SOLVABILITY OF NONLINEAR DIRICHLET PROBLEM FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS

ALBO CARLOS CAVALHEIRO

Received 7 August 2003

We prove an existence result for solution to a class of nonlinear degenerate elliptic equation associated with a class of partial differential operators of the form $\operatorname{Lu}(x)=$ $\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u(x)\right)$, with $D_{j}=\partial / \partial x_{j}$, where $a_{i j}: \Omega \rightarrow \mathbb{R}$ are functions satisfying suitable hypotheses.

1. Introduction

In this paper, we prove the existence of solution in $D(A) \subseteq H_{0}(\Omega)$ for the following nonlinear Dirichlet problem:

$$
\begin{align*}
-L u(x)+g(u(x)) \omega(x) & =f_{0}(x)-\sum_{j=1}^{n} D_{j} f_{j}(x) \quad \text { on } \Omega, \tag{1.1}\\
u(x) & =0 \quad \text { on } \partial \Omega,
\end{align*}
$$

where L is an elliptic operator in divergence form

$$
\begin{equation*}
L u(x)=\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u(x)\right), \quad \text { with } D_{j}=\frac{\partial}{\partial x_{j}} \tag{1.2}
\end{equation*}
$$

and the coefficients $a_{i j}$ are measurable, real-valued functions whose coefficient matrix $\left(a_{i j}(x)\right)$ is symmetric and satisfies the degenerate ellipticity condition

$$
\begin{equation*}
|\xi|^{2} \omega(x) \leq \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leq|\xi|^{2} v(x) \tag{1.3}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$ and almost every $x \in \Omega \subset \mathbb{R}^{n}$ a bounded open set with piecewise smooth boundary (i.e., $\partial \Omega \in C^{0,1}$), and ω and v two weight functions (i.e., locally integrable nonnegative functions).

The basic idea is to reduce (1.1) to an operator equation

$$
\begin{equation*}
A u=T, \quad u \in D(A), \tag{1.4}
\end{equation*}
$$

where $D(A)=\left\{u \in H_{0}(\Omega): u(x) g(u(x)) \in L^{1}(\Omega, \omega)\right\}$, and apply the theorem below.
Theorem 1.1. Suppose that the following assumptions are satisfied.
(H1) Dual pairs. Let the dual pairs $\left\{X, X^{+}\right\}$and $\left\{Y, Y^{+}\right\}$be given, where X, X^{+}, Y, and Y^{+}are Banach spaces with corresponding bilinear forms $\langle\cdot, \cdot\rangle_{X}$ and $\langle\cdot, \cdot\rangle_{Y}$ and the continuous embeddings $Y \subseteq X$ and $X^{+} \subseteq Y^{+}$.

The dual pairs are compatible, that is,

$$
\begin{equation*}
\langle T, u\rangle_{X}=\langle T, u\rangle_{Y}, \quad \forall T \in X^{+}, u \in Y \tag{1.5}
\end{equation*}
$$

Moreover, the Banach spaces X and Y are separable and X is reflexive.
(H2) Operator A. Let the operator $A: D(A) \subseteq X \rightarrow Y^{+}$be given, and let K be a bounded closed convex set in X containing the zero point as an interior point and $K \cap Y \subseteq D(A)$.
(H3) Local coerciveness. There exists a number $\alpha \geq 0$ such that $\langle A v, v\rangle_{Y} \geq \alpha$ for all $v \in Y \cap \partial K$, where ∂K denotes the boundary of K in the Banach space X.
(H4) Continuity. For each finite-dimensional subspace Y_{0} of the Banach space Y, the mapping $u \mapsto\langle A u, v\rangle_{Y}$ is continuous on $K \cap Y_{0}$ for all $v \in Y_{0}$.
(H5) Generalized condition (M). Let $\left\{u_{n}\right\}$ be a sequence in $Y \cap K$ and let $T \in X^{+}$. Then, from

$$
\begin{gather*}
u_{n} \rightarrow u \quad \text { in } X \text { as } n \longrightarrow \infty, \tag{1.6}\\
\left\langle A u_{n}, v\right\rangle_{Y} \longrightarrow\langle T, v\rangle_{X} \quad \text { as } n \longrightarrow \infty, \forall v \in Y, \\
\varlimsup_{n \rightarrow \infty}\left\langle A u_{n}, u_{n}\right\rangle_{Y} \leq\langle T, u\rangle_{X}, \tag{1.7}
\end{gather*}
$$

it follows that $A u=T$.
(H6) Quasiboundedness. Let $\left\{u_{n}\right\}$ be a sequence in $Y \cap K$. Then, from (1.6) and $\left\langle A u_{n}\right.$, $\left.u_{n}\right\rangle_{Y} \leq C\|u\|_{X}$ for all n, it follows that the sequence $\left\{A u_{n}\right\}$ is bounded in Y^{+}.
(H7) The operator A is coercive, that is, $\langle A v, v\rangle_{Y} /\|v\|_{X} \rightarrow \infty$ as $\|v\|_{X} \rightarrow \infty, v \in Y$.
Then $X^{+} \subseteq R(A)$, that is, the equation $A u=T$ has a solution u for each $T \in X^{+}$.
Proof. See [7, Theorem 27.B and Corollary 27.19].
We will apply this theorem to a sufficiently large ball K in the Banach spaces $X=$ $H_{0}(\Omega), X^{+}=\left(H_{0}(\Omega)\right)^{*}$, and $Y^{+}=Y^{*}$.

We make the following basic assumption on the weights ω and v.
The weighted Sobolev inequality (WSI). Let Ω be an open bounded set in \mathbb{R}^{n}. There is an index $q=2 \sigma, \sigma>1$, such that for every ball B and every $f \in \operatorname{Lip}_{0}(B)$ (i.e, $f \in \operatorname{Lip}(B)$ whose support is contained in the interior of B),

$$
\begin{equation*}
\left(\frac{1}{v(B)} \int_{B}|f|^{q} v d x\right)^{1 / q} \leq C R_{B}\left(\frac{1}{\omega(B)} \int_{B}|\nabla f|^{2} \omega d x\right)^{1 / 2}, \tag{1.8}
\end{equation*}
$$

with the constant C independent of f and B, R_{B} the radius of B, and the symbol ∇ indicating the gradient, $v(B)=\int_{B} v(x) d x$, and $\omega(B)=\int_{B} \omega(x) d x$.

Thus, we can write

$$
\begin{equation*}
\left(\int_{B}|f|^{q} v d x\right)^{1 / q} \leq C_{B, \omega, v}\left(|\nabla f|^{2} \omega d x\right)^{1 / 2} \tag{1.9}
\end{equation*}
$$

where $C_{B, \omega, v}$ is called the Sobolev constant and

$$
\begin{equation*}
C_{B, \omega, v}=\frac{C[v(B)]^{1 / q} R_{B}}{[\omega(B)]^{1 / 2}} . \tag{1.10}
\end{equation*}
$$

For instance, the WSI holds if ω and v are as in [6, Chapter X, Theorem 4.8], or if ω and v are as in [1, Theorem 1.5].

The following theorem will be proved in Section 3.
Theorem 1.2. Let L be the operator (1.2) and satisfy (1.3). Suppose that the following assumptions are satisfied:
(i) $(\nu, \omega) \in A_{2}$;
(ii) the function $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with $\operatorname{xg}(x) \geq 0$ for all $x \in \mathbb{R}$;
(iii) $f_{0} / v \in L^{q^{\prime}}(\Omega, v)$ and $f_{j} / \omega \in L^{2}(\Omega, \omega), j=1,2, \ldots, n$ (where q is as in WSI). Then problem (1.1) has solution $u \in D(A) \subseteq H_{0}(\Omega)$;
(iv) if the function $g: \mathbb{R} \rightarrow \mathbb{R}$ is monotone increasing, then the solution is unique.

Example 1.3. Consider the domain $\Omega=\left\{(x, y) \in \mathbb{R}^{2}:|x|<1\right.$ and $\left.|y|<1\right\}$. By Theorem 1.2, the problem

$$
\begin{align*}
-L u(x)+u(x, y) e^{u^{2}(x, y)}|x|^{1 / 2} & =1-\frac{\partial}{\partial x}\left(x^{2}|y|\right)-\frac{\partial}{\partial y}\left(y^{2}|x|\right) \quad \text { on } \Omega, \tag{1.11}\\
u(x, y) & =0 \quad \text { on } \partial \Omega,
\end{align*}
$$

where

$$
\begin{equation*}
L u(x)=\left[\frac{\partial}{\partial x}\left(|x|^{1 / 2} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(|x|^{-1 / 2} \frac{\partial u}{\partial y}\right)\right] \tag{1.12}
\end{equation*}
$$

has a unique solution $u \in D(A)=\left\{u \in H_{0}(\Omega): g(u(x, y)) u(x, y) \in L^{1}(\Omega, \omega)\right\}$, where $g(t)$ $=t e^{t^{2}}, \omega(x, y)=|x|^{1 / 2}, v(x, y)=|x|^{-1 / 2}, f_{0}(x, y)=1, f_{1}(x, y)=x^{2}|y|$, and $f_{2}(x, y)=$ $y^{2}|x|$.

2. Definitions and basic results

Let ω be a locally integrable nonnegative function in \mathbb{R}^{n} and assume that $0<\omega<\infty$ almost everywhere. We say that ω belongs to the Muckenhoupt class $A_{p}, 1<p<\infty$, or that ω is an A_{p}-weight if there is a constant $C_{1}=C(p, \omega)$ such that

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B} \omega(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-p)}(x) d x\right)^{p-1} \leq C_{1} \tag{2.1}
\end{equation*}
$$

for all balls $B \subset \mathbb{R}^{n}$, where $|\cdot|$ denotes the n-dimensional Lebesgue measure in \mathbb{R}^{n}. If $1<q \leq p$, then $A_{q} \subset A_{p}$ (see $[4,5]$ for more information about A_{p}-weights). The weight ω satisfies the doubling condition if $\omega(2 B) \leq C \omega(B)$, for all balls $B \subset \mathbb{R}^{n}$, where $\omega(B)=$ $\int_{B} \omega(x) d x$ and $2 B$ denotes the ball with the same center as B which is twice as large. If $\omega \in A_{p}$, then ω is doubling (see [5, Corollary 15.7]).

We say that the pair of weights (v, ω) satisfies the condition $A_{p}(1<p<\infty$ and $(v, \omega) \in$ A_{p}) if and only if there is a constant C_{2} such that

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B} v(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-p)}(x) d x\right)^{p-1} \leq C_{2} \tag{2.2}
\end{equation*}
$$

for every ball $B \subset \mathbb{R}^{n}$.
Remark 2.1. If $(v, \omega) \in A_{p}$ and $\omega \leq v$, then $\omega \in A_{p}$ and $v \in A_{p}$.
Given a measurable subset Ω of \mathbb{R}^{n}, we will denote by $L^{p}(\Omega, \omega), 1 \leq p<\infty$, the Banach space of all measurable functions f defined on Ω for which

$$
\begin{equation*}
\|f\|_{L^{p}(\Omega, \omega)}=\left(\int_{\Omega}|f(x)|^{p} \omega(x) d x\right)^{1 / p}<\infty . \tag{2.3}
\end{equation*}
$$

We will denote by $W^{k, p}(\Omega, \omega)$, the weighted Sobolev spaces, the set of all functions $u \in L^{p}(\Omega, \omega)$ such that the weak derivatives $D^{\alpha} u \in L^{p}(\Omega, \omega), 1 \leq|\alpha| \leq k$. The norm in the space $W^{k, p}(\Omega, \omega)$ is defined by

$$
\begin{equation*}
\|u\|_{W^{k, p}(\Omega, \omega)}=\left(\int_{\Omega}|u(x)|^{p} \omega(x) d x+\sum_{1 \leq|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{p} \omega(x) d x\right)^{1 / p} \tag{2.4}
\end{equation*}
$$

If $\omega \in A_{p}$, then $W^{k, p}(\Omega, \omega)$ is the closure of $C^{\infty}(\bar{\Omega})$ with respect to the norm (2.4) (see [2, Proposition 3.5]). The space $W_{0}^{k, p}(\Omega, \omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{0}^{k, p}(\Omega, \omega)}=\left(\sum_{1 \leq|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{p} \omega(x) d x\right)^{1 / p} \tag{2.5}
\end{equation*}
$$

When $k=1$ and $p=2$, the spaces $W^{1,2}(\Omega, \omega)$ and $W_{0}^{1,2}(\Omega, \omega)$ are Hilbert spaces. We will denote by $H_{0}(\Omega)$ the closure of $C_{0}^{\infty}(\bar{\Omega})$ with respect to the norm

$$
\begin{equation*}
\|u\|_{H_{0}(\Omega)}=\left(\int_{\Omega}\langle\mathscr{A}(x) \nabla u(x), \nabla u(x)\rangle d x\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

where $\mathscr{A}(x)=\left[a_{i j}(x)\right]$ (the coefficient matrix) and the symbol ∇ indicates the gradient.

Remark 2.2. Using the condition (1.3), we have

$$
\begin{gather*}
\|u\|_{W_{0}^{1,2}(\Omega, \omega)} \leq\|u\|_{H_{0}(\Omega)} \leq\|u\|_{W_{0}^{1,2}(\Omega, v)}, \tag{2.7}\\
W_{0}^{1,2}(\Omega, v) \subset H_{0}(\Omega) \subset W_{0}^{1,2}(\Omega, \omega) . \tag{2.8}
\end{gather*}
$$

Lemma 2.3. If $\omega \in A_{2}$, then $W_{0}^{1,2}(\Omega, \omega) \hookrightarrow L^{2}(\Omega, \omega)$ is compact and

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega, \omega)} \leq C_{3}\|u\|_{W_{0}^{1,2}(\Omega, \omega)} . \tag{2.9}
\end{equation*}
$$

Proof. The proof follows the lines of [3, Theorem 4.6].
We introduce the following definition of (weak) solutions for problem (1.1).
Definition 2.4. A function $u \in D(A) \subseteq H_{0}(\Omega)$ is (weak) solution to the problem (1.1) if

$$
\begin{gather*}
\int_{\Omega} a_{i j}(x) D_{i} u(x) D_{j} \varphi(x) d x+\int_{\Omega} g(u(x)) \varphi(x) \omega(x) d x \tag{2.10}\\
=\int_{\Omega} f_{0}(x) \varphi(x) d x+\int_{\Omega} f_{j}(x) D_{j} \varphi(x) d x
\end{gather*}
$$

for all $\varphi \in Y=H_{0}(\Omega) \cap W^{k, p}(\Omega, v)$, where $p>4, k>n / 2$, and $\|\varphi\|_{Y}=\|\varphi\|_{W^{k, p}(\Omega, v)}$, with $D(A)=\left\{u \in H_{0}(\Omega): g(u(x)) u(x) \in L^{1}(\Omega, \omega)\right\}$.

Remark 2.5. Using that $p>4$, we have that $v \in A_{2} \subset A_{p / 2}$ and

$$
\begin{equation*}
\|\cdot\|_{L^{2}(\Omega)} \leq\left[v^{1 /(1-p / 2)}(\Omega)\right]^{(p-2) / 2 p}\|\cdot\|_{L^{p}(\Omega, v)} \tag{2.11}
\end{equation*}
$$

Thus, $W^{k, p}(\Omega, v) \subset W^{k, 2}(\Omega) \subset C(\bar{\Omega})$ (by the Sobolev embedding theorem).
Therefore $\|\cdot\|_{C(\bar{\Omega})} \leq C\|\cdot\|_{Y}$ and the embedding $Y \subset C(\bar{\Omega})$ is continuous.

3. Proof of Theorem 1.2

(I) Existence. For $u \in D(A)$ and $\varphi \in Y$, we define

$$
\begin{align*}
B_{1}(u, \varphi) & =\int_{\Omega} a_{i j}(x) D_{i} u(x) D_{j} \varphi(x) d x \\
B_{2}(u, \varphi) & =\int_{\Omega} g(u(x)) \varphi(x) \omega(x) d x \tag{3.1}\\
T(\varphi) & =\int_{\Omega} f_{0}(x) \varphi(x) d x+\sum_{j=1}^{n} \int_{\Omega} f_{j}(x) D_{j} \varphi(x) d x .
\end{align*}
$$

Then $u \in D(A) \subseteq H_{0}(\Omega)$ is solution to problem (1.1) if

$$
\begin{equation*}
B_{1}(u, \varphi)+B_{2}(u, \varphi)=T(\varphi), \quad \forall \varphi \in Y \tag{3.2}
\end{equation*}
$$

Step $1\left(T \in\left(H_{0}(\Omega)\right)^{*}\right)$. In fact, using hypothesis (iii), Lemma 2.3, the Hölder inequality, the WSI, and (2.7), we obtain

$$
\begin{align*}
|T(\varphi)| & \leq \int_{\Omega}\left|f_{0}\right||\varphi| d x+\sum_{j=1}^{n} \int_{\Omega}\left|f_{j}\right|\left|D_{j} \varphi\right| d x \\
& =\int_{\Omega}\left(\frac{\left|f_{0}\right|}{v}\right) v^{1 / q^{\prime}}|\varphi| v^{1 / q} d x+\sum_{j=1}^{n} \int_{\Omega}\left(\frac{\left|f_{j}\right|}{\omega}\right) \omega^{1 / 2}\left|D_{j} \varphi\right| \omega^{1 / 2} d x \\
& \leq\left\|\frac{f_{0}}{v}\right\|_{L^{q^{\prime}}(\Omega, v)}\|\varphi\|_{L^{q}(\Omega, v)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{2}(\Omega, \omega)}\left\|D_{j} \varphi\right\|_{L^{2}(\Omega, \omega)} \tag{3.3}\\
& \leq C_{B, \omega, v}\left\|\frac{f_{0}}{v}\right\|_{L^{q^{\prime}(\Omega, v)}}\|\nabla \varphi\|_{L^{2}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{2}(\Omega, \omega)}\|\nabla \varphi\|_{L^{2}(\Omega, \omega)} \\
& \leq C\left(\left\|\frac{f_{0}}{v}\right\|_{L^{q^{\prime}(\Omega, v)}}+\sum_{j=1}^{n}\left\|\frac{f_{j}}{\omega}\right\|_{L^{2}(\Omega, \omega)}\right)\|\varphi\|_{H_{0}(\Omega)}, \quad \forall \varphi \in H_{0}(\Omega) .
\end{align*}
$$

Step 2. By condition (1.3) and the hypothesis that the matrix \mathscr{A} is symmetric, we obtain

$$
\begin{align*}
\left|B_{1}(u, \varphi)\right| & \leq \int_{\Omega} b i g|\langle\mathscr{A} \nabla u, \nabla \varphi\rangle| d x \\
& \leq \int_{\Omega}\langle\mathscr{A} \nabla u, \nabla u\rangle^{1 / 2}\langle\mathscr{A} \nabla \varphi, \nabla \varphi\rangle^{1 / 2} d x \tag{3.4}\\
& \leq\|u\|_{H_{0}(\Omega)}\|\varphi\|_{H_{0}(\Omega)} \\
& \leq\|u\|_{H_{0}(\Omega)}\|\varphi\|_{W_{0}^{1,2}(\Omega, v)} \\
& \leq\|u\|_{H_{0}(\Omega)}\|\varphi\|_{Y},
\end{align*}
$$

for all $u \in H_{0}(\Omega), \varphi \in Y$.
Hence there exists exactly one linear continuous operator

$$
\begin{equation*}
A_{1}: H_{0}(\Omega) \longrightarrow Y^{*} \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle A_{1} u, \varphi\right\rangle_{Y}=B_{1}(u, \varphi), \quad \forall u \in H_{0}(\Omega), \varphi \in Y \tag{3.6}
\end{equation*}
$$

Step 3. Note that $|g(x)| \leq x g(x)+C_{4}$, for all $x \in \mathbb{R}$. Therefore, if $u \in D(A)$, we have that $g(u(x)) \in L^{1}(\Omega, \omega)$. By using hypothesis (ii), Lemma 2.3, and Remark 2.5, we obtain for $u \in D(A)$ fixed

$$
\begin{align*}
\left|B_{2}(u, \varphi)\right| & \leq \int_{\Omega}|g(u(x))||\varphi(x)| \omega(x) d x \\
& \leq\|\varphi\|_{C(\bar{\Omega})} \int_{\Omega}|g(u(x))| \omega(x) d x \tag{3.7}\\
& \leq C\|\varphi\|_{Y}
\end{align*}
$$

Thus, there exists a unique operator

$$
\begin{equation*}
A_{2}: D(A) \subseteq H_{0}(\Omega) \longrightarrow Y^{*}, \tag{3.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle A_{2} u, \varphi\right\rangle_{Y}=B_{2}(u, \varphi), \quad \forall u \in D(A), \varphi \in Y \tag{3.9}
\end{equation*}
$$

Step 4. We define the operator

$$
\begin{equation*}
A: D(A) \subseteq H_{0}(\Omega) \longrightarrow Y^{*}, \quad A=A_{1}+A_{2} . \tag{3.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
\langle A u, \varphi\rangle_{Y}=\left\langle A_{1} u, \varphi\right\rangle_{Y}+\left\langle A_{2} u, \varphi\right\rangle_{Y}=B_{1}(u, \varphi)+B_{2}(u, \varphi) . \tag{3.11}
\end{equation*}
$$

Thus, $u \in D(A)$ is a solution to problem (1.1) if

$$
\begin{equation*}
\langle A u, \varphi\rangle_{Y}=T(\varphi), \quad \forall \varphi \in Y . \tag{3.12}
\end{equation*}
$$

Then, the problem (1.1) corresponds to the operator equation (1.4).
Step 5. Global coerciveness of operator A. Using the condition (1.3) and hypothesis (ii), we obtain

$$
\begin{align*}
\langle A \varphi, \varphi\rangle_{Y} & =B_{1}(\varphi, \varphi)+B_{2}(\varphi, \varphi) \\
& =\int_{\Omega} a_{i j}(x) D_{i} \varphi(x) D_{j} \varphi(x) d x+\int_{\Omega} g(\varphi(x)) \varphi(x) \omega(x) d x \\
& \geq \int_{\Omega}\langle\mathscr{A} \nabla \varphi, \nabla \varphi\rangle d x \tag{3.13}\\
& =\|\varphi\|_{H_{0}(\Omega)}^{2} .
\end{align*}
$$

Thus

$$
\begin{equation*}
\lim _{\|\varphi\|_{H_{0}(\Omega)} \rightarrow \infty} \frac{\langle A \varphi, \varphi\rangle_{Y}}{\|\varphi\|_{H_{0}(\Omega)}}=+\infty . \tag{3.14}
\end{equation*}
$$

Step 6. Generalized condition (M). Let $T \in\left(H_{0}(\Omega)\right)^{*}$ and let $\left\{u_{n}\right\}$ be a sequence in Y with

$$
\begin{gather*}
u_{n} \rightarrow u \quad \text { in } H_{0}(\Omega), \tag{3.15}\\
\left\langle A u_{n}, \varphi\right\rangle_{Y} \longrightarrow T(\varphi) \quad \text { as } n \longrightarrow \infty, \forall \varphi \in Y, \tag{3.16}\\
\varlimsup_{n \rightarrow \infty}\left\langle A u_{n}, u_{n}\right\rangle \leq T(u) . \tag{3.17}
\end{gather*}
$$

We want to show that this implies that $A u=T$.
Using that the operator A_{1} is linear and continuous, we obtain

$$
\begin{equation*}
\left\langle A_{1} u_{n}, \varphi\right\rangle_{Y} \longrightarrow\left\langle A_{1} u, \varphi\right\rangle_{Y}, \quad \forall \varphi \in Y . \tag{3.18}
\end{equation*}
$$

212 Solvability for a class of nonlinear Dirichlet problem
Because of (3.16), it is sufficient to prove that $u \in D(A)$ and

$$
\begin{equation*}
\left\langle A_{2} u_{n}, \varphi\right\rangle_{Y} \longrightarrow\left\langle A_{2} u, \varphi\right\rangle_{Y}, \quad \forall \varphi \in Y . \tag{3.19}
\end{equation*}
$$

Therefore, it is sufficient to show that

$$
\begin{equation*}
\int_{\Omega}\left[g\left(u_{n}(x)\right)-g(u(x))\right] \varphi(x) \omega(x) d x \longrightarrow 0 \quad \text { as } n \longrightarrow \infty . \tag{3.20}
\end{equation*}
$$

Using the same argument in Step 3, we obtain

$$
\begin{align*}
& \mid \int_{\Omega}\left(g\left(u_{n}(x)\right)-g(u(x))\right) \varphi(x) \omega(x) d x \mid \\
& \leq \int_{\Omega}\left|g\left(u_{n}(x)\right)-g(u(x))\right||\varphi(x)| \omega(x) d x \tag{3.21}\\
& \leq\|\varphi\|_{C(\bar{\Omega})} \int_{\Omega}\left|g\left(u_{n}(x)\right)-g(u(x))\right| \omega(x) d x \\
& \quad \leq C\|\varphi\|_{Y} \int_{\Omega}\left|g\left(u_{n}(x)\right)-g(u(x))\right| \omega(x) d x
\end{align*}
$$

Therefore, it is sufficient to show that

$$
\begin{equation*}
g\left(u_{n}(x)\right) \longrightarrow g(u(x)) \quad \text { in } L^{1}(\Omega, \omega) . \tag{3.22}
\end{equation*}
$$

Note that it is sufficient to prove (3.22) for a subsequence of $\left\{u_{n}\right\}$.
If $(v, \omega) \in A_{2}$ and $\omega \leq v$, then $\omega \in A_{2}$ (see Remark 2.1). By Lemma 2.3,

$$
\begin{equation*}
W_{0}^{1,2}(\Omega, \omega) \hookrightarrow L^{2}(\Omega, \omega) \tag{3.23}
\end{equation*}
$$

is compact and $\|u\|_{L_{2}(\Omega, \omega)} \leq C_{2}\|u\|_{W_{0}^{1,2}(\Omega, \omega)}$. Using (2.7), we also have that

$$
\begin{equation*}
H_{0}(\Omega) \hookrightarrow L^{2}(\Omega, \omega) \tag{3.24}
\end{equation*}
$$

is compact. This implies $u_{n} \rightarrow u$ in $L^{2}(\Omega, \omega)$. Using again that $\omega \in A_{2}$, we have $u_{n} \rightarrow u$ in $L^{1}(\Omega)$. Thus, there exists a subsequence, again denoted by $\left\{u_{n}\right\}$, such that $u_{n}(x) \rightarrow u(x)$ for almost all $x \in \Omega$. The continuity of g implies that $g\left(u_{n}(x)\right) \rightarrow g(u(x))$ for almost all $x \in \Omega$. Moreover, since $u_{n}-u$ in $H_{0}(\Omega)$, it follows that

$$
\begin{equation*}
\sup \left\|u_{n}\right\|_{H_{0}(\Omega)} \leq C, \quad \text { independent of } n \tag{3.25}
\end{equation*}
$$

Hence, using (1.2), we obtain

$$
\begin{equation*}
\left\langle A_{1} u_{n}, u_{n}\right\rangle_{Y} \leq \Lambda\left\|u_{n}\right\|_{H_{0}(\Omega)}^{2} \leq \Lambda C^{2}, \quad \text { with } C \text { independent of } n \text {. } \tag{3.26}
\end{equation*}
$$

Therefore, using (3.16), we obtain

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\langle A_{2} u_{n}, u_{n}\right\rangle_{Y}=\varlimsup_{n \rightarrow \infty} \int_{\Omega} g\left(u_{n}(x)\right) u_{n}(x) \omega(x) d x \leq C \tag{3.27}
\end{equation*}
$$

with C independent of n.

The continuity of g implies that $g\left(u_{n}(x)\right) u_{n}(x) \omega(x) \rightarrow g(u(x)) u(x) \omega(x)$ for almost all $x \in \Omega$. Therefore, by Fatou lemma, we have

$$
\begin{equation*}
\int_{\Omega} g(u(x)) u(x) \omega(x) d x<\infty \tag{3.28}
\end{equation*}
$$

that is, $u \in D(A)$.
Now we want to show that $g\left(u_{n}(x)\right) \rightarrow g(u(x))$ in $L^{1}(\Omega, \omega)$.
Let $a>0$ be fixed. For each $x \in \Omega$, we have either

$$
\begin{equation*}
\left|u_{n}(x)\right| \leq a \quad \text { or } \quad\left|g\left(u_{n}(x)\right)\right| \leq a^{-1} g\left(u_{n}(x)\right) u_{n}(x) \tag{3.29}
\end{equation*}
$$

(if $x \neq 0$, we can write $g(x)=x^{-1}[g(x) x]$). We get $|g(x)| \leq c(a)$ if $|x| \leq a$ (because g is continuous).

Let X be a measurable subset of Ω. Then

$$
\begin{align*}
\int_{X}\left|g\left(u_{n}(x)\right)\right| \omega(x) d x= & \int_{X \cap\left\{x:\left|u_{n}(x)\right| \leq a\right\}}\left|g\left(u_{n}(x)\right)\right| \omega(x) d x \\
& +\int_{X \cap\left\{x:\left|u_{n}(x)\right|>a\right\}}\left|g\left(u_{n}(x)\right)\right| \omega(x) d x \tag{3.30}\\
\leq & c(a) \omega(X)+a^{-1} \int_{X} g\left(u_{n}(x)\right) u_{n}(x) \omega(x) d x \\
\leq & c(a) \omega(X)+a^{-1} C \quad(\text { by }(3.27)) .
\end{align*}
$$

Hence, for all $\varepsilon>0$, we have

$$
\begin{equation*}
\int_{X}\left|g\left(u_{n}(x)\right)\right| \omega(x) d x \leq \frac{\varepsilon}{2} \tag{3.31}
\end{equation*}
$$

if a is sufficiently large and $\omega(X)$ is sufficiently small. Therefore, for all $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)$ such that

$$
\begin{align*}
& \int_{X}\left|g\left(u_{n}(x)\right)-g(u(x))\right| \omega(x) d x \\
& \quad \leq \int_{X}\left|g\left(u_{n}(x)\right)\right| \omega(x) d x+\int_{X}|g(u(x))| \omega(x) d x \leq \varepsilon \tag{3.32}
\end{align*}
$$

with $\omega(X)<\delta$. Thus, the Vitali convergence theorem tells us that (3.22) holds.
Step 7. Quasiboundedness of the operator A. Let $\left\{u_{n}\right\}$ be a sequence in Y with $u_{n} \rightarrow u$ in $H_{0}(\Omega)$ and suppose that

$$
\begin{equation*}
\left\langle A u_{n}, u_{n}\right\rangle_{Y} \leq C\left\|u_{n}\right\|_{H_{0}(\Omega)}, \quad \forall n \tag{3.33}
\end{equation*}
$$

We want to show that the sequence $\left\{A u_{n}\right\}$ is bounded in Y^{*}. In fact, the boundedness of $\left\{u_{n}\right\}$ in $H_{0}(\Omega)$ implies that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\langle A u_{n}, u_{n}\right\rangle_{Y} \leq C \tag{3.34}
\end{equation*}
$$

Suppose by contradiction that the sequence $\left\{A u_{n}\right\}$ is unbounded in Y^{*}. Then there exists a subsequence, again denoted by $\left\{u_{n}\right\}$, such that

$$
\begin{equation*}
\left\|A u_{n}\right\|_{Y^{*}} \longrightarrow \infty \quad \text { as } n \longrightarrow \infty \tag{3.35}
\end{equation*}
$$

By the same arguments as in Step 6, we obtain that

$$
\begin{equation*}
\left\langle A u_{n}, \varphi\right\rangle_{Y} \longrightarrow\langle A u, \varphi\rangle_{Y} \quad \text { as } n \longrightarrow \infty, \forall \varphi \in Y \tag{3.36}
\end{equation*}
$$

The uniform boundedness principle tells us that the sequence $\left\{A u_{n}\right\}$ is bounded (which is a contradiction with (3.35)).

Therefore, by Theorem 1.1, the equation $A u=T$, with $T \in\left(H_{0}(\Omega)\right)^{*}$, has a solution $u \in D(A) \subseteq H_{0}(\Omega)$, and it is the solution for problem (1.1).
(II) Uniqueness. If the function $g: \mathbb{R} \rightarrow \mathbb{R}$ is monotone increasing, we have that $(g(a)-$ $g(b))(a-b) \geq 0$, for all $a, b \in \mathbb{R}$. Then

$$
\begin{align*}
\langle A u-A v, u-v\rangle_{Y}= & \int_{\Omega}\langle\mathscr{A} \nabla(u-v), \nabla(u-v)\rangle d x \\
& +\int_{\Omega}(g(u(x))-g(v(x)))(u(x)-v(x)) \omega(x) d x \tag{3.37}\\
\geq & \int_{\Omega}\langle\mathscr{A} \nabla(u-v), \nabla(u-v)\rangle d x=\|u-v\|_{H_{0}(\Omega)}^{2},
\end{align*}
$$

for all $u, v \in D(A)$.
Therefore, if $u, v \in D(A)$ and $A u=A v=T$, we obtain that $u=v$.

References

[1] S. Chanillo and R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), no. 5, 1191-1226.
[2] V. Chiadò Piat and F. Serra Cassano, Relaxation of degenerate variational integrals, Nonlinear Anal. 22 (1994), no. 4, 409-424.
[3] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 4, 527-568.
[4] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing, Amsterdam, 1985.
[5] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993.
[6] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Florida, 1986.
[7] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B, Springer-Verlag, New York, 1990.

Albo Carlos Cavalheiro: Departamento de Matemática, Universidade Estadual de Londrina, Londrina, PR 86051-990, Brazil

E-mail address: albo@uel.br

