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We prove an existence result for solution to a class of nonlinear degenerate elliptic equa-
tion associated with a class of partial differential operators of the form Lu(x) =∑n

i, j=1Dj(ai j(x)Diu(x)), with Dj = ∂/∂xj , where ai j : Ω → R are functions satisfying
suitable hypotheses.

1. Introduction

In this paper, we prove the existence of solution in D(A)⊆H0(Ω) for the following non-
linear Dirichlet problem:

−Lu(x) + g
(
u(x)

)
ω(x)= f0(x)−

n∑
j=1

Dj f j(x) on Ω,

u(x)= 0 on ∂Ω,

(1.1)

where L is an elliptic operator in divergence form

Lu(x)=
n∑

i, j=1

Dj
(
ai j(x)Diu(x)

)
, with Dj = ∂

∂xj
(1.2)

and the coefficients ai j are measurable, real-valued functions whose coefficient matrix
(ai j(x)) is symmetric and satisfies the degenerate ellipticity condition

|ξ|2ω(x)≤
n∑

i, j=1

ai j(x)ξiξ j ≤ |ξ|2v(x) (1.3)

for all ξ ∈ Rn and almost every x ∈Ω ⊂ Rn a bounded open set with piecewise smooth
boundary (i.e., ∂Ω∈ C0,1), and ω and v two weight functions (i.e., locally integrable non-
negative functions).
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The basic idea is to reduce (1.1) to an operator equation

Au= T , u∈D(A), (1.4)

where D(A)= {u∈H0(Ω) : u(x)g(u(x))∈ L1(Ω,ω)}, and apply the theorem below.

Theorem 1.1. Suppose that the following assumptions are satisfied.
(H1) Dual pairs. Let the dual pairs {X ,X+} and {Y ,Y+} be given, where X , X+, Y ,

and Y+ are Banach spaces with corresponding bilinear forms 〈·,·〉X and 〈·,·〉Y and the
continuous embeddings Y ⊆ X and X+ ⊆ Y+.

The dual pairs are compatible, that is,

〈T ,u〉X = 〈T ,u〉Y , ∀T ∈ X+, u∈ Y. (1.5)

Moreover, the Banach spaces X and Y are separable and X is reflexive.
(H2) Operator A. Let the operator A : D(A)⊆ X → Y+ be given, and let K be a bounded

closed convex set in X containing the zero point as an interior point and K∩Y ⊆D(A).
(H3) Local coerciveness. There exists a number α ≥ 0 such that 〈Av,v〉Y ≥ α for all

v ∈ Y ∩ ∂K , where ∂K denotes the boundary of K in the Banach space X .
(H4) Continuity. For each finite-dimensional subspace Y0 of the Banach space Y , the

mapping u �→ 〈Au,v〉Y is continuous on K∩Y0 for all v ∈ Y0.
(H5) Generalized condition (M). Let {un} be a sequence in Y∩K and let T ∈ X+. Then,

from

un⇀u in X as n−→∞, (1.6)〈
Aun,v

〉
Y −→ 〈T ,v〉X as n−→∞, ∀v ∈ Y ,

lim
n→∞

〈
Aun,un

〉
Y ≤ 〈T ,u〉X ,

(1.7)

it follows that Au= T .
(H6) Quasiboundedness. Let {un} be a sequence in Y∩K . Then, from (1.6) and 〈Aun,

un〉Y ≤ C‖u‖X for all n, it follows that the sequence {Aun} is bounded in Y+.
(H7) The operator A is coercive, that is, 〈Av,v〉Y /‖v‖X →∞ as ‖v‖X →∞, v ∈ Y .
Then X+ ⊆ R(A), that is, the equation Au= T has a solution u for each T ∈ X+.

Proof. See [7, Theorem 27.B and Corollary 27.19]. �

We will apply this theorem to a sufficiently large ball K in the Banach spaces X =
H0(Ω), X+ = (H0(Ω))∗, and Y+ = Y∗.

We make the following basic assumption on the weights ω and v.

The weighted Sobolev inequality (WSI). Let Ω be an open bounded set in Rn. There is
an index q = 2σ , σ > 1, such that for every ball B and every f ∈ Lip0(B) (i.e, f ∈ Lip(B)
whose support is contained in the interior of B),

(
1

v(B)

∫
B
| f |qvdx

)1/q

≤ CRB

(
1

ω(B)

∫
B
|∇ f |2ωdx

)1/2

, (1.8)
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with the constant C independent of f and B, RB the radius of B, and the symbol ∇
indicating the gradient, v(B)= ∫B v(x)dx, and ω(B)= ∫B ω(x)dx.

Thus, we can write

(∫
B
| f |qvdx

)1/q

≤ CB,ω,v
(|∇ f |2ωdx

)1/2
, (1.9)

where CB,ω,v is called the Sobolev constant and

CB,ω,v = C
[
v(B)

]1/q
RB[

ω(B)
]1/2 . (1.10)

For instance, the WSI holds if ω and v are as in [6, Chapter X, Theorem 4.8], or if ω
and v are as in [1, Theorem 1.5].

The following theorem will be proved in Section 3.

Theorem 1.2. Let L be the operator (1.2) and satisfy (1.3). Suppose that the following as-
sumptions are satisfied:

(i) (v,ω)∈ A2;
(ii) the function g : R→R is continuous with xg(x)≥ 0 for all x ∈R;

(iii) f0/v ∈ Lq
′
(Ω,v) and f j /ω ∈ L2(Ω,ω), j = 1,2, . . . ,n (where q is as in WSI). Then

problem (1.1) has solution u∈D(A)⊆H0(Ω);
(iv) if the function g : R→R is monotone increasing, then the solution is unique.

Example 1.3. Consider the domain Ω = {(x, y) ∈ R2 : |x| < 1 and |y| < 1}. By Theorem
1.2, the problem

−Lu(x) +u(x, y)eu
2(x,y)|x|1/2 = 1− ∂

∂x

(
x2|y|)− ∂

∂y

(
y2|x|) on Ω,

u(x, y)= 0 on ∂Ω,
(1.11)

where

Lu(x)=
[
∂

∂x

(
|x|1/2 ∂u

∂x

)
+

∂

∂y

(
|x|−1/2 ∂u

∂y

)]
(1.12)

has a unique solution u∈D(A)= {u∈H0(Ω) : g(u(x, y))u(x, y)∈ L1(Ω,ω)}, where g(t)
= tet

2
, ω(x, y) = |x|1/2, v(x, y) = |x|−1/2, f0(x, y) = 1, f1(x, y) = x2|y|, and f2(x, y) =

y2|x|.

2. Definitions and basic results

Let ω be a locally integrable nonnegative function in Rn and assume that 0 < ω <∞ al-
most everywhere. We say that ω belongs to the Muckenhoupt class Ap, 1 < p <∞, or that
ω is an Ap-weight if there is a constant C1 = C(p,ω) such that

(
1
|B|

∫
B
ω(x)dx

)(
1
|B|

∫
B
ω1/(1−p)(x)dx

)p−1

≤ C1, (2.1)
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for all balls B ⊂ Rn, where | · | denotes the n-dimensional Lebesgue measure in Rn. If
1 < q ≤ p, then Aq ⊂ Ap (see [4, 5] for more information about Ap-weights). The weight
ω satisfies the doubling condition if ω(2B) ≤ Cω(B), for all balls B ⊂ Rn, where ω(B) =∫
B ω(x)dx and 2B denotes the ball with the same center as B which is twice as large. If
ω∈ Ap, then ω is doubling (see [5, Corollary 15.7]).

We say that the pair of weights (v,ω) satisfies the condition Ap (1 < p <∞ and (v,ω)∈
Ap) if and only if there is a constant C2 such that

(
1
|B|

∫
B
v(x)dx

)(
1
|B|

∫
B
ω1/(1−p)(x)dx

)p−1

≤ C2, (2.2)

for every ball B⊂Rn.

Remark 2.1. If (v,ω)∈Ap and ω ≤ v, then ω ∈Ap and v ∈Ap.

Given a measurable subset Ω of Rn, we will denote by Lp(Ω,ω), 1≤ p <∞, the Banach
space of all measurable functions f defined on Ω for which

‖ f ‖Lp(Ω,ω) =
(∫

Ω

∣∣ f (x)
∣∣pω(x)dx

)1/p

<∞. (2.3)

We will denote by Wk,p(Ω,ω), the weighted Sobolev spaces, the set of all functions
u ∈ Lp(Ω,ω) such that the weak derivatives Dαu ∈ Lp(Ω,ω), 1 ≤ |α| ≤ k. The norm in
the space Wk,p(Ω,ω) is defined by

‖u‖Wk,p(Ω,ω) =
(∫

Ω

∣∣u(x)
∣∣pω(x)dx+

∑
1≤|α|≤k

∫
Ω

∣∣Dαu(x)
∣∣pω(x)dx

)1/p

. (2.4)

If ω ∈Ap, then Wk,p(Ω,ω) is the closure of C∞(Ω̄) with respect to the norm (2.4) (see

[2, Proposition 3.5]). The space W
k,p
0 (Ω,ω) is the closure of C∞0 (Ω) with respect to the

norm

‖u‖
W

k,p
0 (Ω,ω) =

( ∑
1≤|α|≤k

∫
Ω

∣∣Dαu(x)
∣∣pω(x)dx

)1/p

. (2.5)

When k = 1 and p = 2, the spaces W1,2(Ω,ω) and W1,2
0 (Ω,ω) are Hilbert spaces. We

will denote by H0(Ω) the closure of C∞0 (Ω̄) with respect to the norm

‖u‖H0(Ω) =
(∫

Ω

〈
�(x)∇u(x),∇u(x)

〉
dx
)1/2

, (2.6)

where �(x)= [ai j(x)] (the coefficient matrix) and the symbol∇ indicates the gradient.
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Remark 2.2. Using the condition (1.3), we have

‖u‖W1,2
0 (Ω,ω) ≤ ‖u‖H0(Ω) ≤ ‖u‖W1,2

0 (Ω,v), (2.7)

W1,2
0 (Ω,v)⊂H0(Ω)⊂W1,2

0 (Ω,ω). (2.8)

Lemma 2.3. If ω ∈A2, then W1,2
0 (Ω,ω)↩L2(Ω,ω) is compact and

‖u‖L2(Ω,ω) ≤ C3‖u‖W1,2
0 (Ω,ω). (2.9)

Proof. The proof follows the lines of [3, Theorem 4.6]. �

We introduce the following definition of (weak) solutions for problem (1.1).

Definition 2.4. A function u∈D(A)⊆H0(Ω) is (weak) solution to the problem (1.1) if

∫
Ω
ai j(x)Diu(x)Djϕ(x)dx+

∫
Ω
g
(
u(x)

)
ϕ(x)ω(x)dx

=
∫
Ω
f0(x)ϕ(x)dx+

∫
Ω
f j(x)Djϕ(x)dx,

(2.10)

for all ϕ∈ Y =H0(Ω)∩Wk,p(Ω,v), where p > 4, k > n/2, and ‖ϕ‖Y = ‖ϕ‖Wk,p(Ω,v), with
D(A)= {u∈H0(Ω) : g(u(x))u(x)∈ L1(Ω,ω)}.
Remark 2.5. Using that p > 4, we have that v ∈A2 ⊂ Ap/2 and

‖ · ‖L2(Ω) ≤
[
v1/(1−p/2)(Ω)

](p−2)/2p‖ · ‖Lp(Ω,v). (2.11)

Thus, Wk,p(Ω,v)⊂Wk,2(Ω)⊂ C(Ω̄) (by the Sobolev embedding theorem).
Therefore ‖ · ‖C(Ω̄) ≤ C‖ · ‖Y and the embedding Y ⊂ C(Ω̄) is continuous.

3. Proof of Theorem 1.2

(I) Existence. For u∈D(A) and ϕ∈ Y , we define

B1(u,ϕ)=
∫
Ω
ai j(x)Diu(x)Djϕ(x)dx,

B2(u,ϕ)=
∫
Ω
g
(
u(x)

)
ϕ(x)ω(x)dx,

T(ϕ)=
∫
Ω
f0(x)ϕ(x)dx+

n∑
j=1

∫
Ω
f j(x)Djϕ(x)dx.

(3.1)

Then u∈D(A)⊆H0(Ω) is solution to problem (1.1) if

B1(u,ϕ) +B2(u,ϕ)= T(ϕ), ∀ϕ∈ Y. (3.2)
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Step 1 (T ∈ (H0(Ω))∗). In fact, using hypothesis (iii), Lemma 2.3, the Hölder inequality,
the WSI, and (2.7), we obtain

∣∣T(ϕ)
∣∣≤

∫
Ω

∣∣ f0∣∣|ϕ|dx+
n∑
j=1

∫
Ω

∣∣ f j∣∣∣∣Djϕ
∣∣dx

=
∫
Ω

(∣∣ f0∣∣
v

)
v1/q′ |ϕ|v1/qdx+

n∑
j=1

∫
Ω

(∣∣ f j∣∣
ω

)
ω1/2

∣∣Djϕ
∣∣ω1/2dx

≤
∥∥∥∥ f0
v

∥∥∥∥
Lq′ (Ω,v)

‖ϕ‖Lq(Ω,v) +
n∑
j=1

∥∥∥∥ f j
ω

∥∥∥∥
L2(Ω,ω)

∥∥Djϕ
∥∥
L2(Ω,ω)

≤ CB,ω,v

∥∥∥∥ f0
v

∥∥∥∥
Lq′ (Ω,v)

‖∇ϕ‖L2(Ω,ω) +
n∑
j=1

∥∥∥∥ f j
ω

∥∥∥∥
L2(Ω,ω)

‖∇ϕ‖L2(Ω,ω)

≤ C

(∥∥∥∥ f0
v

∥∥∥∥
Lq′ (Ω,v)

+
n∑
j=1

∥∥∥∥ f j
ω

∥∥∥∥
L2(Ω,ω)

)
‖ϕ‖H0(Ω), ∀ϕ∈H0(Ω).

(3.3)

Step 2. By condition (1.3) and the hypothesis that the matrix � is symmetric, we obtain

∣∣B1(u,ϕ)
∣∣≤

∫
Ω
big|〈�∇u,∇ϕ〉∣∣dx

≤
∫
Ω
〈�∇u,∇u〉1/2〈�∇ϕ,∇ϕ〉1/2dx

≤ ‖u‖H0(Ω)‖ϕ‖H0(Ω)

≤ ‖u‖H0(Ω)‖ϕ‖W1,2
0 (Ω,v)

≤ ‖u‖H0(Ω)‖ϕ‖Y ,

(3.4)

for all u∈H0(Ω), ϕ∈ Y .
Hence there exists exactly one linear continuous operator

A1 : H0(Ω)−→ Y∗, (3.5)

with

〈
A1u,ϕ

〉
Y = B1(u,ϕ), ∀u∈H0(Ω), ϕ∈ Y. (3.6)

Step 3. Note that |g(x)| ≤ xg(x) +C4, for all x ∈R. Therefore, if u∈D(A), we have that
g(u(x))∈ L1(Ω,ω). By using hypothesis (ii), Lemma 2.3, and Remark 2.5, we obtain for
u∈D(A) fixed

∣∣B2(u,ϕ)
∣∣≤

∫
Ω

∣∣g(u(x)
)∣∣∣∣ϕ(x)

∣∣ω(x)dx

≤ ‖ϕ‖C(Ω̄)

∫
Ω

∣∣g(u(x)
)∣∣ω(x)dx

≤ C‖ϕ‖Y .

(3.7)
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Thus, there exists a unique operator

A2 : D(A)⊆H0(Ω)−→ Y∗, (3.8)

with

〈
A2u,ϕ

〉
Y = B2(u,ϕ), ∀u∈D(A), ϕ∈ Y. (3.9)

Step 4. We define the operator

A : D(A)⊆H0(Ω)−→ Y∗, A=A1 +A2. (3.10)

We have

〈Au,ϕ〉Y =
〈
A1u,ϕ

〉
Y +

〈
A2u,ϕ

〉
Y = B1(u,ϕ) +B2(u,ϕ). (3.11)

Thus, u∈D(A) is a solution to problem (1.1) if

〈Au,ϕ〉Y = T(ϕ), ∀ϕ∈ Y. (3.12)

Then, the problem (1.1) corresponds to the operator equation (1.4).
Step 5. Global coerciveness of operator A. Using the condition (1.3) and hypothesis (ii), we
obtain

〈Aϕ,ϕ〉Y = B1(ϕ,ϕ) +B2(ϕ,ϕ)

=
∫
Ω
ai j(x)Diϕ(x)Djϕ(x)dx+

∫
Ω
g
(
ϕ(x)

)
ϕ(x)ω(x)dx

≥
∫
Ω
〈�∇ϕ,∇ϕ〉dx

= ‖ϕ‖2
H0(Ω).

(3.13)

Thus

lim
‖ϕ‖H0(Ω)→∞

〈Aϕ,ϕ〉Y
‖ϕ‖H0(Ω)

= +∞. (3.14)

Step 6. Generalized condition (M). Let T ∈ (H0(Ω))∗ and let {un} be a sequence in Y with

un⇀u in H0(Ω), (3.15)〈
Aun,ϕ

〉
Y −→ T(ϕ) as n−→∞, ∀ϕ∈ Y , (3.16)

lim
n→∞

〈
Aun,un

〉≤ T(u). (3.17)

We want to show that this implies that Au= T .
Using that the operator A1 is linear and continuous, we obtain

〈
A1un,ϕ

〉
Y −→

〈
A1u,ϕ

〉
Y , ∀ϕ∈ Y. (3.18)
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Because of (3.16), it is sufficient to prove that u∈D(A) and

〈
A2un,ϕ

〉
Y −→

〈
A2u,ϕ

〉
Y , ∀ϕ∈ Y. (3.19)

Therefore, it is sufficient to show that∫
Ω

[
g
(
un(x)

)− g
(
u(x)

)]
ϕ(x)ω(x)dx −→ 0 as n−→∞. (3.20)

Using the same argument in Step 3, we obtain

∣∣∣∣
∫
Ω

(
g
(
un(x)

)− g
(
u(x)

))
ϕ(x)ω(x)dx

∣∣∣∣
≤
∫
Ω

∣∣g(un(x)
)− g

(
u(x)

)∣∣∣∣ϕ(x)
∣∣ω(x)dx

≤ ‖ϕ‖C(Ω̄)

∫
Ω

∣∣g(un(x)
)− g

(
u(x)

)∣∣ω(x)dx

≤ C‖ϕ‖Y
∫
Ω

∣∣g(un(x)
)− g

(
u(x)

)∣∣ω(x)dx.

(3.21)

Therefore, it is sufficient to show that

g
(
un(x)

)−→ g
(
u(x)

)
in L1(Ω,ω). (3.22)

Note that it is sufficient to prove (3.22) for a subsequence of {un}.
If (v,ω)∈ A2 and ω ≤ v, then ω ∈A2 (see Remark 2.1). By Lemma 2.3,

W1,2
0 (Ω,ω)↩L2(Ω,ω) (3.23)

is compact and ‖u‖L2(Ω,ω) ≤ C2‖u‖W1,2
0 (Ω,ω). Using (2.7), we also have that

H0(Ω)↩L2(Ω,ω) (3.24)

is compact. This implies un→u in L2(Ω,ω). Using again that ω ∈ A2, we have un → u in
L1(Ω). Thus, there exists a subsequence, again denoted by {un}, such that un(x)→ u(x)
for almost all x ∈Ω. The continuity of g implies that g(un(x))→ g(u(x)) for almost all
x ∈Ω. Moreover, since un⇀ u in H0(Ω), it follows that

sup
∥∥un∥∥H0(Ω) ≤ C, independent of n. (3.25)

Hence, using (1.2), we obtain

〈
A1un,un

〉
Y ≤Λ

∥∥un∥∥2
H0(Ω) ≤ΛC2, with C independent of n. (3.26)

Therefore, using (3.16), we obtain

lim
n→∞

〈
A2un,un

〉
Y = lim

n→∞

∫
Ω
g
(
un(x)

)
un(x)ω(x)dx ≤ C, (3.27)

with C independent of n.
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The continuity of g implies that g(un(x))un(x)ω(x)→ g(u(x))u(x)ω(x) for almost all
x ∈Ω. Therefore, by Fatou lemma, we have

∫
Ω
g
(
u(x)

)
u(x)ω(x)dx <∞, (3.28)

that is, u∈D(A).
Now we want to show that g(un(x))→ g(u(x)) in L1(Ω,ω).
Let a > 0 be fixed. For each x ∈Ω, we have either

∣∣un(x)
∣∣≤ a or

∣∣g(un(x)
)∣∣≤ a−1g

(
un(x)

)
un(x) (3.29)

(if x �=0, we can write g(x) = x−1[g(x)x]). We get |g(x)| ≤ c(a) if |x| ≤ a (because g is
continuous).

Let X be a measurable subset of Ω. Then
∫
X

∣∣g(un(x)
)∣∣ω(x)dx =

∫
X∩{x:|un(x)|≤a}

∣∣g(un(x)
)∣∣ω(x)dx

+
∫
X∩{x:|un(x)|>a}

∣∣g(un(x)
)∣∣ω(x)dx

≤ c(a)ω(X) + a−1
∫
X
g
(
un(x)

)
un(x)ω(x)dx

≤ c(a)ω(X) + a−1C
(
by (3.27)

)
.

(3.30)

Hence, for all ε > 0, we have

∫
X

∣∣g(un(x)
)∣∣ω(x)dx ≤ ε

2
(3.31)

if a is sufficiently large and ω(X) is sufficiently small. Therefore, for all ε > 0, there exists
δ = δ(ε) such that

∫
X

∣∣g(un(x)
)− g

(
u(x)

)∣∣ω(x)dx

≤
∫
X

∣∣g(un(x)
)∣∣ω(x)dx+

∫
X

∣∣g(u(x)
)∣∣ω(x)dx ≤ ε,

(3.32)

with ω(X) < δ. Thus, the Vitali convergence theorem tells us that (3.22) holds.
Step 7. Quasiboundedness of the operator A. Let {un} be a sequence in Y with un⇀u in
H0(Ω) and suppose that

〈
Aun,un

〉
Y ≤ C

∥∥un∥∥H0(Ω), ∀n. (3.33)

We want to show that the sequence {Aun} is bounded in Y∗. In fact, the boundedness of
{un} in H0(Ω) implies that

lim
n→∞

〈
Aun,un

〉
Y ≤ C. (3.34)



214 Solvability for a class of nonlinear Dirichlet problem

Suppose by contradiction that the sequence {Aun} is unbounded in Y∗. Then there
exists a subsequence, again denoted by {un}, such that

∥∥Aun∥∥Y∗ −→∞ as n−→∞. (3.35)

By the same arguments as in Step 6, we obtain that

〈
Aun,ϕ

〉
Y −→ 〈Au,ϕ〉Y as n−→∞, ∀ϕ∈ Y. (3.36)

The uniform boundedness principle tells us that the sequence {Aun} is bounded (which
is a contradiction with (3.35)).

Therefore, by Theorem 1.1, the equation Au = T , with T ∈ (H0(Ω))∗, has a solution
u∈D(A)⊆H0(Ω), and it is the solution for problem (1.1).

(II) Uniqueness. If the function g : R→R is monotone increasing, we have that (g(a)−
g(b))(a− b)≥ 0, for all a,b ∈R. Then

〈Au−Av,u− v〉Y =
∫
Ω

〈
�∇(u− v),∇(u− v)

〉
dx

+
∫
Ω

(
g
(
u(x)

)− g
(
v(x)

))(
u(x)− v(x)

)
ω(x)dx

≥
∫
Ω

〈
�∇(u− v),∇(u− v)

〉
dx = ‖u− v‖2

H0(Ω),

(3.37)

for all u,v ∈D(A).
Therefore, if u,v ∈D(A) and Au=Av = T , we obtain that u= v.
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