega(2B) \le C\omega(B)$, for all balls $B \subset \mathbb{R}^n$, where $\omega(B) = \int_B \omega(x) dx$ and 2*B* denotes the ball with the same center as *B* which is twice as large. If $\omega \in A_p$, then ω is doubling (see [5, Corollary 15.7]).

We say that the pair of weights (v, ω) satisfies the condition A_p $(1 and <math>(v, \omega) \in A_p$) if and only if there is a constant C_2 such that

$$\left(\frac{1}{|B|} \int_{B} \nu(x) dx\right) \left(\frac{1}{|B|} \int_{B} \omega^{1/(1-p)}(x) dx\right)^{p-1} \le C_{2},$$
(2.2)

for every ball $B \subset \mathbb{R}^n$.

Remark 2.1. If $(v, \omega) \in A_p$ and $\omega \le v$, then $\omega \in A_p$ and $v \in A_p$.

Given a measurable subset Ω of \mathbb{R}^n , we will denote by $L^p(\Omega, \omega)$, $1 \le p < \infty$, the Banach space of all measurable functions f defined on Ω for which

$$\|f\|_{L^{p}(\Omega,\omega)} = \left(\int_{\Omega} |f(x)|^{p} \omega(x) dx\right)^{1/p} < \infty.$$
(2.3)

We will denote by $W^{k,p}(\Omega, \omega)$, the weighted Sobolev spaces, the set of all functions $u \in L^p(\Omega, \omega)$ such that the weak derivatives $D^{\alpha}u \in L^p(\Omega, \omega)$, $1 \le |\alpha| \le k$. The norm in the space $W^{k,p}(\Omega, \omega)$ is defined by

$$\|u\|_{W^{k,p}(\Omega,\omega)} = \left(\int_{\Omega} |u(x)|^{p} \omega(x) dx + \sum_{1 \le |\alpha| \le k} \int_{\Omega} |D^{\alpha}u(x)|^{p} \omega(x) dx\right)^{1/p}.$$
 (2.4)

If $\omega \in A_p$, then $W^{k,p}(\Omega, \omega)$ is the closure of $C^{\infty}(\overline{\Omega})$ with respect to the norm (2.4) (see [2, Proposition 3.5]). The space $W_0^{k,p}(\Omega, \omega)$ is the closure of $C_0^{\infty}(\Omega)$ with respect to the norm

$$\|u\|_{W_0^{k,p}(\Omega,\omega)} = \left(\sum_{1 \le |\alpha| \le k} \int_{\Omega} |D^{\alpha}u(x)|^p \omega(x) dx\right)^{1/p}.$$
(2.5)

When k = 1 and p = 2, the spaces $W^{1,2}(\Omega, \omega)$ and $W^{1,2}_0(\Omega, \omega)$ are Hilbert spaces. We will denote by $H_0(\Omega)$ the closure of $C_0^{\infty}(\overline{\Omega})$ with respect to the norm

$$\|u\|_{H_0(\Omega)} = \left(\int_{\Omega} \left\langle \mathcal{A}(x)\nabla u(x), \nabla u(x) \right\rangle dx \right)^{1/2}, \tag{2.6}$$

where $\mathcal{A}(x) = [a_{ij}(x)]$ (the coefficient matrix) and the symbol ∇ indicates the gradient.

Remark 2.2. Using the condition (1.3), we have

$$\|u\|_{W_0^{1,2}(\Omega,\omega)} \le \|u\|_{H_0(\Omega)} \le \|u\|_{W_0^{1,2}(\Omega,\nu)},\tag{2.7}$$

$$W_0^{1,2}(\Omega,\nu) \subset H_0(\Omega) \subset W_0^{1,2}(\Omega,\omega).$$
(2.8)

LEMMA 2.3. If $\omega \in A_2$, then $W_0^{1,2}(\Omega, \omega) \hookrightarrow L^2(\Omega, \omega)$ is compact and

$$\|u\|_{L^{2}(\Omega,\omega)} \leq C_{3} \|u\|_{W_{0}^{1,2}(\Omega,\omega)}.$$
(2.9)

Proof. The proof follows the lines of [3, Theorem 4.6].

We introduce the following definition of (weak) solutions for problem (1.1).

Definition 2.4. A function $u \in D(A) \subseteq H_0(\Omega)$ is (weak) solution to the problem (1.1) if

$$\int_{\Omega} a_{ij}(x) D_i u(x) D_j \varphi(x) dx + \int_{\Omega} g(u(x)) \varphi(x) \omega(x) dx$$

=
$$\int_{\Omega} f_0(x) \varphi(x) dx + \int_{\Omega} f_j(x) D_j \varphi(x) dx,$$
 (2.10)

for all $\varphi \in Y = H_0(\Omega) \cap W^{k,p}(\Omega,\nu)$, where p > 4, k > n/2, and $\|\varphi\|_Y = \|\varphi\|_{W^{k,p}(\Omega,\nu)}$, with $D(A) = \{u \in H_0(\Omega) : g(u(x))u(x) \in L^1(\Omega,\omega)\}.$

Remark 2.5. Using that p > 4, we have that $v \in A_2 \subset A_{p/2}$ and

$$\|\cdot\|_{L^{2}(\Omega)} \leq \left[\nu^{1/(1-p/2)}(\Omega)\right]^{(p-2)/2p} \|\cdot\|_{L^{p}(\Omega,\nu)}.$$
(2.11)

Thus, $W^{k,p}(\Omega,\nu) \subset W^{k,2}(\Omega) \subset C(\overline{\Omega})$ (by the Sobolev embedding theorem).

Therefore $\|\cdot\|_{C(\bar{\Omega})} \leq C \|\cdot\|_{Y}$ and the embedding $Y \subset C(\bar{\Omega})$ is continuous.

3. Proof of Theorem 1.2

(I) *Existence*. For $u \in D(A)$ and $\varphi \in Y$, we define

$$B_{1}(u,\varphi) = \int_{\Omega} a_{ij}(x) D_{i}u(x) D_{j}\varphi(x) dx,$$

$$B_{2}(u,\varphi) = \int_{\Omega} g(u(x))\varphi(x)\omega(x) dx,$$

$$T(\varphi) = \int_{\Omega} f_{0}(x)\varphi(x) dx + \sum_{j=1}^{n} \int_{\Omega} f_{j}(x) D_{j}\varphi(x) dx.$$
(3.1)

Then $u \in D(A) \subseteq H_0(\Omega)$ is solution to problem (1.1) if

$$B_1(u,\varphi) + B_2(u,\varphi) = T(\varphi), \quad \forall \varphi \in Y.$$
(3.2)

Step 1 ($T \in (H_0(\Omega))^*$). In fact, using hypothesis (iii), Lemma 2.3, the Hölder inequality, the WSI, and (2.7), we obtain

$$\begin{split} |T(\varphi)| &\leq \int_{\Omega} |f_{0}| |\varphi| dx + \sum_{j=1}^{n} \int_{\Omega} |f_{j}| |D_{j}\varphi| dx \\ &= \int_{\Omega} \left(\frac{|f_{0}|}{\nu}\right) \nu^{1/q'} |\varphi| \nu^{1/q} dx + \sum_{j=1}^{n} \int_{\Omega} \left(\frac{|f_{j}|}{\omega}\right) \omega^{1/2} |D_{j}\varphi| \omega^{1/2} dx \\ &\leq \left\| \frac{f_{0}}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \|\varphi\|_{L^{q}(\Omega,\nu)} + \sum_{j=1}^{n} \left\| \frac{f_{j}}{\omega} \right\|_{L^{2}(\Omega,\omega)} \|D_{j}\varphi\|_{L^{2}(\Omega,\omega)} \\ &\leq C_{B,\omega,\nu} \left\| \frac{f_{0}}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \|\nabla\varphi\|_{L^{2}(\Omega,\omega)} + \sum_{j=1}^{n} \left\| \frac{f_{j}}{\omega} \right\|_{L^{2}(\Omega,\omega)} \|\nabla\varphi\|_{L^{2}(\Omega,\omega)} \\ &\leq C \left(\left\| \frac{f_{0}}{\nu} \right\|_{L^{q'}(\Omega,\nu)} + \sum_{j=1}^{n} \left\| \frac{f_{j}}{\omega} \right\|_{L^{2}(\Omega,\omega)} \right) \|\varphi\|_{H_{0}(\Omega)}, \quad \forall \varphi \in H_{0}(\Omega). \end{split}$$

Step 2. By condition (1.3) and the hypothesis that the matrix \mathcal{A} is symmetric, we obtain

$$|B_{1}(u,\varphi)| \leq \int_{\Omega} big |\langle \mathcal{A}\nabla u, \nabla \varphi \rangle| dx$$

$$\leq \int_{\Omega} \langle \mathcal{A}\nabla u, \nabla u \rangle^{1/2} \langle \mathcal{A}\nabla \varphi, \nabla \varphi \rangle^{1/2} dx$$

$$\leq ||u||_{H_{0}(\Omega)} ||\varphi||_{H_{0}(\Omega)}$$

$$\leq ||u||_{H_{0}(\Omega)} ||\varphi||_{W_{0}^{1/2}(\Omega,\nu)}$$

$$\leq ||u||_{H_{0}(\Omega)} ||\varphi||_{Y},$$
(3.4)

for all $u \in H_0(\Omega)$, $\varphi \in Y$.

Hence there exists exactly one linear continuous operator

$$A_1: H_0(\Omega) \longrightarrow Y^*, \tag{3.5}$$

with

$$\langle A_1 u, \varphi \rangle_Y = B_1(u, \varphi), \quad \forall u \in H_0(\Omega), \ \varphi \in Y.$$
 (3.6)

Step 3. Note that $|g(x)| \le xg(x) + C_4$, for all $x \in \mathbb{R}$. Therefore, if $u \in D(A)$, we have that $g(u(x)) \in L^1(\Omega, \omega)$. By using hypothesis (ii), Lemma 2.3, and Remark 2.5, we obtain for $u \in D(A)$ fixed

$$|B_{2}(u,\varphi)| \leq \int_{\Omega} |g(u(x))| |\varphi(x)| \omega(x) dx$$

$$\leq \|\varphi\|_{C(\bar{\Omega})} \int_{\Omega} |g(u(x))| \omega(x) dx$$

$$\leq C \|\varphi\|_{Y}.$$
(3.7)

Thus, there exists a unique operator

$$A_2: D(A) \subseteq H_0(\Omega) \longrightarrow Y^*, \tag{3.8}$$

with

$$\langle A_2 u, \varphi \rangle_Y = B_2(u, \varphi), \quad \forall u \in D(A), \ \varphi \in Y.$$
 (3.9)

Step 4. We define the operator

$$A: D(A) \subseteq H_0(\Omega) \longrightarrow Y^*, \quad A = A_1 + A_2.$$
(3.10)

We have

$$\langle Au, \varphi \rangle_{Y} = \langle A_{1}u, \varphi \rangle_{Y} + \langle A_{2}u, \varphi \rangle_{Y} = B_{1}(u, \varphi) + B_{2}(u, \varphi).$$
(3.11)

Thus, $u \in D(A)$ is a solution to problem (1.1) if

$$\langle Au, \varphi \rangle_Y = T(\varphi), \quad \forall \varphi \in Y.$$
 (3.12)

Then, the problem (1.1) corresponds to the operator equation (1.4). Step 5. Global coerciveness of operator A. Using the condition (1.3) and hypothesis (ii), we obtain

$$\langle A\varphi, \varphi \rangle_{Y} = B_{1}(\varphi, \varphi) + B_{2}(\varphi, \varphi)$$

$$= \int_{\Omega} a_{ij}(x) D_{i}\varphi(x) D_{j}\varphi(x) dx + \int_{\Omega} g(\varphi(x))\varphi(x)\omega(x) dx$$

$$\geq \int_{\Omega} \langle \mathscr{A}\nabla\varphi, \nabla\varphi \rangle dx$$

$$= \|\varphi\|_{H_{0}(\Omega)}^{2}.$$

$$(3.13)$$

Thus

$$\lim_{\|\varphi\|_{H_0(\Omega)} \to \infty} \frac{\langle A\varphi, \varphi \rangle_Y}{\|\varphi\|_{H_0(\Omega)}} = +\infty.$$
(3.14)

Step 6. Generalized condition (M). Let $T \in (H_0(\Omega))^*$ and let $\{u_n\}$ be a sequence in Y with

$$u_n \rightarrow u \quad \text{in } H_0(\Omega), \tag{3.15}$$

$$\langle Au_n, \varphi \rangle_Y \longrightarrow T(\varphi) \quad \text{as } n \longrightarrow \infty, \ \forall \varphi \in Y,$$
 (3.16)

$$\lim_{n \to \infty} \langle Au_n, u_n \rangle \le T(u). \tag{3.17}$$

We want to show that this implies that Au = T.

Using that the operator A_1 is linear and continuous, we obtain

$$\langle A_1 u_n, \varphi \rangle_Y \longrightarrow \langle A_1 u, \varphi \rangle_Y, \quad \forall \varphi \in Y.$$
 (3.18)

Because of (3.16), it is sufficient to prove that $u \in D(A)$ and

$$\langle A_2 u_n, \varphi \rangle_Y \longrightarrow \langle A_2 u, \varphi \rangle_Y, \quad \forall \varphi \in Y.$$
 (3.19)

Therefore, it is sufficient to show that

$$\int_{\Omega} \left[g(u_n(x)) - g(u(x)) \right] \varphi(x) \omega(x) dx \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$
(3.20)

Using the same argument in Step 3, we obtain

$$\left| \int_{\Omega} \left(g(u_{n}(x)) - g(u(x)) \right) \varphi(x) \omega(x) dx \right|$$

$$\leq \int_{\Omega} \left| g(u_{n}(x)) - g(u(x)) \right| \left| \varphi(x) \right| \omega(x) dx$$

$$\leq \|\varphi\|_{C(\bar{\Omega})} \int_{\Omega} \left| g(u_{n}(x)) - g(u(x)) \right| \omega(x) dx$$

$$\leq C \|\varphi\|_{Y} \int_{\Omega} \left| g(u_{n}(x)) - g(u(x)) \right| \omega(x) dx.$$
(3.21)

Therefore, it is sufficient to show that

$$g(u_n(x)) \longrightarrow g(u(x)) \quad \text{in } L^1(\Omega, \omega).$$
 (3.22)

Note that it is sufficient to prove (3.22) for a subsequence of $\{u_n\}$.

If $(v, \omega) \in A_2$ and $\omega \le v$, then $\omega \in A_2$ (see Remark 2.1). By Lemma 2.3,

$$W_0^{1,2}(\Omega,\omega) \hookrightarrow L^2(\Omega,\omega) \tag{3.23}$$

is compact and $||u||_{L_2(\Omega,\omega)} \le C_2 ||u||_{W_0^{1,2}(\Omega,\omega)}$. Using (2.7), we also have that

$$H_0(\Omega) \hookrightarrow L^2(\Omega, \omega) \tag{3.24}$$

is compact. This implies $u_n \rightarrow u$ in $L^2(\Omega, \omega)$. Using again that $\omega \in A_2$, we have $u_n \rightarrow u$ in $L^1(\Omega)$. Thus, there exists a subsequence, again denoted by $\{u_n\}$, such that $u_n(x) \rightarrow u(x)$ for almost all $x \in \Omega$. The continuity of g implies that $g(u_n(x)) \rightarrow g(u(x))$ for almost all $x \in \Omega$. Moreover, since $u_n \rightarrow u$ in $H_0(\Omega)$, it follows that

$$\sup \|u_n\|_{H_0(\Omega)} \le C, \quad \text{independent of } n. \tag{3.25}$$

Hence, using (1.2), we obtain

$$\langle A_1 u_n, u_n \rangle_Y \le \Lambda ||u_n||^2_{H_0(\Omega)} \le \Lambda C^2$$
, with *C* independent of *n*. (3.26)

Therefore, using (3.16), we obtain

$$\overline{\lim_{n \to \infty}} \langle A_2 u_n, u_n \rangle_Y = \overline{\lim_{n \to \infty}} \int_{\Omega} g(u_n(x)) u_n(x) \omega(x) dx \le C,$$
(3.27)

with *C* independent of *n*.

The continuity of *g* implies that $g(u_n(x))u_n(x)\omega(x) \rightarrow g(u(x))u(x)\omega(x)$ for almost all $x \in \Omega$. Therefore, by Fatou lemma, we have

$$\int_{\Omega} g(u(x))u(x)\omega(x)dx < \infty, \qquad (3.28)$$

that is, $u \in D(A)$.

Now we want to show that $g(u_n(x)) \rightarrow g(u(x))$ in $L^1(\Omega, \omega)$. Let a > 0 be fixed. For each $x \in \Omega$, we have either

$$|u_n(x)| \le a \quad \text{or} \quad |g(u_n(x))| \le a^{-1}g(u_n(x))u_n(x)$$

$$(3.29)$$

(if $x \neq 0$, we can write $g(x) = x^{-1}[g(x)x]$). We get $|g(x)| \leq c(a)$ if $|x| \leq a$ (because g is continuous).

Let *X* be a measurable subset of Ω . Then

$$\int_{X} |g(u_{n}(x))| \omega(x) dx = \int_{X \cap \{x:|u_{n}(x)| \le a\}} |g(u_{n}(x))| \omega(x) dx + \int_{X \cap \{x:|u_{n}(x)| > a\}} |g(u_{n}(x))| \omega(x) dx \le c(a) \omega(X) + a^{-1} \int_{X} g(u_{n}(x)) u_{n}(x) \omega(x) dx \le c(a) \omega(X) + a^{-1} C \quad (by (3.27)).$$
(3.30)

Hence, for all $\varepsilon > 0$, we have

$$\int_{X} |g(u_n(x))| \omega(x) dx \le \frac{\varepsilon}{2}$$
(3.31)

if *a* is sufficiently large and $\omega(X)$ is sufficiently small. Therefore, for all $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon)$ such that

$$\int_{X} |g(u_{n}(x)) - g(u(x))| \omega(x) dx$$

$$\leq \int_{X} |g(u_{n}(x))| \omega(x) dx + \int_{X} |g(u(x))| \omega(x) dx \leq \varepsilon,$$
(3.32)

with $\omega(X) < \delta$. Thus, the Vitali convergence theorem tells us that (3.22) holds. Step 7. Quasiboundedness of the operator A. Let $\{u_n\}$ be a sequence in Y with $u_n - u$ in $H_0(\Omega)$ and suppose that

$$\langle Au_n, u_n \rangle_Y \le C ||u_n||_{H_0(\Omega)}, \quad \forall n.$$
 (3.33)

We want to show that the sequence $\{Au_n\}$ is bounded in Y^* . In fact, the boundedness of $\{u_n\}$ in $H_0(\Omega)$ implies that

$$\overline{\lim_{n \to \infty}} \langle A u_n, u_n \rangle_Y \le C. \tag{3.34}$$

Suppose by contradiction that the sequence $\{Au_n\}$ is unbounded in Y^* . Then there exists a subsequence, again denoted by $\{u_n\}$, such that

$$||Au_n||_{Y^*} \longrightarrow \infty \quad \text{as } n \longrightarrow \infty.$$
 (3.35)

By the same arguments as in Step 6, we obtain that

$$\langle Au_n, \varphi \rangle_Y \longrightarrow \langle Au, \varphi \rangle_Y \quad \text{as } n \longrightarrow \infty, \ \forall \varphi \in Y.$$
 (3.36)

The uniform boundedness principle tells us that the sequence $\{Au_n\}$ is bounded (which is a contradiction with (3.35)).

Therefore, by Theorem 1.1, the equation Au = T, with $T \in (H_0(\Omega))^*$, has a solution $u \in D(A) \subseteq H_0(\Omega)$, and it is the solution for problem (1.1).

(II) *Uniqueness*. If the function $g : \mathbb{R} \to \mathbb{R}$ is monotone increasing, we have that $(g(a) - g(b))(a - b) \ge 0$, for all $a, b \in \mathbb{R}$. Then

$$\langle Au - Av, u - v \rangle_{Y} = \int_{\Omega} \langle \mathscr{A} \nabla (u - v), \nabla (u - v) \rangle dx + \int_{\Omega} (g(u(x)) - g(v(x))) (u(x) - v(x)) \omega(x) dx$$
(3.37)
$$\geq \int_{\Omega} \langle \mathscr{A} \nabla (u - v), \nabla (u - v) \rangle dx = ||u - v||^{2}_{H_{0}(\Omega)},$$

for all $u, v \in D(A)$.

Therefore, if $u, v \in D(A)$ and Au = Av = T, we obtain that u = v.

References

- S. Chanillo and R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), no. 5, 1191–1226.
- [2] V. Chiadò Piat and F. Serra Cassano, *Relaxation of degenerate variational integrals*, Nonlinear Anal. 22 (1994), no. 4, 409–424.
- [3] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 4, 527–568.
- [4] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing, Amsterdam, 1985.
- [5] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993.
- [6] A. Torchinsky, *Real-Variable Methods in Harmonic Analysis*, Pure and Applied Mathematics, vol. 123, Academic Press, Florida, 1986.
- [7] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B, Springer-Verlag, New York, 1990.

Albo Carlos Cavalheiro: Departamento de Matemática, Universidade Estadual de Londrina, Londrina, PR 86051-990, Brazil

E-mail address: albo@uel.br