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We study the existence and multiplicity of solutions for a class of quasilinear elliptic prob-
lem in exterior domain with Neumann boundary conditions.

1. Introduction

In this paper, we are concerned with the existence and multiplicity of solutions for the
following class of quasilinear elliptic problem with Neumann conditions:

−∆pu+ |u|p−2u=Q(x) f (u) in R
N \Ω,

∂u

∂η
= 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, 1 < p < N , and ∆pu is the
p-Laplacian operator, that is,

∆pu=
N∑
i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
, (1.2)

Q is a continuous function satisfying

Q(x) > 0 in R
N \Ω, lim

|x|→∞
Q(x)= Q̄ > 0, (1.3)

and the nonlinearity f : R→ R is an odd function of C1 class satisfying the following
hypotheses.

(f1) There exists 2≤ p < q+ 1 < η+ 1 < p∗ =Np/(N − p) verifying

lim
|s|→0

∣∣ f ′(s)∣∣
|s|q−1 = 0, limsup

|s|→∞

∣∣ f ′(s)∣∣
|s|η−1 < +∞. (1.4)
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(f2) There exists θ ∈ (p,η+ 1] such that

0 < θF(s)≤ s f (s) ∀s 
= 0. (1.5)

(f3) The function s→ f (s)/sp−1 is increasing in (0,+∞).

In [5], Benci and Cerami studied the problem (1.1) assuming that p = 2, Q ≡ 1, and
f (u)= |u|η−1u with 1 < η < (N + 2)/(N − 2). They showed that (1.1), with Dirichlet con-
dition, has not a ground-state solution. However, Esteban [8] proved that the same prob-
lem with Neumann condition has a ground-state. We recall that by a ground-state we mean
solution of (1.1) with minimum energy.

In [6], Cao also studied the problem (1.1) for p = 2, f (u)= |u|η−1u, and Q satisfying
the condition (1.3). The author showed that the problem has at least two solutions, where
the first solution is related to the minimization problem

I(Ω)= inf
u∈H1(RN\Ω)

{∫
RN\Ω

(|∇u|2 + |u|2) :
∫

RN\Ω
Q(x)|u|η+1 = 1

}
(1.6)

and the second solution is nodal, that is, a solution of (1.1) with change of sign. In that
paper, one of the main points is a compactness global result proved in [5].

In this work, motivated by [6], we prove the existence of ground-state and nodal so-
lutions to (1.1). We used variational methods such as mountain pass theorem without
Palais-Smale condition (see [14]) to obtain a positive ground-state solution. In relation
to nodal solutions, we apply the implicit function theorem. Here, we adapt to p-Laplacian
operator and to a general nonlinearity f some ideas found in [5, 6, 13]. However, the ar-
guments explored in the above articles cannot be carried out straightforwardly in our case
because some estimates become more subtle to be established. A main point in this paper
is a version of a compactness global lemma (CGL) to study the behavior of Palais-Smale
sequences, which is a version for p-Laplacian from a result shown by Benci and Cerami
in [5].

To state our main results, we need some definitions and notations.
If h is a Lebesgue integrable function and B is a measurable set, we write

∫
B h for∫

B hdx. Moreover, if h ∈W1,p(RN \Ω), we denote by ‖h‖ its usual norm. We denote
by I : W1,p(RN \Ω)→R the functional related to (1.1) given by

I(u)= 1
p

∫
RN\Ω

(|∇u|p + |u|p)−∫
RN\Ω

Q(x)F(u), (1.7)

where F(u)= ∫ u0 f (t)dt. We have the following problem:

−∆pu+ |u|p−2u= Q̄ f (u) in R
N , u∈W1,p(

R
N
)
, (1.8)

and by I∞ : W1,p(RN )→R the functional related to (1.8) given by

I∞(u)= 1
p

∫
RN

(|∇u|p + |u|p)−∫
RN

Q̄F(u). (1.9)

Concerning the existence of ground-state, we have the following result.
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Theorem 1.1. Suppose that f satisfies (f1), (f2), and (f3), p ≥ 2 and the function Q satisfies
(1.3) and

Q(x)≥ Q̄−Ce−m|x|, |x| −→∞, (1.10)

where C is a positive constant and m > p(q + 1)/((q + 1)− p). Then, (1.1) has a positive
ground-state solution.

Using the ground-state obtained in the above theorem together with some estimates
given in Sections 4 and 5, we establish a second theorem which shows the existence of a
nodal solution. For this result, we will need the following hypothesis:

(f4) there exists η ≤ σ ≤ p∗ − 1 verifying

f ′(t)t+ (1− p) f (t)≥ C|t|σ−1t, η ≤ σ ≤ p∗ − 1. (1.11)

Theorem 1.2. Suppose that f satisfies (f1), (f2), (f3), and (1.11), p ≥ 2, and the function Q
satisfies (1.3) and

Q(x)≥ Q̄+Ce−γ|x|, ∀x ∈R
N , (1.12)

where C is a positive constant and γ < q/(q+ 1). Then, (1.1) has a nodal solution.

Remark 1.3. In the proof of Theorems 1.1 and 1.2, we used variational methods and
adapted some arguments explored by Cao in [6]. These results complete the study made
in [6] in the sense that we consider the p-Laplacian operator and a general class of non-
linearity.

2. Technical lemmas

In this section, we state some results necessary for the proof of Theorems 1.1 and 1.2. It is
known that, under assumptions (f1), (f2), and (f3), the arguments used in [3] show that
(1.8) possesses a ground-state solution. About the behavior of the solutions at infinity, we
have the following result.

Lemma 2.1. Any positive solution ū ∈W1,p(RN ) of problem (1.8) with p ≥ 2 has the fol-
lowing asymptotic behavior:

lim
|x|→∞

ū(x)= 0,

C1e
−a|x| ≤ ū(x)≤ C2e

−b|x| in R
N ,

(2.1)

where C1,C2 > 0 are positive constants and 0 < b < 1 < a. Moreover, numbers a,b can be
chosen of the form a= 1 + δ and b = 1− δ for δ > 0.

Proof. The proof follows by similar arguments found in [11, Theorem 3.1]. �

Remark 2.2. With the same arguments used in the proof of the above lemma, we can
show that all positive weak solutions of (1.1) have exponential decaying.
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The next lemma shows an important inequality related to the vectors of RN , and its
proof can be found in [15, Lemma 4.2].

Lemma 2.3. For all v,w ∈RN with N ≥ 1 and p ≥ 2,(|v|p−2v−|w|p−2w
)
(v−w)≥ |v−w|p. (2.2)

Lemma 2.4. Let F ∈ C2(R,R+) be a convex and even function such that F(0)= 0 and f (s)=
F′(s)≥ 0 for all s∈ [0,∞). Then, for all u,v ≥ 0,∣∣F(u− v)−F(u)−F(v)

∣∣≤ 2
(
f (u)v+ f (v)u

)
. (2.3)

Proof. Indeed, we have two cases to consider. If v ≤ u, by convexity, we have

F(v)−F(0)
v− 0

≤ f (u), (2.4)

that is, F(v) ≤ f (u)v. On the other hand, since f ′ = F′′ ≥ 0, we have that f is nonde-
creasing and consequently

∣∣F(u− v)−F(u)
∣∣≤ v

∫ 1

0
f (u− tv)dt ≤ v f (u). (2.5)

Therefore, ∣∣F(u− v)−F(u)−F(v)
∣∣≤ 2v f (u). (2.6)

If u≤ v, we repeat the above argument to find∣∣F(u− v)−F(u)−F(v)
∣∣≤ 2u f (v). (2.7)

From (2.6) and (2.7) the lemma follows. �

Remark 2.5. Notice that, if f satisfies (f1), (f2), and (f3), the primitive F of f verifies the
hypothesis from Lemma 2.4.

3. Behavior of the Palais-Smale sequence

In this section, we prove some important lemmas to establish the CGL. The CGL is a key
result for the understanding of the behavior of Palais-Smale sequence. We recall that a
sequence (un)⊂W1,p(RN \Ω) is called a (PS)c sequence for I , at level c ∈R, if

I
(
un
)−→ c, I′

(
un
)−→ 0. (3.1)

Lemma 3.1. Let B ⊆ RN be an open set and gn : B→ R with gn ∈ Lt(B)∩ Lp∗(B) (t ≥ p),
|gn|Lp∗ (B)≤ C, and gn(x)→ 0 a.e. in B.

(I) Suppose that f satisfies (f1). Then,∫
B

∣∣F(gn +w
)−F

(
gn
)−F(w)

∣∣= on(1), (3.2)

for each w ∈ Lη+1(B)∩Lq+1(B) where F is the primitive of f .
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(II) Assume that f satisfies (f1), (f2), and (f3). Then,

∫
B

∣∣ f (gn +w
)− f

(
gn
)− f (w)

∣∣r = on(1), for r ∈
(
p

q
,
p∗

η

)
, (3.3)

and w ∈ Lp(B)∩Lp∗(B).

Proof. We will show only (I) because the same arguments can be used in the proof of (II).
We begin remarking that

F
(
gn +w

)−F
(
gn
)= ∫ 1

0

(
d

dt
F
(
gn + tw

))
dt. (3.4)

Then

F
(
gn +w

)−F
(
gn
)= ∫ 1

0
f
(
gn + tw

)
wdt, (3.5)

hence, by (f1),

∣∣F(gn +w
)−F

(
gn
)∣∣≤ ∫ 1

0

[
δ
∣∣gn + tw

∣∣q|w|+ cδ
∣∣gn + tw

∣∣η|w|]dt, (3.6)

that is,

∣∣F(gn +w
)−F

(
gn
)∣∣≤ (δ1

∣∣gn∣∣q|w|+ δ1|w|q+1 + cδ1

∣∣gn∣∣η|w|+ cδ1|w|η+1). (3.7)

For each ε > 0, we obtain using Young’s inequality that∣∣F(gn +w
)−F

(
gn
)−F(w)

∣∣
≤ C

[(
ε
∣∣gn∣∣q+1

+Cε|w|q+1)+
(
ε
∣∣gn∣∣η+1

+Cε|w|η+1)]. (3.8)

We consider the function Gε,n given by

Gε,n(x)=max
{∣∣F(gn +w

)−F
(
gn
)−F(w)

∣∣(x)− ε∣∣gn∣∣η+1
(x)− ε∣∣gn∣∣q+1

(x),0
}

(3.9)

which satisfies

Gε,n(x)−→ 0 a.e. in B,

0≤Gε,n(x)≤ C3|w|q+1 +C4|w|η+1 ∈ L1(B).
(3.10)

Therefore, by Lebesgue’s theorem, we have∫
B
Gε,n(x)dx −→ 0. (3.11)
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From the definition of Gε,n, it follows that

∣∣F(gn +w
)−F

(
gn
)−F(w)

∣∣≤ ε∣∣gn∣∣q+1
+ ε
∣∣gn∣∣η+1

+C5
∣∣Gε,n

∣∣. (3.12)

Thus, we obtain the following inequality

limsup
n→∞

∫
B

∣∣F(gn +w
)−F

(
gn
)−F(w)

∣∣≤ Cε, (3.13)

which implies that ∫
B

∣∣F(gn +w
)−F

(
gn
)−F(w)

∣∣= on(1). (3.14)

�

The next result can be found in [2].

Lemma 3.2. Let B ⊆RN be an open set and gn : B→RK (K ≥ 1) with gn ∈ Lp(B)×···×
Lp(B) (p ≥ 2), gn(x)→ 0 a.e. in B, and A(y)= |y|p−2y for all y ∈ B. Then, if |gn|Lp(B) ≤ C
for all n∈N, ∫

B

∣∣A(gn +w
)−A

(
gn
)−A(w)

∣∣p/(p−1)
dx = on(1) (3.15)

for each w ∈ Lp(B)×···×Lp(B) fixed.

Lemma 3.3 (compactness global lemma). Suppose that f satisfies (f1), (f2), and (f3). Let
(un) be a sequence in W1,p(RN \Ω) verifying

I
(
un
)−→ c, I′

(
un
)−→ 0, (3.16)

and u0 ∈W1,p(RN \Ω) such that un⇀ u0 in W1,p(RN \Ω). Then, either

(a) un→ u0 in W1,p(RN \Ω) or
(b) there exists k ∈ N, (y

j
n) ∈ RN with |y j

n| → ∞, j = 1, . . . ,k, and nontrivial solutions
u1, . . . ,uk of the problem (1.8), such that

∥∥∥∥∥un−u0−
k∑
j=1

uj
( ·−y j

n
)∥∥∥∥∥−→ 0, I

(
un
)−→ I

(
u0
)

+
k∑
j=1

I∞
(
uj
)
. (3.17)

Proof. The arguments used in this proof follow the same ideas found in [2, 5]. The se-
quence (un) is bounded, thus there exists u0 ∈W1,p(RN \Ω) such that

un⇀ u0 in W1,p(
R

N \Ω). (3.18)

Adapting arguments found in [1, 9, 10, 15], it follows that I′(u0)= 0. Define the function

Ψ1
m(x)= um(x)−u0(x), x ∈R

N \Ω. (3.19)



Claudianor O. Alves et al. 257

Then

Ψ1
m⇀ 0 in W1,p(

R
N \Ω),

Ψ1
m(x)−→ 0 a.e. in R

N \Ω.
(3.20)

It follows, using Lemmas 2.4 and 3.2, that

I
(
Ψ1

m

)= I
(
um
)− I

(
u0
)

+ on(1), (3.21)

I′
(
Ψ1

m

)= om(1) in
(
W1,p(

R
N \Ω))′. (3.22)

Suppose that

Ψ1
m 
→ 0 in W1,p(

R
N \Ω). (3.23)

Consequently, by (f1), (f2), and (f3), there exists α > 0 such that

I
(
Ψ1

m

)≥ α > 0. (3.24)

Now, we decompose RN into N-dimensional unit hypercubes Qi with vertex having inte-
ger coordinates and put

dm =max
i

∣∣Ψ1
m

∣∣p
Lp(Ui)

, (3.25)

where Ui =Qi∩ (RN \Ω). From (3.24) and (f1), (f2), and (f3), we find γ > 0 verifying

dm ≥ γ > 0. (3.26)

Fix y1
m the center of hypercube Qi in which∣∣Ψ1

m

∣∣p
Lp(Ui)

= dm ≥ γ > 0. (3.27)

It follows from Sobolev imbeddings and the last equality that {y1
m} is unbounded, that is,∣∣y1

m

∣∣−→∞. (3.28)

Let

zm(x)=Ψ1
m

(
x+ y1

m

)
, x ∈D1

m =
{
x− y1

m : x ∈R
N \Ω}. (3.29)

From boundedness of {un}, there exists u1 ∈W1,p(RN ) \ {0} with

zm⇀ u1 in W
1,p
loc

(
R

N
)
. (3.30)

Using (3.22) and the fact that D1
m → RN , we conclude that u1 is a nontrivial solution of

(1.8). Define

Ψ2
m(x)=Ψ1

m

(
x+ y1

m

)−u1(x). (3.31)



258 Multiplicity of solutions for a quasilinear problem

If ‖Ψ2
m(·− y1

m)‖ → 0, the theorem is finished, otherwise for the contrary case, we repeat
the arguments and we will find u1,u2, . . . ,uk nontrivial solutions for (1.8) and sequences

(y
j
m) with |y j

m| →∞ such that

∥∥∥∥∥um−u0−
k∑
j=1

uj
( ·−y j

m
)∥∥∥∥∥

p

= om(1),

I
(
Ψ

j
m
( ·−y j

m
))= I

(
um
)− I

(
u0
)− k∑

j=1

I∞
(
uj
)

+ on(1).

(3.32)

Notice that there exists ξ > 0 verifying

I∞(u)≥ ξ ∀u∈ Υ, (3.33)

where

Υ= {u∈W1,p(
R

N
) \ {0} | I′∞(u)u= 0

}
. (3.34)

Inequality (3.33) along with (3.32) tell us that the iteration must finish at some index
k ∈N. This completes the proof of this lemma. �

Corollary 3.4. The functional I satisfies (PS)c condition for all

0 < c < c∞, (3.35)

where c∞ is the mountain pass level of the energy functional associated to (1.8).

4. Existence of ground-state solution

In this section, we will prove the existence of a positive ground-state solution for the
functional I . To this end, we suppose that f (t)= 0 as t ≤ 0. The first lemma is related to
the mountain pass geometry, and its proof uses well-known arguments.

Lemma 4.1. The functional I verifies the mountain pass geometry, that is,

(i) there exists r,ρ > 0 such that I(u)≥ r, ‖u‖ = ρ,
(ii) there exists e ∈ Bc

ρ(0) such that I(e) < 0.

Using a version of mountain pass theorem without Palais-Smale condition (see [14,
Theorem 1.15]) and (f3), there exists (un)⊂W1,p(RN \Ω) satisfying

I
(
un
)−→ c1, I′

(
un
)−→ 0, as n−→∞, (4.1)

where

c1 = inf
{

sup
t≥0

I(tu); u∈W1,p(
R

N \Ω) \ {0}}. (4.2)

The next result establishes a relation between the levels c1 and c∞.
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Proposition 4.2. Assume that Q satisfies (1.3) and (1.10). Then

0 < c1 < c∞. (4.3)

Proof. Let ū be a ground-state solution of problem (1.8) and define un(x) = ū(x− xn),
xn = (0, . . . ,n). By the characterization of c1, given in (4.2), we have

c1 ≤max
t≥0

I
(
tun
)
. (4.4)

Let γn ∈ (0,∞) such that

I
(
γnun

)=max
t≥0

I
(
tun
)
, (4.5)

then we have

c1 ≤ I
(
γnun

)
= 1

p

∫
RN\Ω

(∣∣γn∇un∣∣p +
∣∣γnun∣∣p)−∫

RN\Ω
Q(x)F

(
γnun

)
= I∞

(
γnun

)− 1
p
tnγ

p
n +

∫
Ω
Q̄F

(
γnun

)
+
∫

RN\Ω
(Q̄−Q)F

(
γnun

)
,

(4.6)

where

tn =
∫
Ω

(∣∣∇un∣∣p +
∣∣un∣∣p). (4.7)

Now, notice that I(γnun)=max
t≥0

I(tun) if and only if

∫
RN\Ω

(∣∣∇un∣∣p +
∣∣un∣∣p)= ∫

RN\Ω
Q(x)

f
(
γnun

)(
γnun

)p−1 u
p
n. (4.8)

It is not difficult to see that (γn) is bounded and therefore γn → γo for some subse-
quence still denoted by (γn). We claim that γo = 1. In fact, since |xn| →∞, it follows from
(4.8) that ∫

RN

(∣∣∇ū∣∣p + |ū|p)= ∫
RN

Q̄
f
(
γoū

)(
γoū

)p−1 ū
p. (4.9)

Since ū is a ground-state, we get∫
RN

Q̄
f (ū)

(ū)p−1 ū
p =

∫
RN

Q̄
f
(
γoū

)(
γoū

)p−1 ū
p. (4.10)

Therefore, by (f3), we have that γo = 1.
From (f1), we obtain

c1 ≤ I∞(ū)− tn

(
γ
p
n

p
−O(ε)

)
+ sn, (4.11)
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where

sn = C1

∫
Ω

∣∣un∣∣η+1
+
∫

RN\Ω
(Q̄−Q)F

(
γnun

)
. (4.12)

We claim that

sn
tn
−→ 0. (4.13)

Indeed, by Lemma 2.1, we have

tn =
∫
Ω

(∣∣∇un∣∣p +
∣∣un∣∣p)≥ ∫

Ω

∣∣un∣∣p ≥ C2e
−pan,∫

Ω

∣∣un∣∣η+1 ≤ C3e
−bn(η+1).

(4.14)

Fix rn ∈ (0,n) and observe that∫
RN\Ω

(Q̄−Q)F
(
γnun

)= ∫
(RN\Ω)∩{|x|>rn}

(Q̄−Q)F
(
γnun

)
+
∫

(RN\Ω)∩{|x|≤rn}
(Q̄−Q)F

(
γnun

)
.

(4.15)

On the other hand, by (1.10), it follows that∫
(RN\Ω)∩{|x|>rn}

(Q̄−Q)F
(
γnun

)≤ C4e
−mrn , (4.16)

and by condition (f1), we have∫
(RN\Ω)∩{|x|≤rn}

(Q̄−Q)F
(
γnun

)
≤ C5ε

∫
(RN\Ω)∩{|x|≤rn}

∣∣un∣∣q+1
+C6

∫
(RN\Ω)∩{|x|≤rn}

∣∣un∣∣η+1

≤ C7n
Ne−(n−rn)(q+1)b.

(4.17)

Consequently, using the estimates obtained,

sn
tn
≤ C8

{
epan

ebn(η+1) +
epna

emrn
+

epannN

e(n−rn)(q+1)b

}
. (4.18)

Since a/b→ 1 as δ→ 0 (see Lemma 2.1), there exists ε > 0 such that

m>
pab(q+ 1)

b(q+ 1)− p(a+ ε)
. (4.19)

Choosing rn = n(1− p(a+ ε)/b(q+ 1)), we obtain sn/tn→ 0 and hence c1 < c∞. �
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Proof of Theorem 1.1. It follows from Corollary 3.4 and mountain pass theorem (see Am-
brosetti and Rabinowitz [4]) that I has a critical point u1 in the level c1. We claim that u1

is nonnegative. Indeed, we know that I′(u1)u1
− = 0, thus

0= ∣∣∇u−1 ∣∣pp +
∣∣u−1 ∣∣pp = ∥∥u−1 ∥∥p. (4.20)

Hence u−1 = 0. Using the strong maximum principle, we have u1 > 0 in RN \Ω. Thus, we
conclude that u1 is a ground-state solution. �

5. Existence of nodal solution

In this section, we will show that there is a solution of (1.1) that changes sign. Here, we
adapt for our case some arguments explored by Cerami et al. [7] (see also Cao [6] and
Noussair and Wei [13]). We start with some notations. Consider the closed set

� := {u∈W1,p(
R

N \Ω) | u± 
≡ 0, I′
(
u±
)
u± = 0

}
. (5.1)

Using well-known arguments, we can show that there exists a constant µ1 > 0 verifying

∫
RN\Ω

∣∣u±∣∣η+1
> µ1 ∀u∈�. (5.2)

Consider the real number

ĉ = inf
u∈�

I(u). (5.3)

Lemma 5.1. There exists a sequence (un)⊂� satisfying

I
(
un
)−→ ĉ, I′

(
un
)−→ 0. (5.4)

Proof. It is easy to verify that I is bounded from below on �. Hence we may apply the
Ekeland variational principle to obtain a minimizing sequence {un} ⊂� for ĉ satisfying

ĉ ≤ I
(
un
)≤ ĉ+

1
n

, (5.5)

I(v)≥ I
(
un
)− 1

n

∥∥v−un
∥∥ ∀v ∈�. (5.6)

Using standard arguments, we have that un is bounded. We claim that

I′
(
un
)−→ 0 as n−→∞. (5.7)
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To this end, for each ϕ∈W1,p(RN \Ω) and n∈N, we introduce the functions hin : R3 →
R, i= 1,2, given by

h1
n(t,s, l)=

∫
RN\Ω

∣∣∇(un + tϕ+ su+
n + lu−n

)+∣∣p +
∣∣(un + tϕ+ su+

n + lu−n
)+∣∣p

−
∫

RN\Ω
f
((
un + tϕ+ su+

n + lu−n
)+)((

un + tϕ+ su+
n + lu−n

)+)
,

h2
n(t,s, l)=

∫
RN\Ω

∣∣∇(un + tϕ+ su+
n + lu−n

)−∣∣p +
∣∣(un + tϕ+ su+

n + lu−n
)−∣∣p

−
∫

RN\Ω
f
((
un + tϕ+ su+

n + lu−n
)−)((

un + tϕ+ su+
n + lu−n

)−)
.

(5.8)

Note that the functions hin, i= 1,2, are of class C1 and hin(0,0,0)= 0, (∂h1
n/∂l)(0,0,0)= 0,

(∂h2
n/∂s)(0,0,0)= 0, and(

∂h1
n

∂s

)
(0,0,0)= p

∫
RN\Ω

(∣∣∇u+
n

∣∣p +
(
u+
n

)p)
−
∫

RN\Ω
f ′
(
u+
n

)(
u+
n

)2
+ f

(
u+
n

)(
u+
n

)
,

(5.9)

thus (
∂h1

n

∂s

)
(0,0,0)=−

∫
RN\Ω

f ′
(
u+
n

)(
u+
n

)2
+ (1− p) f

(
u+
n

)(
u+
n

)
. (5.10)

Since un ∈�, from condition (1.11), there exists C > 0 verifying

liminf
n→∞

∫
RN\Ω

f ′
(
u+
n

)(
u+
n

)2
+ (1− p) f

(
u+
n

)(
u+
n

)
> C (5.11)

which implies that (
∂h1

n

∂s

)
(0,0,0) <−C1 ∀n≥ no (5.12)

for some positive constant C1. Using similar arguments, we have

(
∂h2

n

∂l

)
(0,0,0) <−C1 ∀n≥ no. (5.13)

Therefore there are, by the implicit function theorem, functions sn(t), ln(t) of class C1

defined on some interval (−δn,δn), δn > 0, such that sn(0)= ln(0)= 0, and

hin
(
t,sn(t), lm(t)

)= 0, t ∈ (− δn,δn
)
, i= 1,2. (5.14)

This shows that for t ∈ (−δn,δn),

vn = un + tϕ+ sn(t)u+
n + ln(t)u−n ∈�. (5.15)
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Furthermore, ∣∣s′n(0)
∣∣≤ C,

∣∣l′n(0)
∣∣≤ C (5.16)

for some constant C, independent of n. In fact,

s′n(0)=
(
∂h1

n

∂t

)
(0,0,0)/

((
∂h1

n

∂s

)
(0,0,0)

)
, (5.17)

thus

s′n(0)=− p
∫
RN\Ω

∣∣∇u+
n

∣∣p−2∇u+
n∇ϕ−

∫
RN\Ω

(
f ′
(
u+
n

)
u+
n + f

(
u+
n

))
ϕ∫

RN\Ω f ′
(
u+
n

)(
u+
n

)2
+ (1− p) f

(
u+
n

)
u+
n

. (5.18)

From the boundedness of un in W1,p(RN \Ω) and (5.11), it follows that {s′n(0)} is
bounded. A similar argument can be applied for the sequence {l′n(0)} to conclude that
it is also bounded.

From (5.6), we have

I
(
un + tϕ+ sn(t)u+

n + ln(t)u−n
)− I

(
un
)

≥−1
n

∥∥tϕ+ sn(t)u+
n + ln(t)u−n

∥∥ ∀t ∈ (− δn,δn
) (5.19)

which implies that

I′
(
un
)
ϕ≥−1

n
‖ϕ‖− C

n
. (5.20)

Then, for all ϕ∈W1,p(RN \Ω) with ‖ϕ‖ ≤ 1, we get

I′
(
un
)
ϕ≥−C2

n
, (5.21)

hence ∥∥I′n(un)∥∥−→ 0. (5.22)
�

Proposition 5.2. Suppose that Q satisfies (1.3), (1.10), and (1.12). Then

0 < ĉ < c1 + c∞. (5.23)

Proof. Let ū be a ground-state of (1.8). Define ūn(x) = ū(x − xn) and un = αu1 − βūn,
where u1 is a positive ground-state of (1.1), xn = (0, . . .0,n), α,β > 0. Consider the func-
tions

h±(α,β,n)=
∫

RN\Ω

∣∣∇(αu1−βūn
)±∣∣p +

∣∣(αu1−βūn
)±∣∣p

−
∫

RN\Ω
Q f

((
αu1−βūn

)±)(
αu1−βūn

)±
.

(5.24)
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Since ∫
RN\Ω

(∣∣∇u1
∣∣p +u

p
1

)−∫
RN\Ω

Q f
(
u1
)
u1 = 0, (5.25)

by (f3),

∫
RN\Ω

(∣∣∣∣ 1
p
∇u1

∣∣∣∣p +
∣∣∣∣ 1
p
u1

∣∣∣∣p)−∫
RN\Ω

Q f
(

1
p
u1

)
1
p
u1

=
∫

RN\Ω
Q

(
f
(
u1
)(

u1
)p−1 −

f
(
(1/p)u1

)(
(1/p)u1

)p−1

)(
u1

p

)p

> 0,∫
RN\Ω

(∣∣p∇u1
∣∣p +

∣∣pu1
∣∣p)−∫

RN\Ω
Q f

(
pu1

)
pu1

=
∫

RN\Ω
Q

(
f
(
u1
)(

u1
)p−1 −

f
(
pu1

)(
pu1

)p−1

)(
pu1

)p
< 0.

(5.26)

Thus, for n large enough, we get

∫
RN\Ω

(∣∣∣∣ 1
p
∇ūn

∣∣∣∣p +
∣∣∣∣ 1
p
ūn

∣∣∣∣p)−∫
RN\Ω

Q(x) f
(

1
p
ūn

)
1
p
ūu > 0,∫

RN\Ω

(∣∣p∇ūn∣∣p +
∣∣pūn∣∣p)−∫

RN\Ω
Q(x) f

(
pūn

)
pūn < 0.

(5.27)

Since ū(x)→ 0 as |x| →∞, there exists no > 0 such that

h+
(

1
p

,β,n
)
> 0, h+(p,β,n) < 0, (5.28)

for n≥ no and β ∈ [1/p, p]. Now, for all α∈ [1/p, p], we have

h−
(
α,

1
p

,n
)
> 0, h−(α, p,n) < 0. (5.29)

By the mean value theorem (see [12]), we have α∗, β∗ such that 1/p ≤ α∗, β∗ ≤ p,

h±
(
α∗,β∗,n

)= 0 for n≥ no, (5.30)

that is,

α∗u1−β∗ūn ∈� for n≥ no. (5.31)

Hence, we only need to verify that

sup
1/p≤α,β≤p

I
(
αu1−βūn

)
< c1 + c∞ for n≥ no. (5.32)
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Indeed, since

I
(
αu1−βūn

)= 1
p

∫
RN\Ω

∣∣∇αu1−β∇ūn
∣∣p +

∣∣αu1−βūn
∣∣p

−
∫

RN\Ω
Q(x)F

(
αu1−βūn

)
,

(5.33)

from Lemmas 2.3 and 2.4, we get

I
(
αu1−βūn

)≤ I1 + I2− I3, (5.34)

where

I1 = 1
p

∫
RN\Ω

(∣∣∇(αu1
)∣∣p−2∇(αu1

)−∣∣∇(βūn)∣∣p−2∇(βūn))(∇(αu1
)−∇(βūn)),

I2 = 1
p

∫
RN\Ω

(∣∣αu1
∣∣p−2

αu1−
∣∣βūn∣∣p−2

βūn
)(
αu1−βūn

)
,

I3 =
∫

RN\Ω
QF

(
αu1

)
+
∫

RN\Ω
QF

(
βūn

)− 2
∫

RN\Ω
f
(
αu1

)
βūn +αu1 f

(
βūn

)
.

(5.35)

Since u1 is a solution of (1.1) and ūn is related with a ground-state of (1.8), we have

I
(
αu1−βūn

)≤ I
(
αu1

)
+ I∞

(
βūn

)−∫
RN\Ω

(Q− Q̄)F
(
βūn

)
+C1

∫
RN\Ω

(
f
(
u1
)
ūn +u1 f

(
ūn
))

+
∫
Ω
Q̄F

(
βūn

)
.

(5.36)

Therefore, we conclude that

sup
1/p≤α,β≤p

I
(
αu1−βūn

)≤ sup
α≥0

I
(
αu1

)
+ sup

β≥0
I∞
(
βūn

)−∫
RN\Ω

(Q− Q̄)F
(

1
p
ūn

)

+C1

∫
RN\Ω

(
f
(
αu1

)
βūn +αu1 f

(
βūn

))
+
∫
Ω
Q̄F

(
pūn

)
.

(5.37)

Now, by (1.12), we obtain

∫
RN\Ω

(Q− Q̄)F
(
ūn
)≥ Ce−γn, (5.38)

and, by (f1), we get

∫
Ω
Q̄F

(
ūn
)≤ εe−nb(q+1) +C2e

−nb(η+1) ≤ Ce−nb(q+1). (5.39)
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On the other hand, one has

∫
RN\Ω

f
(
u1
)
ūn ≤ C

(∫
(RN\Ω)∩{|x|<(1/(q+1))n}

+
∫

(RN\Ω)∩{|x|≥(1/(q+1))n}

)∣∣u1
∣∣q∣∣ūn∣∣

+C
(∫

(RN\Ω)∩{|x|<(1/(η+1))n}
+
∫

(RN\Ω)∩{|x|≥(1/(η+1))n}

)∣∣u1
∣∣η∣∣ūn∣∣

≤ C1e
−(q/(q+1))bn +C2e

−bn(q/(q+1)) +C3e
−(η/(η+1))bn +C2e

−bn(η/(η+1))

≤ Ce−nb(q/(q+1)),

(5.40)

∫
RN\Ω

u1 f
(
ūn
)≤ Ce−nb(q/(q+1)). (5.41)

Recalling that γ < q/(q+ 1), and substituting (5.38), (5.39), and (5.40) in (5.37), with a
and b near 1, we have for n large enough that

sup
1/p≤α,β≤p

I
(
αu1−βūn

)
< sup

α≥0
I
(
αu1

)
+ sup

β≥0
I∞
(
βūn

)= c1 + c∞. (5.42)

Thus

ĉ < c1 + c∞, (5.43)

which proves the proposition. �

As an immediate consequence of Lemma 3.3 and the last proposition, we get the fol-
lowing lemma.

Lemma 5.3. Let (un)⊂� be the sequence obtained in Lemma 5.1. Then (un) has a subse-
quence converging strongly in W1,p(RN \Ω).

Proof. It is easy to see that (un) is bounded in W1,p(RN \Ω). Denote by u the weak limit
of (un) in W1,p(RN \Ω). Thus, either un → u in W1,p(RN \Ω) or there exist k functions
uj with 1 ≤ j ≤ k satisfying Lemma 3.3. It is clear that k ≤ 1. Suppose that u ≡ 0. Since
c2 > 0, we have k = 1 and

u1
n −→ u1( ·−y1

n

)
in W1,p(

R
N \Ω). (5.44)

On the other hand, since un ∈� and |y1
m| →∞, we obtain

∫
RN

∣∣(u1)±∣∣η+1
dx ≥ µ

2
> 0. (5.45)

So, we can conclude that

ĉ = I∞
(
u1)≥ 2c∞, (5.46)
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which is a contradiction. Thus u 
≡ 0. If (un) does not converge strongly to u, then u1 
≡ 0.
Hence,

ĉ ≥ I(u) + I∞
(
u1)≥ c1 + c∞, (5.47)

which contradicts the inequality ĉ < c1 + c∞. Hence, there is no k and (un) is strongly
convergent to u in W1,p(RN \Ω). �

Proof of Theorem 1.2. By Lemma 5.3, there exists u∈� such that

I(u)= ĉ, I′(u)= 0, (5.48)

hence, u is a nodal solution of (1.1). �

Acknowledgments

The authors would like to thank the anonymous referee for valuable commentaries and
suggestions made in a very detailed report. The second author was supported partially
by Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq). The third
author was supported by Fundação de Amparo a Pesquisa do Estado de Minas Gerais
(FAPEMIG).

References

[1] C. O. Alves, Existência de solução positiva de equações eĺıpticas não-lineares variacionais em RN ,
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Everaldo S. Medeiros: Departamento de Matemática, Universidade Federal de Paraı́ba, CEP
58051-900, João Pessoa - PB, Brazil

E-mail address: everaldo@mat.ufpb.br

mailto:coalves@dme.ufcg.edu.br
mailto:carrion@mat.ufmg.br
mailto:everaldo@mat.ufpb.br

