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We prove an existence result for solution to a class of nonlinear degenerate elliptic equa-
tion associated with a class of partial differential operators of the form Lu(x) =
ZZFle(a,-j(x)D,»u(x)), with D; = d/dxj, where a;; : O — R are functions satisfying
suitable hypotheses.

1. Introduction

In this paper, we prove the existence of solution in D(A) = H(Q) for the following non-
linear Dirichlet problem:

—Lu(x) +g(u(x))w(x) = folx) — ZDjfj(x) on €,
=1

(1.1)
u(x) =0 onoQ,
where L is an elliptic operator in divergence form
S . 9
Lu(x) = > Dj(a;;(x)Diu(x)), withD; = (1.2)

ij=1 0x;
and the coefficients a;; are measurable, real-valued functions whose coefficient matrix
(aij(x)) is symmetric and satisfies the degenerate ellipticity condition

n

EPw(x) < > ai(x)E&E; < |€]2v(x) (1.3)

ij=1

for all £ € R"” and almost every x € Q C R" a bounded open set with piecewise smooth
boundary (i.e., 0Q € C®!), and w and v two weight functions (i.e., locally integrable non-
negative functions).
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206  Solvability for a class of nonlinear Dirichlet problem
The basic idea is to reduce (1.1) to an operator equation
Au=T, ueD(A), (1.4)

where D(A) = {u € Hy(Q) : u(x)g(u(x)) € L'(Q,w)}, and apply the theorem below.

THEOREM 1.1. Suppose that the following assumptions are satisfied.

(H1) Dual pairs. Let the dual pairs {X,X*} and {Y,Y™*} be given, where X, X*, Y,
and Y* are Banach spaces with corresponding bilinear forms (-,-)x and (-,-)y and the
continuous embeddings Y € X and X* < Y+,

The dual pairs are compatible, that is,

(T,u)x ={(T,u)y, VTeEX', uecy. (1.5)

Moreover, the Banach spaces X and Y are separable and X is reflexive.

(H2) Operator A. Let the operator A : D(A) € X — Y™ be given, and let K be a bounded
closed convex set in X containing the zero point as an interior point and KNY < D(A).

(H3) Local coerciveness. There exists a number a = 0 such that (Av,v)y = « for all
v € Y N 0K, where oK denotes the boundary of K in the Banach space X.

(H4) Continuity. For each finite-dimensional subspace Y, of the Banach space Y, the
mapping u — (Au,v)y is continuous on KNYy for all v € Y.

(H5) Generalized condition (M). Let {u, } be a sequencein YNK and let T € X*. Then,
from

up,—u inXasn— oo, (1.6)

(Aun,v)y — (T,v)x asn— oo, Vv EY,

- 1.7
%ij?o(Aun,un>Y <A(T,u)x, 7

it follows that Au = T.

(H6) Quasiboundedness. Let {u,} be a sequence in YNK. Then, from (1.6) and (Au,,
uy)y < Cllullx for all n, it follows that the sequence {Au,} is bounded in Y.

(H7) The operator A is coercive, that is, (Av,v)y/llvllx — co as |[vl]lx — o, v €Y.

Then X* = R(A), that is, the equation Au = T has a solution u for each T € X*.

Proof. See [7, Theorem 27.B and Corollary 27.19]. O

We will apply this theorem to a sufficiently large ball K in the Banach spaces X =
Hy(Q), X" = (Ho(Q))*,and Y+ = Y*.
We make the following basic assumption on the weights w and v.

The weighted Sobolev inequality (WSI). Let Q be an open bounded set in R”. There is
an index g = 20, 0 > 1, such that for every ball B and every f € Lip,(B) (i.e, f € Lip(B)
whose support is contained in the interior of B),




Albo Carlos Cavalheiro 207

with the constant C independent of f and B, Rp the radius of B, and the symbol V
indicating the gradient, v(B) = [z v(x)dx, and w(B) = [ w(x)dx.
Thus, we can write

1/q
(JB |f\‘1vdx> < Cpan(IV fPwdx)", (1.9)
where Cg,,, is called the Sobolev constant and

1/q
Crany = % (1.10)

For instance, the WSI holds if w and v are as in [6, Chapter X, Theorem 4.8], or if w
and v are as in [1, Theorem 1.5].
The following theorem will be proved in Section 3.

TaeoreM 1.2. Let L be the operator (1.2) and satisfy (1.3). Suppose that the following as-
sumptions are satisfied:
@) (v,w) € Az;
(ii) the function g : R — R is continuous with xg(x) = 0 for all x € R;
(i) fo/v € L9 (Q,v) and fij/w € L*(Q,w), j = 1,2,...,n (where q is as in WSI). Then
problem (1.1) has solution u € D(A) < Hyo(Q);
(iv) if the function g : R — R is monotone increasing, then the solution is unique.

Example 1.3. Consider the domain Q = {(x,y) € R?: |x| < 1and |y| < 1}. By Theorem
1.2, the problem

> 0 0
—Lu(x) +u(x, y)e @ |x|V2 =1 - = (x%|y|) — — (¥*Ix]) onQ,
(x) + u(x, ) 5 D) ay(y ) L)
u(x,y)=0 onoQ,
where
_[o 1/2@> @( 71/2@)]
Lu(x) = [ax(lxl ™ +ay |x] 3 (1.12)

has a unique solution u € D(A) = {u € Hyo(Q) : g(u(x, y))u(x, y) € L'(Q,w)}, where g(t)
= te”, w(x,y) = x|, v(xy) = IxI72, folx,y) =1, filx,y) = 2|y, and fo(x,y) =
x|

2. Definitions and basic results

Let w be a locally integrable nonnegative function in R” and assume that 0 < w < co al-
most everywhere. We say that w belongs to the Muckenhoupt class A,, 1 < p < oo, or that
w is an A ,-weight if there is a constant C; = C(p,w) such that

1 wwdn) (L [ o Pwar) <c, 2.1)
<|B| B |B| JB
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for all balls B ¢ R", where | - | denotes the n-dimensional Lebesgue measure in R”. If
1<g<p,thenA,; C A, (see [4, 5] for more information about A,-weights). The weight
w satisfies the doubling condition if w(2B) < Cw(B), for all balls B ¢ R”, where w(B) =
Jsw(x)dx and 2B denotes the ball with the same center as B which is twice as large. If
w € A, then w is doubling (see [5, Corollary 15.7]).

We say that the pair of weights (v, w) satisfies the condition A, (1 < p < c and (v,w) €
A,) if and only if there is a constant C; such that

(7 | o) (5 |, wl/<1-P>(x)dx)p_1 <G, (22)

for every ball BCR™.
Remark 2.1. If (v,w) € Ay and w < v,thenw € A, and v € A,

Given a measurable subset Q of R”, we will denote by LP(Q,w), 1 < p < co, the Banach
space of all measurable functions f defined on Q for which

1/p
T (L) |76 Pa(dx) <. (2.3)

We will denote by W*?(Q,w), the weighted Sobolev spaces, the set of all functions
u € LP(Q,w) such that the weak derivatives D*u € L?(Q,w), 1 < |a| < k. The norm in
the space WEP(Q, w) is defined by

Up
!l wis (0,0) —(J |u x)|p x)dx + Z J | D*u(x dx) . (2.4)

1<|al<k
If w € Ay, then WEP(Q,w) is the closure of C* () with respect to the norm (2.4) (see

[2, Proposition 3.5]). The space Wé( ?(Q,w) is the closure of Cy () with respect to the
norm

1/p
el e ) = ( 2. J|D“u(x)|Pw(x)dx) : (2.5)

1<|a|<k

When k =1 and p = 2, the spaces W1 2(Q,w) and W& (Q, w) are Hilbert spaces. We
will denote by Hy(Q) the closure of C§°(Q) with respect to the norm

1/2
lull ) = (jﬂ (A Vul), Vu(0)dx) (26)

where (x) = [a;;(x)] (the coefficient matrix) and the symbol V indicates the gradient.
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Remark 2.2. Using the condition (1.3), we have

il 1200 = Nllan) < Null gz (2.7)

We(Q,v) € Hy(Q) € WiH(Q, ). (2.8)
LEmMA 2.3. If w € A,, then Wy (Q,w) = L2(Q, ) is compact and

il 200 = Csllullyrge) (2.9)

Proof. The proof follows the lines of [3, Theorem 4.6]. O

We introduce the following definition of (weak) solutions for problem (1.1).
Definition 2.4. A function u € D(A) < Hy(Q) is (weak) solution to the problem (1.1) if
| aiDuD g M+Jg () 9w (x)dx

(2.10)
=J0f0(x) dx+J F(0Djp(x)dx,

forallp € Y = Hy(Q) n Whr(Q,v), where p>4,k>n/2,and ll¢lly = ll@llwkr(q,y), With
D(A) = {u € Hy(Q) : g(u(x))u(x) € LY(Q,w)}.

Remark 2.5. Using that p >4, we have that v € A, C A,/; and
- -2)2
I+ iz < [P @) P22 - . (2.11)

Thus, WEP(Q,v) € Wk2(Q) € C(Q) (by the Sobolev embedding theorem).
Therefore || - [l¢q) < Cll - [y and the embedding Y C C(Q) is continuous.

3. Proof of Theorem 1.2

(I) Existence. For u € D(A) and ¢ € Y, we define
By(u, ) = L} i (x)Diti(x)Djp(x)dx,
By (u,¢) = Jng(u(X))fp(x)w(x)dx, (3.1)

_ JQ fo(x)ga(x)dx+j§ JQ £(Djp(x)dx.

Then u € D(A) < Hy(Q) is solution to problem (1.1) if

By (u,¢) +By(u,9) = T(g), VeeV. (3.2)
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Step 1 (T € (Ho(Q))*). In fact, using hypothesis (iii), Lemma 2.3, the Holder inequality,
the WSI, and (2.7), we obtain

T = | Ifillgldx+. | 151 |Djgldx
j=1

_ m 1/q' 1/q HI m 1/2 1/2
_L)< )Y lolv dx+j§IQ V) |Djp|w'?dx
fo c |4
v

lollLaca, + Z
) j=1 w

<

b; 3.3
L9 (Qv )” J‘PHLZ(Q,w) (3.3)

Jo

L2(Qw

fi

w200

n

IVollr2,w + Z
i1

5
w

= CB,w,v

<

Step 2. By condition (1.3) and the hypothesis that the matrix ${ is symmetric, we obtain

, Vol
L9 (Q,v) )

fo

n
i *

L9 (Q,v) j=1

) lllHy@, V¢ € Ho(Q).
2(0,0)

|Bi(u,9) | < JQ bigl (A u, Vo) |dx

sj (AVu, Vu)V(AV ¢,V o) 2dx
Q

(3.4)
< lull o) @l )
=< llullmy 1@l w2
< lullmollelly,
forallu e Hy(Q)),p €Y.
Hence there exists exactly one linear continuous operator
Ay :Ho(Q) — Y, (3.5)
with
(A1u, @)y = Bi(u,9), YueHy(Q),peY. (3.6)

Step 3. Note that |g(x)| < xg(x) + Cy, for all x € R. Therefore, if u € D(A), we have that
g(u(x)) € LY(Q, w). By using hypothesis (ii), Lemma 2.3, and Remark 2.5, we obtain for
ue D(A) fixed

|&wwwsLJﬁmmHWuﬂmmw

<lolc@ JQ | g (u(x)) | w(x)dx (3.7)

=< Clliglly.
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Thus, there exists a unique operator
Ay :D(A) € Hy(Q) — Y*, (3.8)
with
(Asu,90)y = By(u,9), YueD(A),peY. (3.9)
Step 4. We define the operator
A:D(A) S Hy(Q) — Y*, A=A +A, (3.10)
We have
(Au, @)y = (A1, )y + (A2, @)y = B1(u,9) + Bo (1, ). (3.11)
Thus, u € D(A) is a solution to problem (1.1) if
(Au,p)y =T(¢), VeeV. (3.12)

Then, the problem (1.1) corresponds to the operator equation (1.4).
Step 5. Global coerciveness of operator A. Using the condition (1.3) and hypothesis (ii), we
obtain

(Ag,9)y = Bi(9,¢) +B:(9,¢)

=j a,-j<x>D,-<p(x>Dj¢(x>dx+f ¢(p() p(x)w(x)dx
- o (3.13)
> JQ(&QVgo,V(p)dx

= ||¢||?—10(Q)-
Thus

Ag,
im (A9, )y = 400, (3.14)
Il ey~ 1@ H()

Step 6. Generalized condition (M). Let T € (Ho(Q))* and let {u,} be a sequence in Y with

u,—u in Hy(Q), (3.15)
(Aun, @)y — T(9p) asn— o, Vo€, (3.16)
E(Aun,un) < T(u). (3.17)

We want to show that this implies that Au = T.
Using that the operator A, is linear and continuous, we obtain

(Arun,9)y — (A1u, @)y, VYoevy. (3.18)
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Because of (3.16), it is sufficient to prove that u € D(A) and

(Aun, @)y — (A2u,9)y, VeeY. (3.19)
Therefore, it is sufficient to show that

L) [g(un(x)) — g(u(x)) Jo(x)w(x)dx — 0 asn — oo. (3.20)

Using the same argument in Step 3, we obtain

||| (@) ~ g (u)) plx)eox)d

< [ 18 (0) - g () | [px) | w(x)d
o (3.21)

< ligllc@ L} |g(un(x)) — g (u(x)) | w(x)dx
< Cliglly | 120 (x)) - g(u(x) | w(x)d.
Therefore, it is sufficient to show that
gun(x)) — g(u(x)) inL'(Q,w). (3.22)

Note that it is sufficient to prove (3.22) for a subsequence of {u,}.
If (v,w) € Ay and w < v, then w € A, (see Remark 2.1). By Lemma 2.3,

Wo(Q,0) = L2(Q,) (3.23)
is compact and [l ullr,(0.w) < Collull W (0,0)- Using (2.7), we also have that
Hy(Q) = L*(Q,w) (3.24)

is compact. This implies u,—u in L?(Q,w). Using again that w € A, we have u, — u in
L'(Q). Thus, there exists a subsequence, again denoted by {u,}, such that u,(x) — u(x)
for almost all x € Q. The continuity of g implies that g(u,(x)) — g(u(x)) for almost all
x € Q. Moreover, since u,, — u in Hy(Q), it follows that

sup |||y, ) <G, independent of n. (3.25)
Hence, using (1.2), we obtain
(Arup, uy)y < A||un||12qO(Q) < AC?, with C independent of n. (3.26)
Therefore, using (3.16), we obtain
E(Azun,un)y = }L—r{lojog(un(x))un(x)w(x)dx <C, (3.27)

with C independent of n.
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The continuity of g implies that g(u,(x))u,(x)w(x) — g(u(x))u(x)w(x) for almost all
x € Q. Therefore, by Fatou lemma, we have

| stutnutatdx <, (329)

thatis, u € D(A).
Now we want to show that g(u,(x)) — g(u(x)) in L'(Q, w).
Let a > 0 be fixed. For each x € Q, we have either

lun(x)] <a or |g(un(x))] <a "g(un(x))un(x) (3.29)

(if x#0, we can write g(x) = x ![g(x)x]). We get |g(x)| < c(a) if |x| < a (because g is
continuous).
Let X be a measurable subset of Q). Then

J | g (tn(x)) |w(x)dx = J | g (un(x)) | w(x)dx
X X

N{x:up(x)|<al

" d
* JXn{x:\un(x)\>u} |g(u (x)) |w(x) * (330)

<cla)wX)+at JXg(un(x))un(x)w(x)dx
<c(@w(X)+a'C (by(3.27)).

Hence, for all € > 0, we have

[ 18t [etodx < (331

£
2
if a is sufficiently large and w(X) is sufficiently small. Therefore, for all € > 0, there exists
0 = 8(¢) such that

[ 18 0un() - gl |
: (3.32)

< J | g (un(x)) |w(x)dx+J lg(u(x)) | w(x)dx < e,
X X

with w(X) < 8. Thus, the Vitali convergence theorem tells us that (3.22) holds.
Step 7. Quasiboundedness of the operator A. Let {u,} be a sequence in Y with u,—u in
H(Q) and suppose that

(Aup,up)y < C||un||H0<Q), V. (3.33)

We want to show that the sequence {Au,} is bounded in Y*. In fact, the boundedness of
{un} in Ho(Q) implies that

lim (Auy,u,)y < C. (3.34)

n—o0o



214  Solvability for a class of nonlinear Dirichlet problem

Suppose by contradiction that the sequence {Au,} is unbounded in Y*. Then there
exists a subsequence, again denoted by {u,}, such that

|[Auy||yc — o0 asn— oo. (3.35)
By the same arguments as in Step 6, we obtain that
(Aun,9)y — (Au,@)y asn— oo, Vo Y. (3.36)

The uniform boundedness principle tells us that the sequence {Au,} is bounded (which
is a contradiction with (3.35)).

Therefore, by Theorem 1.1, the equation Au = T, with T € (H(Q))*, has a solution
u € D(A) € Hy(Q), and it is the solution for problem (1.1).

(II) Uniqueness. If the function g : R — R is monotone increasing, we have that (g(a) —
gb))(a—-b) =0, forall a,b € R. Then

(Au—Av,u—v)y = J;) (AV(u—v),V(u—v))dx
+| @) g () - v (3.37)
> | (A9 =),V = ) = =y

for all u,v € D(A).
Therefore, if u,v € D(A) and Au = Av = T, we obtain that u = v.
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